aboutsummaryrefslogblamecommitdiffstats
path: root/fftools/ffmpeg_sched.c
blob: d91968822fdc97bf69deb09d6ac3ee984c0ff7c3 (plain) (tree)
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
































































































































































































                                                                                
                                                          























                                                                
                                   






                                          
                                         









                               
                                                






















































































































                                                                                   
                                                 































































                                                                                               
                                                                     







                                                        
                                                       









                                                           
                                                












































                                                                                  

                                          








                               
                        


















































































                                                                          
                                               























                                                


                                                        






























                                                                        
                                                                    











                                            
                                        








































































































                                                                     
                                                        





































                                                                                      
                                                       













































                                                                                
                                                                      









































































































































































































































































































































                                                                                    

                                                  
                          




                                                     
                               











































































































                                                                                        
                                                                        





















































































































































































































































































































                                                                                   
                                                                                          










































































































































































































































































































































                                                                                     
                                                                                   





















































































































































































                                                                                 



















                                                                                
















































































                                                                                      
/*
 * Inter-thread scheduling/synchronization.
 * Copyright (c) 2023 Anton Khirnov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <stdatomic.h>
#include <stddef.h>
#include <stdint.h>

#include "cmdutils.h"
#include "ffmpeg_sched.h"
#include "ffmpeg_utils.h"
#include "sync_queue.h"
#include "thread_queue.h"

#include "libavcodec/packet.h"

#include "libavutil/avassert.h"
#include "libavutil/error.h"
#include "libavutil/fifo.h"
#include "libavutil/frame.h"
#include "libavutil/mem.h"
#include "libavutil/thread.h"
#include "libavutil/threadmessage.h"
#include "libavutil/time.h"

// 100 ms
// FIXME: some other value? make this dynamic?
#define SCHEDULE_TOLERANCE (100 * 1000)

enum QueueType {
    QUEUE_PACKETS,
    QUEUE_FRAMES,
};

typedef struct SchWaiter {
    pthread_mutex_t     lock;
    pthread_cond_t      cond;
    atomic_int          choked;

    // the following are internal state of schedule_update_locked() and must not
    // be accessed outside of it
    int                 choked_prev;
    int                 choked_next;
} SchWaiter;

typedef struct SchTask {
    Scheduler          *parent;
    SchedulerNode       node;

    SchThreadFunc       func;
    void               *func_arg;

    pthread_t           thread;
    int                 thread_running;
} SchTask;

typedef struct SchDec {
    const AVClass      *class;

    SchedulerNode       src;
    SchedulerNode      *dst;
    uint8_t            *dst_finished;
    unsigned         nb_dst;

    SchTask             task;
    // Queue for receiving input packets, one stream.
    ThreadQueue        *queue;

    // Queue for sending post-flush end timestamps back to the source
    AVThreadMessageQueue *queue_end_ts;
    int                 expect_end_ts;

    // temporary storage used by sch_dec_send()
    AVFrame            *send_frame;
} SchDec;

typedef struct SchSyncQueue {
    SyncQueue          *sq;
    AVFrame            *frame;
    pthread_mutex_t     lock;

    unsigned           *enc_idx;
    unsigned         nb_enc_idx;
} SchSyncQueue;

typedef struct SchEnc {
    const AVClass      *class;

    SchedulerNode       src;
    SchedulerNode       dst;

    // [0] - index of the sync queue in Scheduler.sq_enc,
    // [1] - index of this encoder in the sq
    int                 sq_idx[2];

    /* Opening encoders is somewhat nontrivial due to their interaction with
     * sync queues, which are (among other things) responsible for maintaining
     * constant audio frame size, when it is required by the encoder.
     *
     * Opening the encoder requires stream parameters, obtained from the first
     * frame. However, that frame cannot be properly chunked by the sync queue
     * without knowing the required frame size, which is only available after
     * opening the encoder.
     *
     * This apparent circular dependency is resolved in the following way:
     * - the caller creating the encoder gives us a callback which opens the
     *   encoder and returns the required frame size (if any)
     * - when the first frame is sent to the encoder, the sending thread
     *      - calls this callback, opening the encoder
     *      - passes the returned frame size to the sync queue
     */
    int               (*open_cb)(void *opaque, const AVFrame *frame);
    int                 opened;

    SchTask             task;
    // Queue for receiving input frames, one stream.
    ThreadQueue        *queue;
    // tq_send() to queue returned EOF
    int                 in_finished;
    int                 out_finished;
} SchEnc;

typedef struct SchDemuxStream {
    SchedulerNode      *dst;
    uint8_t            *dst_finished;
    unsigned         nb_dst;
} SchDemuxStream;

typedef struct SchDemux {
    const AVClass      *class;

    SchDemuxStream     *streams;
    unsigned         nb_streams;

    SchTask             task;
    SchWaiter           waiter;

    // temporary storage used by sch_demux_send()
    AVPacket           *send_pkt;

    // protected by schedule_lock
    int                 task_exited;
} SchDemux;

typedef struct PreMuxQueue {
    /**
     * Queue for buffering the packets before the muxer task can be started.
     */
    AVFifo         *fifo;
    /**
     * Maximum number of packets in fifo.
     */
    int             max_packets;
    /*
     * The size of the AVPackets' buffers in queue.
     * Updated when a packet is either pushed or pulled from the queue.
     */
    size_t          data_size;
    /* Threshold after which max_packets will be in effect */
    size_t          data_threshold;
} PreMuxQueue;

typedef struct SchMuxStream {
    SchedulerNode       src;
    SchedulerNode       src_sched;

    unsigned           *sub_heartbeat_dst;
    unsigned         nb_sub_heartbeat_dst;

    PreMuxQueue         pre_mux_queue;

    // an EOF was generated while flushing the pre-mux queue
    int                 init_eof;

    ////////////////////////////////////////////////////////////
    // The following are protected by Scheduler.schedule_lock //

    /* dts+duration of the last packet sent to this stream
       in AV_TIME_BASE_Q */
    int64_t             last_dts;
    // this stream no longer accepts input
    int                 source_finished;
    ////////////////////////////////////////////////////////////
} SchMuxStream;

typedef struct SchMux {
    const AVClass      *class;

    SchMuxStream       *streams;
    unsigned         nb_streams;
    unsigned         nb_streams_ready;

    int               (*init)(void *arg);

    SchTask             task;
    /**
     * Set to 1 after starting the muxer task and flushing the
     * pre-muxing queues.
     * Set either before any tasks have started, or with
     * Scheduler.mux_ready_lock held.
     */
    atomic_int          mux_started;
    ThreadQueue        *queue;
    unsigned            queue_size;

    AVPacket           *sub_heartbeat_pkt;
} SchMux;

typedef struct SchFilterIn {
    SchedulerNode       src;
    SchedulerNode       src_sched;
    int                 send_finished;
    int                 receive_finished;
} SchFilterIn;

typedef struct SchFilterOut {
    SchedulerNode       dst;
} SchFilterOut;

typedef struct SchFilterGraph {
    const AVClass      *class;

    SchFilterIn        *inputs;
    unsigned         nb_inputs;
    atomic_uint      nb_inputs_finished_send;
    unsigned         nb_inputs_finished_receive;

    SchFilterOut       *outputs;
    unsigned         nb_outputs;

    SchTask             task;
    // input queue, nb_inputs+1 streams
    // last stream is control
    ThreadQueue        *queue;
    SchWaiter           waiter;

    // protected by schedule_lock
    unsigned            best_input;
    int                 task_exited;
} SchFilterGraph;

struct Scheduler {
    const AVClass      *class;

    SchDemux           *demux;
    unsigned         nb_demux;

    SchMux             *mux;
    unsigned         nb_mux;

    unsigned         nb_mux_ready;
    pthread_mutex_t     mux_ready_lock;

    unsigned         nb_mux_done;
    pthread_mutex_t     mux_done_lock;
    pthread_cond_t      mux_done_cond;


    SchDec             *dec;
    unsigned         nb_dec;

    SchEnc             *enc;
    unsigned         nb_enc;

    SchSyncQueue       *sq_enc;
    unsigned         nb_sq_enc;

    SchFilterGraph     *filters;
    unsigned         nb_filters;

    char               *sdp_filename;
    int                 sdp_auto;

    int                 transcode_started;
    atomic_int          terminate;
    atomic_int          task_failed;

    pthread_mutex_t     schedule_lock;

    atomic_int_least64_t last_dts;
};

/**
 * Wait until this task is allowed to proceed.
 *
 * @retval 0 the caller should proceed
 * @retval 1 the caller should terminate
 */
static int waiter_wait(Scheduler *sch, SchWaiter *w)
{
    int terminate;

    if (!atomic_load(&w->choked))
        return 0;

    pthread_mutex_lock(&w->lock);

    while (atomic_load(&w->choked) && !atomic_load(&sch->terminate))
        pthread_cond_wait(&w->cond, &w->lock);

    terminate = atomic_load(&sch->terminate);

    pthread_mutex_unlock(&w->lock);

    return terminate;
}

static void waiter_set(SchWaiter *w, int choked)
{
    pthread_mutex_lock(&w->lock);

    atomic_store(&w->choked, choked);
    pthread_cond_signal(&w->cond);

    pthread_mutex_unlock(&w->lock);
}

static int waiter_init(SchWaiter *w)
{
    int ret;

    atomic_init(&w->choked, 0);

    ret = pthread_mutex_init(&w->lock, NULL);
    if (ret)
        return AVERROR(ret);

    ret = pthread_cond_init(&w->cond, NULL);
    if (ret)
        return AVERROR(ret);

    return 0;
}

static void waiter_uninit(SchWaiter *w)
{
    pthread_mutex_destroy(&w->lock);
    pthread_cond_destroy(&w->cond);
}

static int queue_alloc(ThreadQueue **ptq, unsigned nb_streams, unsigned queue_size,
                       enum QueueType type)
{
    ThreadQueue *tq;
    ObjPool *op;

    queue_size = queue_size > 0 ? queue_size : 8;

    op = (type == QUEUE_PACKETS) ? objpool_alloc_packets() :
                                   objpool_alloc_frames();
    if (!op)
        return AVERROR(ENOMEM);

    tq = tq_alloc(nb_streams, queue_size, op,
                  (type == QUEUE_PACKETS) ? pkt_move : frame_move);
    if (!tq) {
        objpool_free(&op);
        return AVERROR(ENOMEM);
    }

    *ptq = tq;
    return 0;
}

static void *task_wrapper(void *arg);

static int task_stop(SchTask *task)
{
    int ret;
    void *thread_ret;

    if (!task->thread_running)
        return 0;

    ret = pthread_join(task->thread, &thread_ret);
    av_assert0(ret == 0);

    task->thread_running = 0;

    return (intptr_t)thread_ret;
}

static int task_start(SchTask *task)
{
    int ret;

    av_log(task->func_arg, AV_LOG_VERBOSE, "Starting thread...\n");

    av_assert0(!task->thread_running);

    ret = pthread_create(&task->thread, NULL, task_wrapper, task);
    if (ret) {
        av_log(task->func_arg, AV_LOG_ERROR, "pthread_create() failed: %s\n",
               strerror(ret));
        return AVERROR(ret);
    }

    task->thread_running = 1;
    return 0;
}

static void task_init(Scheduler *sch, SchTask *task, enum SchedulerNodeType type, unsigned idx,
                      SchThreadFunc func, void *func_arg)
{
    task->parent    = sch;

    task->node.type = type;
    task->node.idx  = idx;

    task->func      = func;
    task->func_arg  = func_arg;
}

static int64_t trailing_dts(const Scheduler *sch, int count_finished)
{
    int64_t min_dts = INT64_MAX;

    for (unsigned i = 0; i < sch->nb_mux; i++) {
        const SchMux *mux = &sch->mux[i];

        for (unsigned j = 0; j < mux->nb_streams; j++) {
            const SchMuxStream *ms = &mux->streams[j];

            if (ms->source_finished && !count_finished)
                continue;
            if (ms->last_dts == AV_NOPTS_VALUE)
                return AV_NOPTS_VALUE;

            min_dts = FFMIN(min_dts, ms->last_dts);
        }
    }

    return min_dts == INT64_MAX ? AV_NOPTS_VALUE : min_dts;
}

int sch_stop(Scheduler *sch, int64_t *finish_ts)
{
    int ret = 0, err;

    atomic_store(&sch->terminate, 1);

    for (unsigned type = 0; type < 2; type++)
        for (unsigned i = 0; i < (type ? sch->nb_demux : sch->nb_filters); i++) {
            SchWaiter *w = type ? &sch->demux[i].waiter : &sch->filters[i].waiter;
            waiter_set(w, 1);
        }

    for (unsigned i = 0; i < sch->nb_demux; i++) {
        SchDemux *d = &sch->demux[i];

        err = task_stop(&d->task);
        ret = err_merge(ret, err);
    }

    for (unsigned i = 0; i < sch->nb_dec; i++) {
        SchDec *dec = &sch->dec[i];

        err = task_stop(&dec->task);
        ret = err_merge(ret, err);
    }

    for (unsigned i = 0; i < sch->nb_filters; i++) {
        SchFilterGraph *fg = &sch->filters[i];

        err = task_stop(&fg->task);
        ret = err_merge(ret, err);
    }

    for (unsigned i = 0; i < sch->nb_enc; i++) {
        SchEnc *enc = &sch->enc[i];

        err = task_stop(&enc->task);
        ret = err_merge(ret, err);
    }

    for (unsigned i = 0; i < sch->nb_mux; i++) {
        SchMux *mux = &sch->mux[i];

        err = task_stop(&mux->task);
        ret = err_merge(ret, err);
    }

    if (finish_ts)
        *finish_ts = trailing_dts(sch, 1);

    return ret;
}

void sch_free(Scheduler **psch)
{
    Scheduler *sch = *psch;

    if (!sch)
        return;

    sch_stop(sch, NULL);

    for (unsigned i = 0; i < sch->nb_demux; i++) {
        SchDemux *d = &sch->demux[i];

        for (unsigned j = 0; j < d->nb_streams; j++) {
            SchDemuxStream *ds = &d->streams[j];
            av_freep(&ds->dst);
            av_freep(&ds->dst_finished);
        }
        av_freep(&d->streams);

        av_packet_free(&d->send_pkt);

        waiter_uninit(&d->waiter);
    }
    av_freep(&sch->demux);

    for (unsigned i = 0; i < sch->nb_mux; i++) {
        SchMux *mux = &sch->mux[i];

        for (unsigned j = 0; j < mux->nb_streams; j++) {
            SchMuxStream *ms = &mux->streams[j];

            if (ms->pre_mux_queue.fifo) {
                AVPacket *pkt;
                while (av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1) >= 0)
                    av_packet_free(&pkt);
                av_fifo_freep2(&ms->pre_mux_queue.fifo);
            }

            av_freep(&ms->sub_heartbeat_dst);
        }
        av_freep(&mux->streams);

        av_packet_free(&mux->sub_heartbeat_pkt);

        tq_free(&mux->queue);
    }
    av_freep(&sch->mux);

    for (unsigned i = 0; i < sch->nb_dec; i++) {
        SchDec *dec = &sch->dec[i];

        tq_free(&dec->queue);

        av_thread_message_queue_free(&dec->queue_end_ts);

        av_freep(&dec->dst);
        av_freep(&dec->dst_finished);

        av_frame_free(&dec->send_frame);
    }
    av_freep(&sch->dec);

    for (unsigned i = 0; i < sch->nb_enc; i++) {
        SchEnc *enc = &sch->enc[i];

        tq_free(&enc->queue);
    }
    av_freep(&sch->enc);

    for (unsigned i = 0; i < sch->nb_sq_enc; i++) {
        SchSyncQueue *sq = &sch->sq_enc[i];
        sq_free(&sq->sq);
        av_frame_free(&sq->frame);
        pthread_mutex_destroy(&sq->lock);
        av_freep(&sq->enc_idx);
    }
    av_freep(&sch->sq_enc);

    for (unsigned i = 0; i < sch->nb_filters; i++) {
        SchFilterGraph *fg = &sch->filters[i];

        tq_free(&fg->queue);

        av_freep(&fg->inputs);
        av_freep(&fg->outputs);

        waiter_uninit(&fg->waiter);
    }
    av_freep(&sch->filters);

    av_freep(&sch->sdp_filename);

    pthread_mutex_destroy(&sch->schedule_lock);

    pthread_mutex_destroy(&sch->mux_ready_lock);

    pthread_mutex_destroy(&sch->mux_done_lock);
    pthread_cond_destroy(&sch->mux_done_cond);

    av_freep(psch);
}

static const AVClass scheduler_class = {
    .class_name = "Scheduler",
    .version    = LIBAVUTIL_VERSION_INT,
};

Scheduler *sch_alloc(void)
{
    Scheduler *sch;
    int ret;

    sch = av_mallocz(sizeof(*sch));
    if (!sch)
        return NULL;

    sch->class    = &scheduler_class;
    sch->sdp_auto = 1;

    ret = pthread_mutex_init(&sch->schedule_lock, NULL);
    if (ret)
        goto fail;

    ret = pthread_mutex_init(&sch->mux_ready_lock, NULL);
    if (ret)
        goto fail;

    ret = pthread_mutex_init(&sch->mux_done_lock, NULL);
    if (ret)
        goto fail;

    ret = pthread_cond_init(&sch->mux_done_cond, NULL);
    if (ret)
        goto fail;

    return sch;
fail:
    sch_free(&sch);
    return NULL;
}

int sch_sdp_filename(Scheduler *sch, const char *sdp_filename)
{
    av_freep(&sch->sdp_filename);
    sch->sdp_filename = av_strdup(sdp_filename);
    return sch->sdp_filename ? 0 : AVERROR(ENOMEM);
}

static const AVClass sch_mux_class = {
    .class_name                = "SchMux",
    .version                   = LIBAVUTIL_VERSION_INT,
    .parent_log_context_offset = offsetof(SchMux, task.func_arg),
};

int sch_add_mux(Scheduler *sch, SchThreadFunc func, int (*init)(void *),
                void *arg, int sdp_auto, unsigned thread_queue_size)
{
    const unsigned idx = sch->nb_mux;

    SchMux *mux;
    int ret;

    ret = GROW_ARRAY(sch->mux, sch->nb_mux);
    if (ret < 0)
        return ret;

    mux             = &sch->mux[idx];
    mux->class      = &sch_mux_class;
    mux->init       = init;
    mux->queue_size = thread_queue_size;

    task_init(sch, &mux->task, SCH_NODE_TYPE_MUX, idx, func, arg);

    sch->sdp_auto &= sdp_auto;

    return idx;
}

int sch_add_mux_stream(Scheduler *sch, unsigned mux_idx)
{
    SchMux       *mux;
    SchMuxStream *ms;
    unsigned      stream_idx;
    int ret;

    av_assert0(mux_idx < sch->nb_mux);
    mux = &sch->mux[mux_idx];

    ret = GROW_ARRAY(mux->streams, mux->nb_streams);
    if (ret < 0)
        return ret;
    stream_idx = mux->nb_streams - 1;

    ms = &mux->streams[stream_idx];

    ms->pre_mux_queue.fifo = av_fifo_alloc2(8, sizeof(AVPacket*), 0);
    if (!ms->pre_mux_queue.fifo)
        return AVERROR(ENOMEM);

    ms->last_dts = AV_NOPTS_VALUE;

    return stream_idx;
}

static const AVClass sch_demux_class = {
    .class_name                = "SchDemux",
    .version                   = LIBAVUTIL_VERSION_INT,
    .parent_log_context_offset = offsetof(SchDemux, task.func_arg),
};

int sch_add_demux(Scheduler *sch, SchThreadFunc func, void *ctx)
{
    const unsigned idx = sch->nb_demux;

    SchDemux *d;
    int ret;

    ret = GROW_ARRAY(sch->demux, sch->nb_demux);
    if (ret < 0)
        return ret;

    d = &sch->demux[idx];

    task_init(sch, &d->task, SCH_NODE_TYPE_DEMUX, idx, func, ctx);

    d->class    = &sch_demux_class;
    d->send_pkt = av_packet_alloc();
    if (!d->send_pkt)
        return AVERROR(ENOMEM);

    ret = waiter_init(&d->waiter);
    if (ret < 0)
        return ret;

    return idx;
}

int sch_add_demux_stream(Scheduler *sch, unsigned demux_idx)
{
    SchDemux *d;
    int ret;

    av_assert0(demux_idx < sch->nb_demux);
    d = &sch->demux[demux_idx];

    ret = GROW_ARRAY(d->streams, d->nb_streams);
    return ret < 0 ? ret : d->nb_streams - 1;
}

static const AVClass sch_dec_class = {
    .class_name                = "SchDec",
    .version                   = LIBAVUTIL_VERSION_INT,
    .parent_log_context_offset = offsetof(SchDec, task.func_arg),
};

int sch_add_dec(Scheduler *sch, SchThreadFunc func, void *ctx,
                int send_end_ts)
{
    const unsigned idx = sch->nb_dec;

    SchDec *dec;
    int ret;

    ret = GROW_ARRAY(sch->dec, sch->nb_dec);
    if (ret < 0)
        return ret;

    dec = &sch->dec[idx];

    task_init(sch, &dec->task, SCH_NODE_TYPE_DEC, idx, func, ctx);

    dec->class      = &sch_dec_class;
    dec->send_frame = av_frame_alloc();
    if (!dec->send_frame)
        return AVERROR(ENOMEM);

    ret = queue_alloc(&dec->queue, 1, 0, QUEUE_PACKETS);
    if (ret < 0)
        return ret;

    if (send_end_ts) {
        ret = av_thread_message_queue_alloc(&dec->queue_end_ts, 1, sizeof(Timestamp));
        if (ret < 0)
            return ret;
    }

    return idx;
}

static const AVClass sch_enc_class = {
    .class_name                = "SchEnc",
    .version                   = LIBAVUTIL_VERSION_INT,
    .parent_log_context_offset = offsetof(SchEnc, task.func_arg),
};

int sch_add_enc(Scheduler *sch, SchThreadFunc func, void *ctx,
                int (*open_cb)(void *opaque, const AVFrame *frame))
{
    const unsigned idx = sch->nb_enc;

    SchEnc *enc;
    int ret;

    ret = GROW_ARRAY(sch->enc, sch->nb_enc);
    if (ret < 0)
        return ret;

    enc             = &sch->enc[idx];

    enc->class      = &sch_enc_class;
    enc->open_cb    = open_cb;
    enc->sq_idx[0]  = -1;
    enc->sq_idx[1]  = -1;

    task_init(sch, &enc->task, SCH_NODE_TYPE_ENC, idx, func, ctx);

    ret = queue_alloc(&enc->queue, 1, 0, QUEUE_FRAMES);
    if (ret < 0)
        return ret;

    return idx;
}

static const AVClass sch_fg_class = {
    .class_name                = "SchFilterGraph",
    .version                   = LIBAVUTIL_VERSION_INT,
    .parent_log_context_offset = offsetof(SchFilterGraph, task.func_arg),
};

int sch_add_filtergraph(Scheduler *sch, unsigned nb_inputs, unsigned nb_outputs,
                        SchThreadFunc func, void *ctx)
{
    const unsigned idx = sch->nb_filters;

    SchFilterGraph *fg;
    int ret;

    ret = GROW_ARRAY(sch->filters, sch->nb_filters);
    if (ret < 0)
        return ret;
    fg = &sch->filters[idx];

    fg->class = &sch_fg_class;

    task_init(sch, &fg->task, SCH_NODE_TYPE_FILTER_IN, idx, func, ctx);

    if (nb_inputs) {
        fg->inputs = av_calloc(nb_inputs, sizeof(*fg->inputs));
        if (!fg->inputs)
            return AVERROR(ENOMEM);
        fg->nb_inputs = nb_inputs;
    }

    if (nb_outputs) {
        fg->outputs = av_calloc(nb_outputs, sizeof(*fg->outputs));
        if (!fg->outputs)
            return AVERROR(ENOMEM);
        fg->nb_outputs = nb_outputs;
    }

    ret = waiter_init(&fg->waiter);
    if (ret < 0)
        return ret;

    ret = queue_alloc(&fg->queue, fg->nb_inputs + 1, 0, QUEUE_FRAMES);
    if (ret < 0)
        return ret;

    return idx;
}

int sch_add_sq_enc(Scheduler *sch, uint64_t buf_size_us, void *logctx)
{
    SchSyncQueue *sq;
    int ret;

    ret = GROW_ARRAY(sch->sq_enc, sch->nb_sq_enc);
    if (ret < 0)
        return ret;
    sq = &sch->sq_enc[sch->nb_sq_enc - 1];

    sq->sq = sq_alloc(SYNC_QUEUE_FRAMES, buf_size_us, logctx);
    if (!sq->sq)
        return AVERROR(ENOMEM);

    sq->frame = av_frame_alloc();
    if (!sq->frame)
        return AVERROR(ENOMEM);

    ret = pthread_mutex_init(&sq->lock, NULL);
    if (ret)
        return AVERROR(ret);

    return sq - sch->sq_enc;
}

int sch_sq_add_enc(Scheduler *sch, unsigned sq_idx, unsigned enc_idx,
                   int limiting, uint64_t max_frames)
{
    SchSyncQueue *sq;
    SchEnc *enc;
    int ret;

    av_assert0(sq_idx < sch->nb_sq_enc);
    sq = &sch->sq_enc[sq_idx];

    av_assert0(enc_idx < sch->nb_enc);
    enc = &sch->enc[enc_idx];

    ret = GROW_ARRAY(sq->enc_idx, sq->nb_enc_idx);
    if (ret < 0)
        return ret;
    sq->enc_idx[sq->nb_enc_idx - 1] = enc_idx;

    ret = sq_add_stream(sq->sq, limiting);
    if (ret < 0)
        return ret;

    enc->sq_idx[0] = sq_idx;
    enc->sq_idx[1] = ret;

    if (max_frames != INT64_MAX)
        sq_limit_frames(sq->sq, enc->sq_idx[1], max_frames);

    return 0;
}

int sch_connect(Scheduler *sch, SchedulerNode src, SchedulerNode dst)
{
    int ret;

    switch (src.type) {
    case SCH_NODE_TYPE_DEMUX: {
        SchDemuxStream *ds;

        av_assert0(src.idx < sch->nb_demux &&
                   src.idx_stream < sch->demux[src.idx].nb_streams);
        ds = &sch->demux[src.idx].streams[src.idx_stream];

        ret = GROW_ARRAY(ds->dst, ds->nb_dst);
        if (ret < 0)
            return ret;

        ds->dst[ds->nb_dst - 1] = dst;

        // demuxed packets go to decoding or streamcopy
        switch (dst.type) {
        case SCH_NODE_TYPE_DEC: {
            SchDec *dec;

            av_assert0(dst.idx < sch->nb_dec);
            dec = &sch->dec[dst.idx];

            av_assert0(!dec->src.type);
            dec->src = src;
            break;
            }
        case SCH_NODE_TYPE_MUX: {
            SchMuxStream *ms;

            av_assert0(dst.idx < sch->nb_mux &&
                       dst.idx_stream < sch->mux[dst.idx].nb_streams);
            ms = &sch->mux[dst.idx].streams[dst.idx_stream];

            av_assert0(!ms->src.type);
            ms->src = src;

            break;
            }
        default: av_assert0(0);
        }

        break;
        }
    case SCH_NODE_TYPE_DEC: {
        SchDec *dec;

        av_assert0(src.idx < sch->nb_dec);
        dec = &sch->dec[src.idx];

        ret = GROW_ARRAY(dec->dst, dec->nb_dst);
        if (ret < 0)
            return ret;

        dec->dst[dec->nb_dst - 1] = dst;

        // decoded frames go to filters or encoding
        switch (dst.type) {
        case SCH_NODE_TYPE_FILTER_IN: {
            SchFilterIn *fi;

            av_assert0(dst.idx < sch->nb_filters &&
                       dst.idx_stream < sch->filters[dst.idx].nb_inputs);
            fi = &sch->filters[dst.idx].inputs[dst.idx_stream];

            av_assert0(!fi->src.type);
            fi->src = src;
            break;
            }
        case SCH_NODE_TYPE_ENC: {
            SchEnc *enc;

            av_assert0(dst.idx < sch->nb_enc);
            enc = &sch->enc[dst.idx];

            av_assert0(!enc->src.type);
            enc->src = src;
            break;
            }
        default: av_assert0(0);
        }

        break;
        }
    case SCH_NODE_TYPE_FILTER_OUT: {
        SchFilterOut *fo;
        SchEnc      *enc;

        av_assert0(src.idx < sch->nb_filters &&
                   src.idx_stream < sch->filters[src.idx].nb_outputs);
        // filtered frames go to encoding
        av_assert0(dst.type == SCH_NODE_TYPE_ENC &&
                   dst.idx < sch->nb_enc);

        fo  = &sch->filters[src.idx].outputs[src.idx_stream];
        enc = &sch->enc[dst.idx];

        av_assert0(!fo->dst.type && !enc->src.type);
        fo->dst  = dst;
        enc->src = src;

        break;
        }
    case SCH_NODE_TYPE_ENC: {
        SchEnc       *enc;
        SchMuxStream *ms;

        av_assert0(src.idx < sch->nb_enc);
        // encoding packets go to muxing
        av_assert0(dst.type == SCH_NODE_TYPE_MUX &&
                   dst.idx < sch->nb_mux &&
                   dst.idx_stream < sch->mux[dst.idx].nb_streams);
        enc = &sch->enc[src.idx];
        ms  = &sch->mux[dst.idx].streams[dst.idx_stream];

        av_assert0(!enc->dst.type && !ms->src.type);
        enc->dst = dst;
        ms->src  = src;

        break;
        }
    default: av_assert0(0);
    }

    return 0;
}

static int mux_task_start(SchMux *mux)
{
    int ret = 0;

    ret = task_start(&mux->task);
    if (ret < 0)
        return ret;

    /* flush the pre-muxing queues */
    for (unsigned i = 0; i < mux->nb_streams; i++) {
        SchMuxStream *ms = &mux->streams[i];
        AVPacket *pkt;

        while (av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1) >= 0) {
            if (pkt) {
                if (!ms->init_eof)
                    ret = tq_send(mux->queue, i, pkt);
                av_packet_free(&pkt);
                if (ret == AVERROR_EOF)
                    ms->init_eof = 1;
                else if (ret < 0)
                    return ret;
            } else
                tq_send_finish(mux->queue, i);
        }
    }

    atomic_store(&mux->mux_started, 1);

    return 0;
}

int print_sdp(const char *filename);

static int mux_init(Scheduler *sch, SchMux *mux)
{
    int ret;

    ret = mux->init(mux->task.func_arg);
    if (ret < 0)
        return ret;

    sch->nb_mux_ready++;

    if (sch->sdp_filename || sch->sdp_auto) {
        if (sch->nb_mux_ready < sch->nb_mux)
            return 0;

        ret = print_sdp(sch->sdp_filename);
        if (ret < 0) {
            av_log(sch, AV_LOG_ERROR, "Error writing the SDP.\n");
            return ret;
        }

        /* SDP is written only after all the muxers are ready, so now we
         * start ALL the threads */
        for (unsigned i = 0; i < sch->nb_mux; i++) {
            ret = mux_task_start(&sch->mux[i]);
            if (ret < 0)
                return ret;
        }
    } else {
        ret = mux_task_start(mux);
        if (ret < 0)
            return ret;
    }

    return 0;
}

void sch_mux_stream_buffering(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
                              size_t data_threshold, int max_packets)
{
    SchMux       *mux;
    SchMuxStream *ms;

    av_assert0(mux_idx < sch->nb_mux);
    mux = &sch->mux[mux_idx];

    av_assert0(stream_idx < mux->nb_streams);
    ms = &mux->streams[stream_idx];

    ms->pre_mux_queue.max_packets    = max_packets;
    ms->pre_mux_queue.data_threshold = data_threshold;
}

int sch_mux_stream_ready(Scheduler *sch, unsigned mux_idx, unsigned stream_idx)
{
    SchMux *mux;
    int ret = 0;

    av_assert0(mux_idx < sch->nb_mux);
    mux = &sch->mux[mux_idx];

    av_assert0(stream_idx < mux->nb_streams);

    pthread_mutex_lock(&sch->mux_ready_lock);

    av_assert0(mux->nb_streams_ready < mux->nb_streams);

    // this may be called during initialization - do not start
    // threads before sch_start() is called
    if (++mux->nb_streams_ready == mux->nb_streams && sch->transcode_started)
        ret = mux_init(sch, mux);

    pthread_mutex_unlock(&sch->mux_ready_lock);

    return ret;
}

int sch_mux_sub_heartbeat_add(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
                              unsigned dec_idx)
{
    SchMux       *mux;
    SchMuxStream *ms;
    int ret = 0;

    av_assert0(mux_idx < sch->nb_mux);
    mux = &sch->mux[mux_idx];

    av_assert0(stream_idx < mux->nb_streams);
    ms = &mux->streams[stream_idx];

    ret = GROW_ARRAY(ms->sub_heartbeat_dst, ms->nb_sub_heartbeat_dst);
    if (ret < 0)
        return ret;

    av_assert0(dec_idx < sch->nb_dec);
    ms->sub_heartbeat_dst[ms->nb_sub_heartbeat_dst - 1] = dec_idx;

    if (!mux->sub_heartbeat_pkt) {
        mux->sub_heartbeat_pkt = av_packet_alloc();
        if (!mux->sub_heartbeat_pkt)
            return AVERROR(ENOMEM);
    }

    return 0;
}

static void schedule_update_locked(Scheduler *sch)
{
    int64_t dts;
    int have_unchoked = 0;

    // on termination request all waiters are choked,
    // we are not to unchoke them
    if (atomic_load(&sch->terminate))
        return;

    dts = trailing_dts(sch, 0);

    atomic_store(&sch->last_dts, dts);

    // initialize our internal state
    for (unsigned type = 0; type < 2; type++)
        for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
            SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
            w->choked_prev = atomic_load(&w->choked);
            w->choked_next = 1;
        }

    // figure out the sources that are allowed to proceed
    for (unsigned i = 0; i < sch->nb_mux; i++) {
        SchMux *mux = &sch->mux[i];

        for (unsigned j = 0; j < mux->nb_streams; j++) {
            SchMuxStream *ms = &mux->streams[j];
            SchDemux *d;

            // unblock sources for output streams that are not finished
            // and not too far ahead of the trailing stream
            if (ms->source_finished)
                continue;
            if (dts == AV_NOPTS_VALUE && ms->last_dts != AV_NOPTS_VALUE)
                continue;
            if (dts != AV_NOPTS_VALUE && ms->last_dts - dts >= SCHEDULE_TOLERANCE)
                continue;

            // for outputs fed from filtergraphs, consider that filtergraph's
            // best_input information, in other cases there is a well-defined
            // source demuxer
            if (ms->src_sched.type == SCH_NODE_TYPE_FILTER_OUT) {
                SchFilterGraph *fg = &sch->filters[ms->src_sched.idx];
                SchFilterIn *fi;

                // the filtergraph contains internal sources and
                // requested to be scheduled directly
                if (fg->best_input == fg->nb_inputs) {
                    fg->waiter.choked_next = 0;
                    have_unchoked          = 1;
                    continue;
                }

                fi = &fg->inputs[fg->best_input];
                d  = &sch->demux[fi->src_sched.idx];
            } else
                d = &sch->demux[ms->src_sched.idx];

            d->waiter.choked_next = 0;
            have_unchoked         = 1;
        }
    }

    // make sure to unchoke at least one source, if still available
    for (unsigned type = 0; !have_unchoked && type < 2; type++)
        for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
            int exited = type ? sch->filters[i].task_exited : sch->demux[i].task_exited;
            SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
            if (!exited) {
                w->choked_next = 0;
                have_unchoked  = 1;
                break;
            }
        }


    for (unsigned type = 0; type < 2; type++)
        for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
            SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
            if (w->choked_prev != w->choked_next)
                waiter_set(w, w->choked_next);
        }

}

int sch_start(Scheduler *sch)
{
    int ret;

    sch->transcode_started = 1;

    for (unsigned i = 0; i < sch->nb_mux; i++) {
        SchMux *mux = &sch->mux[i];

        for (unsigned j = 0; j < mux->nb_streams; j++) {
            SchMuxStream *ms = &mux->streams[j];

            switch (ms->src.type) {
            case SCH_NODE_TYPE_ENC: {
                SchEnc *enc = &sch->enc[ms->src.idx];
                if (enc->src.type == SCH_NODE_TYPE_DEC) {
                    ms->src_sched = sch->dec[enc->src.idx].src;
                    av_assert0(ms->src_sched.type == SCH_NODE_TYPE_DEMUX);
                } else {
                    ms->src_sched = enc->src;
                    av_assert0(ms->src_sched.type == SCH_NODE_TYPE_FILTER_OUT);
                }
                break;
                }
            case SCH_NODE_TYPE_DEMUX:
                ms->src_sched = ms->src;
                break;
            default:
                av_log(mux, AV_LOG_ERROR,
                       "Muxer stream #%u not connected to a source\n", j);
                return AVERROR(EINVAL);
            }
        }

        ret = queue_alloc(&mux->queue, mux->nb_streams, mux->queue_size,
                          QUEUE_PACKETS);
        if (ret < 0)
            return ret;

        if (mux->nb_streams_ready == mux->nb_streams) {
            ret = mux_init(sch, mux);
            if (ret < 0)
                return ret;
        }
    }

    for (unsigned i = 0; i < sch->nb_enc; i++) {
        SchEnc *enc = &sch->enc[i];

        if (!enc->src.type) {
            av_log(enc, AV_LOG_ERROR,
                   "Encoder not connected to a source\n");
            return AVERROR(EINVAL);
        }
        if (!enc->dst.type) {
            av_log(enc, AV_LOG_ERROR,
                   "Encoder not connected to a sink\n");
            return AVERROR(EINVAL);
        }

        ret = task_start(&enc->task);
        if (ret < 0)
            return ret;
    }

    for (unsigned i = 0; i < sch->nb_filters; i++) {
        SchFilterGraph *fg = &sch->filters[i];

        for (unsigned j = 0; j < fg->nb_inputs; j++) {
            SchFilterIn *fi = &fg->inputs[j];

            if (!fi->src.type) {
                av_log(fg, AV_LOG_ERROR,
                       "Filtergraph input %u not connected to a source\n", j);
                return AVERROR(EINVAL);
            }

            fi->src_sched = sch->dec[fi->src.idx].src;
        }

        for (unsigned j = 0; j < fg->nb_outputs; j++) {
            SchFilterOut *fo = &fg->outputs[j];

            if (!fo->dst.type) {
                av_log(fg, AV_LOG_ERROR,
                       "Filtergraph %u output %u not connected to a sink\n", i, j);
                return AVERROR(EINVAL);
            }
        }

        ret = task_start(&fg->task);
        if (ret < 0)
            return ret;
    }

    for (unsigned i = 0; i < sch->nb_dec; i++) {
        SchDec *dec = &sch->dec[i];

        if (!dec->src.type) {
            av_log(dec, AV_LOG_ERROR,
                   "Decoder not connected to a source\n");
            return AVERROR(EINVAL);
        }
        if (!dec->nb_dst) {
            av_log(dec, AV_LOG_ERROR,
                   "Decoder not connected to any sink\n");
            return AVERROR(EINVAL);
        }

        dec->dst_finished = av_calloc(dec->nb_dst, sizeof(*dec->dst_finished));
        if (!dec->dst_finished)
            return AVERROR(ENOMEM);

        ret = task_start(&dec->task);
        if (ret < 0)
            return ret;
    }

    for (unsigned i = 0; i < sch->nb_demux; i++) {
        SchDemux *d = &sch->demux[i];

        if (!d->nb_streams)
            continue;

        for (unsigned j = 0; j < d->nb_streams; j++) {
            SchDemuxStream *ds = &d->streams[j];

            if (!ds->nb_dst) {
                av_log(d, AV_LOG_ERROR,
                       "Demuxer stream %u not connected to any sink\n", j);
                return AVERROR(EINVAL);
            }

            ds->dst_finished = av_calloc(ds->nb_dst, sizeof(*ds->dst_finished));
            if (!ds->dst_finished)
                return AVERROR(ENOMEM);
        }

        ret = task_start(&d->task);
        if (ret < 0)
            return ret;
    }

    pthread_mutex_lock(&sch->schedule_lock);
    schedule_update_locked(sch);
    pthread_mutex_unlock(&sch->schedule_lock);

    return 0;
}

int sch_wait(Scheduler *sch, uint64_t timeout_us, int64_t *transcode_ts)
{
    int ret, err;

    // convert delay to absolute timestamp
    timeout_us += av_gettime();

    pthread_mutex_lock(&sch->mux_done_lock);

    if (sch->nb_mux_done < sch->nb_mux) {
        struct timespec tv = { .tv_sec  =  timeout_us / 1000000,
                               .tv_nsec = (timeout_us % 1000000) * 1000 };
        pthread_cond_timedwait(&sch->mux_done_cond, &sch->mux_done_lock, &tv);
    }

    ret = sch->nb_mux_done == sch->nb_mux;

    pthread_mutex_unlock(&sch->mux_done_lock);

    *transcode_ts = atomic_load(&sch->last_dts);

    // abort transcoding if any task failed
    err = atomic_load(&sch->task_failed);

    return ret || err;
}

static int enc_open(Scheduler *sch, SchEnc *enc, const AVFrame *frame)
{
    int ret;

    ret = enc->open_cb(enc->task.func_arg, frame);
    if (ret < 0)
        return ret;

    // ret>0 signals audio frame size, which means sync queue must
    // have been enabled during encoder creation
    if (ret > 0) {
        SchSyncQueue *sq;

        av_assert0(enc->sq_idx[0] >= 0);
        sq = &sch->sq_enc[enc->sq_idx[0]];

        pthread_mutex_lock(&sq->lock);

        sq_frame_samples(sq->sq, enc->sq_idx[1], ret);

        pthread_mutex_unlock(&sq->lock);
    }

    return 0;
}

static int send_to_enc_thread(Scheduler *sch, SchEnc *enc, AVFrame *frame)
{
    int ret;

    if (!frame) {
        tq_send_finish(enc->queue, 0);
        return 0;
    }

    if (enc->in_finished)
        return AVERROR_EOF;

    ret = tq_send(enc->queue, 0, frame);
    if (ret < 0)
        enc->in_finished = 1;

    return ret;
}

static int send_to_enc_sq(Scheduler *sch, SchEnc *enc, AVFrame *frame)
{
    SchSyncQueue *sq = &sch->sq_enc[enc->sq_idx[0]];
    int ret = 0;

    // inform the scheduling code that no more input will arrive along this path;
    // this is necessary because the sync queue may not send an EOF downstream
    // until other streams finish
    // TODO: consider a cleaner way of passing this information through
    //       the pipeline
    if (!frame) {
        SchMux      *mux = &sch->mux[enc->dst.idx];
        SchMuxStream *ms = &mux->streams[enc->dst.idx_stream];

        pthread_mutex_lock(&sch->schedule_lock);

        ms->source_finished = 1;
        schedule_update_locked(sch);

        pthread_mutex_unlock(&sch->schedule_lock);
    }

    pthread_mutex_lock(&sq->lock);

    ret = sq_send(sq->sq, enc->sq_idx[1], SQFRAME(frame));
    if (ret < 0)
        goto finish;

    while (1) {
        SchEnc *enc;

        // TODO: the SQ API should be extended to allow returning EOF
        // for individual streams
        ret = sq_receive(sq->sq, -1, SQFRAME(sq->frame));
        if (ret == AVERROR(EAGAIN)) {
            ret = 0;
            goto finish;
        } else if (ret < 0) {
            // close all encoders fed from this sync queue
            for (unsigned i = 0; i < sq->nb_enc_idx; i++) {
                int err = send_to_enc_thread(sch, &sch->enc[sq->enc_idx[i]], NULL);

                // if the sync queue error is EOF and closing the encoder
                // produces a more serious error, make sure to pick the latter
                ret = err_merge((ret == AVERROR_EOF && err < 0) ? 0 : ret, err);
            }
            goto finish;
        }

        enc = &sch->enc[sq->enc_idx[ret]];
        ret = send_to_enc_thread(sch, enc, sq->frame);
        if (ret < 0) {
            av_assert0(ret == AVERROR_EOF);
            av_frame_unref(sq->frame);
            sq_send(sq->sq, enc->sq_idx[1], SQFRAME(NULL));
            continue;
        }
    }

finish:
    pthread_mutex_unlock(&sq->lock);

    return ret;
}

static int send_to_enc(Scheduler *sch, SchEnc *enc, AVFrame *frame)
{
    if (enc->open_cb && frame && !enc->opened) {
        int ret = enc_open(sch, enc, frame);
        if (ret < 0)
            return ret;
        enc->opened = 1;

        // discard empty frames that only carry encoder init parameters
        if (!frame->buf[0]) {
            av_frame_unref(frame);
            return 0;
        }
    }

    return (enc->sq_idx[0] >= 0)                ?
           send_to_enc_sq    (sch, enc, frame)  :
           send_to_enc_thread(sch, enc, frame);
}

static int mux_queue_packet(SchMux *mux, SchMuxStream *ms, AVPacket *pkt)
{
    PreMuxQueue *q = &ms->pre_mux_queue;
    AVPacket *tmp_pkt = NULL;
    int ret;

    if (!av_fifo_can_write(q->fifo)) {
        size_t     packets = av_fifo_can_read(q->fifo);
        size_t    pkt_size = pkt ? pkt->size : 0;
        int thresh_reached = (q->data_size + pkt_size) > q->data_threshold;
        size_t max_packets = thresh_reached ? q->max_packets : SIZE_MAX;
        size_t new_size = FFMIN(2 * packets, max_packets);

        if (new_size <= packets) {
            av_log(mux, AV_LOG_ERROR,
                   "Too many packets buffered for output stream.\n");
            return AVERROR(ENOSPC);
        }
        ret = av_fifo_grow2(q->fifo, new_size - packets);
        if (ret < 0)
            return ret;
    }

    if (pkt) {
        tmp_pkt = av_packet_alloc();
        if (!tmp_pkt)
            return AVERROR(ENOMEM);

        av_packet_move_ref(tmp_pkt, pkt);
        q->data_size += tmp_pkt->size;
    }
    av_fifo_write(q->fifo, &tmp_pkt, 1);

    return 0;
}

static int send_to_mux(Scheduler *sch, SchMux *mux, unsigned stream_idx,
                       AVPacket *pkt)
{
    SchMuxStream *ms = &mux->streams[stream_idx];
    int64_t dts = (pkt && pkt->dts != AV_NOPTS_VALUE)                                    ?
                  av_rescale_q(pkt->dts + pkt->duration, pkt->time_base, AV_TIME_BASE_Q) :
                  AV_NOPTS_VALUE;

    // queue the packet if the muxer cannot be started yet
    if (!atomic_load(&mux->mux_started)) {
        int queued = 0;

        // the muxer could have started between the above atomic check and
        // locking the mutex, then this block falls through to normal send path
        pthread_mutex_lock(&sch->mux_ready_lock);

        if (!atomic_load(&mux->mux_started)) {
            int ret = mux_queue_packet(mux, ms, pkt);
            queued = ret < 0 ? ret : 1;
        }

        pthread_mutex_unlock(&sch->mux_ready_lock);

        if (queued < 0)
            return queued;
        else if (queued)
            goto update_schedule;
    }

    if (pkt) {
        int ret;

        if (ms->init_eof)
            return AVERROR_EOF;

        ret = tq_send(mux->queue, stream_idx, pkt);
        if (ret < 0)
            return ret;
    } else
        tq_send_finish(mux->queue, stream_idx);

update_schedule:
    // TODO: use atomics to check whether this changes trailing dts
    // to avoid locking unnecesarily
    if (dts != AV_NOPTS_VALUE || !pkt) {
        pthread_mutex_lock(&sch->schedule_lock);

        if (pkt) ms->last_dts = dts;
        else     ms->source_finished = 1;

        schedule_update_locked(sch);

        pthread_mutex_unlock(&sch->schedule_lock);
    }

    return 0;
}

static int
demux_stream_send_to_dst(Scheduler *sch, const SchedulerNode dst,
                         uint8_t *dst_finished, AVPacket *pkt, unsigned flags)
{
    int ret;

    if (*dst_finished)
        return AVERROR_EOF;

    if (pkt && dst.type == SCH_NODE_TYPE_MUX &&
        (flags & DEMUX_SEND_STREAMCOPY_EOF)) {
        av_packet_unref(pkt);
        pkt = NULL;
    }

    if (!pkt)
        goto finish;

    ret = (dst.type == SCH_NODE_TYPE_MUX) ?
          send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) :
          tq_send(sch->dec[dst.idx].queue, 0, pkt);
    if (ret == AVERROR_EOF)
        goto finish;

    return ret;

finish:
    if (dst.type == SCH_NODE_TYPE_MUX)
        send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL);
    else
        tq_send_finish(sch->dec[dst.idx].queue, 0);

    *dst_finished = 1;
    return AVERROR_EOF;
}

static int demux_send_for_stream(Scheduler *sch, SchDemux *d, SchDemuxStream *ds,
                                 AVPacket *pkt, unsigned flags)
{
    unsigned nb_done = 0;

    for (unsigned i = 0; i < ds->nb_dst; i++) {
        AVPacket *to_send = pkt;
        uint8_t *finished = &ds->dst_finished[i];

        int ret;

        // sending a packet consumes it, so make a temporary reference if needed
        if (pkt && i < ds->nb_dst - 1) {
            to_send = d->send_pkt;

            ret = av_packet_ref(to_send, pkt);
            if (ret < 0)
                return ret;
        }

        ret = demux_stream_send_to_dst(sch, ds->dst[i], finished, to_send, flags);
        if (to_send)
            av_packet_unref(to_send);
        if (ret == AVERROR_EOF)
            nb_done++;
        else if (ret < 0)
            return ret;
    }

    return (nb_done == ds->nb_dst) ? AVERROR_EOF : 0;
}

static int demux_flush(Scheduler *sch, SchDemux *d, AVPacket *pkt)
{
    Timestamp max_end_ts = (Timestamp){ .ts = AV_NOPTS_VALUE };

    av_assert0(!pkt->buf && !pkt->data && !pkt->side_data_elems);

    for (unsigned i = 0; i < d->nb_streams; i++) {
        SchDemuxStream *ds = &d->streams[i];

        for (unsigned j = 0; j < ds->nb_dst; j++) {
            const SchedulerNode *dst = &ds->dst[j];
            SchDec *dec;
            int ret;

            if (ds->dst_finished[j] || dst->type != SCH_NODE_TYPE_DEC)
                continue;

            dec = &sch->dec[dst->idx];

            ret = tq_send(dec->queue, 0, pkt);
            if (ret < 0)
                return ret;

            if (dec->queue_end_ts) {
                Timestamp ts;
                ret = av_thread_message_queue_recv(dec->queue_end_ts, &ts, 0);
                if (ret < 0)
                    return ret;

                if (max_end_ts.ts == AV_NOPTS_VALUE ||
                    (ts.ts != AV_NOPTS_VALUE &&
                     av_compare_ts(max_end_ts.ts, max_end_ts.tb, ts.ts, ts.tb) < 0))
                    max_end_ts = ts;

            }
        }
    }

    pkt->pts       = max_end_ts.ts;
    pkt->time_base = max_end_ts.tb;

    return 0;
}

int sch_demux_send(Scheduler *sch, unsigned demux_idx, AVPacket *pkt,
                   unsigned flags)
{
    SchDemux *d;
    int terminate;

    av_assert0(demux_idx < sch->nb_demux);
    d = &sch->demux[demux_idx];

    terminate = waiter_wait(sch, &d->waiter);
    if (terminate)
        return AVERROR_EXIT;

    // flush the downstreams after seek
    if (pkt->stream_index == -1)
        return demux_flush(sch, d, pkt);

    av_assert0(pkt->stream_index < d->nb_streams);

    return demux_send_for_stream(sch, d, &d->streams[pkt->stream_index], pkt, flags);
}

static int demux_done(Scheduler *sch, unsigned demux_idx)
{
    SchDemux *d = &sch->demux[demux_idx];
    int ret = 0;

    for (unsigned i = 0; i < d->nb_streams; i++) {
        int err = demux_send_for_stream(sch, d, &d->streams[i], NULL, 0);
        if (err != AVERROR_EOF)
            ret = err_merge(ret, err);
    }

    pthread_mutex_lock(&sch->schedule_lock);

    d->task_exited = 1;

    schedule_update_locked(sch);

    pthread_mutex_unlock(&sch->schedule_lock);

    return ret;
}

int sch_mux_receive(Scheduler *sch, unsigned mux_idx, AVPacket *pkt)
{
    SchMux *mux;
    int ret, stream_idx;

    av_assert0(mux_idx < sch->nb_mux);
    mux = &sch->mux[mux_idx];

    ret = tq_receive(mux->queue, &stream_idx, pkt);
    pkt->stream_index = stream_idx;
    return ret;
}

void sch_mux_receive_finish(Scheduler *sch, unsigned mux_idx, unsigned stream_idx)
{
    SchMux *mux;

    av_assert0(mux_idx < sch->nb_mux);
    mux = &sch->mux[mux_idx];

    av_assert0(stream_idx < mux->nb_streams);
    tq_receive_finish(mux->queue, stream_idx);

    pthread_mutex_lock(&sch->schedule_lock);
    mux->streams[stream_idx].source_finished = 1;

    schedule_update_locked(sch);

    pthread_mutex_unlock(&sch->schedule_lock);
}

int sch_mux_sub_heartbeat(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
                          const AVPacket *pkt)
{
    SchMux       *mux;
    SchMuxStream *ms;

    av_assert0(mux_idx < sch->nb_mux);
    mux = &sch->mux[mux_idx];

    av_assert0(stream_idx < mux->nb_streams);
    ms = &mux->streams[stream_idx];

    for (unsigned i = 0; i < ms->nb_sub_heartbeat_dst; i++) {
        SchDec *dst = &sch->dec[ms->sub_heartbeat_dst[i]];
        int ret;

        ret = av_packet_copy_props(mux->sub_heartbeat_pkt, pkt);
        if (ret < 0)
            return ret;

        tq_send(dst->queue, 0, mux->sub_heartbeat_pkt);
    }

    return 0;
}

static int mux_done(Scheduler *sch, unsigned mux_idx)
{
    SchMux *mux = &sch->mux[mux_idx];

    pthread_mutex_lock(&sch->schedule_lock);

    for (unsigned i = 0; i < mux->nb_streams; i++) {
        tq_receive_finish(mux->queue, i);
        mux->streams[i].source_finished = 1;
    }

    schedule_update_locked(sch);

    pthread_mutex_unlock(&sch->schedule_lock);

    pthread_mutex_lock(&sch->mux_done_lock);

    av_assert0(sch->nb_mux_done < sch->nb_mux);
    sch->nb_mux_done++;

    pthread_cond_signal(&sch->mux_done_cond);

    pthread_mutex_unlock(&sch->mux_done_lock);

    return 0;
}

int sch_dec_receive(Scheduler *sch, unsigned dec_idx, AVPacket *pkt)
{
    SchDec *dec;
    int ret, dummy;

    av_assert0(dec_idx < sch->nb_dec);
    dec = &sch->dec[dec_idx];

    // the decoder should have given us post-flush end timestamp in pkt
    if (dec->expect_end_ts) {
        Timestamp ts = (Timestamp){ .ts = pkt->pts, .tb = pkt->time_base };
        ret = av_thread_message_queue_send(dec->queue_end_ts, &ts, 0);
        if (ret < 0)
            return ret;

        dec->expect_end_ts = 0;
    }

    ret = tq_receive(dec->queue, &dummy, pkt);
    av_assert0(dummy <= 0);

    // got a flush packet, on the next call to this function the decoder
    // will give us post-flush end timestamp
    if (ret >= 0 && !pkt->data && !pkt->side_data_elems && dec->queue_end_ts)
        dec->expect_end_ts = 1;

    return ret;
}

static int send_to_filter(Scheduler *sch, SchFilterGraph *fg,
                          unsigned in_idx, AVFrame *frame)
{
    if (frame)
        return tq_send(fg->queue, in_idx, frame);

    if (!fg->inputs[in_idx].send_finished) {
        fg->inputs[in_idx].send_finished = 1;
        tq_send_finish(fg->queue, in_idx);

        // close the control stream when all actual inputs are done
        if (atomic_fetch_add(&fg->nb_inputs_finished_send, 1) == fg->nb_inputs - 1)
            tq_send_finish(fg->queue, fg->nb_inputs);
    }
    return 0;
}

static int dec_send_to_dst(Scheduler *sch, const SchedulerNode dst,
                           uint8_t *dst_finished, AVFrame *frame)
{
    int ret;

    if (*dst_finished)
        return AVERROR_EOF;

    if (!frame)
        goto finish;

    ret = (dst.type == SCH_NODE_TYPE_FILTER_IN) ?
          send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, frame) :
          send_to_enc(sch, &sch->enc[dst.idx], frame);
    if (ret == AVERROR_EOF)
        goto finish;

    return ret;

finish:
    if (dst.type == SCH_NODE_TYPE_FILTER_IN)
        send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL);
    else
        send_to_enc(sch, &sch->enc[dst.idx], NULL);

    *dst_finished = 1;

    return AVERROR_EOF;
}

int sch_dec_send(Scheduler *sch, unsigned dec_idx, AVFrame *frame)
{
    SchDec *dec;
    int ret = 0;
    unsigned nb_done = 0;

    av_assert0(dec_idx < sch->nb_dec);
    dec = &sch->dec[dec_idx];

    for (unsigned i = 0; i < dec->nb_dst; i++) {
        uint8_t *finished = &dec->dst_finished[i];
        AVFrame *to_send  = frame;

        // sending a frame consumes it, so make a temporary reference if needed
        if (i < dec->nb_dst - 1) {
            to_send = dec->send_frame;

            // frame may sometimes contain props only,
            // e.g. to signal EOF timestamp
            ret = frame->buf[0] ? av_frame_ref(to_send, frame) :
                                  av_frame_copy_props(to_send, frame);
            if (ret < 0)
                return ret;
        }

        ret = dec_send_to_dst(sch, dec->dst[i], finished, to_send);
        if (ret < 0) {
            av_frame_unref(to_send);
            if (ret == AVERROR_EOF) {
                nb_done++;
                ret = 0;
                continue;
            }
            goto finish;
        }
    }

finish:
    return ret < 0                  ? ret :
           (nb_done == dec->nb_dst) ? AVERROR_EOF : 0;
}

static int dec_done(Scheduler *sch, unsigned dec_idx)
{
    SchDec *dec = &sch->dec[dec_idx];
    int ret = 0;

    tq_receive_finish(dec->queue, 0);

    // make sure our source does not get stuck waiting for end timestamps
    // that will never arrive
    if (dec->queue_end_ts)
        av_thread_message_queue_set_err_recv(dec->queue_end_ts, AVERROR_EOF);

    for (unsigned i = 0; i < dec->nb_dst; i++) {
        int err = dec_send_to_dst(sch, dec->dst[i], &dec->dst_finished[i], NULL);
        if (err < 0 && err != AVERROR_EOF)
            ret = err_merge(ret, err);
    }

    return ret;
}

int sch_enc_receive(Scheduler *sch, unsigned enc_idx, AVFrame *frame)
{
    SchEnc *enc;
    int ret, dummy;

    av_assert0(enc_idx < sch->nb_enc);
    enc = &sch->enc[enc_idx];

    ret = tq_receive(enc->queue, &dummy, frame);
    av_assert0(dummy <= 0);

    return ret;
}

int sch_enc_send(Scheduler *sch, unsigned enc_idx, AVPacket *pkt)
{
    SchEnc *enc;
    int ret;

    av_assert0(enc_idx < sch->nb_enc);
    enc = &sch->enc[enc_idx];

    if (enc->out_finished)
        return pkt ? AVERROR_EOF : 0;

    ret = send_to_mux(sch, &sch->mux[enc->dst.idx], enc->dst.idx_stream, pkt);
    if (ret < 0)
        enc->out_finished = 1;

    return ret;
}

static int enc_done(Scheduler *sch, unsigned enc_idx)
{
    SchEnc *enc = &sch->enc[enc_idx];

    tq_receive_finish(enc->queue, 0);

    return send_to_mux(sch, &sch->mux[enc->dst.idx], enc->dst.idx_stream, NULL);
}

int sch_filter_receive(Scheduler *sch, unsigned fg_idx,
                       unsigned *in_idx, AVFrame *frame)
{
    SchFilterGraph *fg;

    av_assert0(fg_idx < sch->nb_filters);
    fg = &sch->filters[fg_idx];

    av_assert0(*in_idx <= fg->nb_inputs);

    // update scheduling to account for desired input stream, if it changed
    //
    // this check needs no locking because only the filtering thread
    // updates this value
    if (*in_idx != fg->best_input) {
        pthread_mutex_lock(&sch->schedule_lock);

        fg->best_input = *in_idx;
        schedule_update_locked(sch);

        pthread_mutex_unlock(&sch->schedule_lock);
    }

    if (*in_idx == fg->nb_inputs) {
        int terminate = waiter_wait(sch, &fg->waiter);
        return terminate ? AVERROR_EOF : AVERROR(EAGAIN);
    }

    while (1) {
        int ret, idx;

        ret = tq_receive(fg->queue, &idx, frame);
        if (idx < 0)
            return AVERROR_EOF;
        else if (ret >= 0) {
            *in_idx = idx;
            return 0;
        }

        // disregard EOFs for specific streams - they should always be
        // preceded by an EOF frame
    }
}

void sch_filter_receive_finish(Scheduler *sch, unsigned fg_idx, unsigned in_idx)
{
    SchFilterGraph *fg;
    SchFilterIn    *fi;

    av_assert0(fg_idx < sch->nb_filters);
    fg = &sch->filters[fg_idx];

    av_assert0(in_idx < fg->nb_inputs);
    fi = &fg->inputs[in_idx];

    if (!fi->receive_finished) {
        fi->receive_finished = 1;
        tq_receive_finish(fg->queue, in_idx);

        // close the control stream when all actual inputs are done
        if (++fg->nb_inputs_finished_receive == fg->nb_inputs)
            tq_receive_finish(fg->queue, fg->nb_inputs);
    }
}

int sch_filter_send(Scheduler *sch, unsigned fg_idx, unsigned out_idx, AVFrame *frame)
{
    SchFilterGraph *fg;

    av_assert0(fg_idx < sch->nb_filters);
    fg = &sch->filters[fg_idx];

    av_assert0(out_idx < fg->nb_outputs);
    return send_to_enc(sch, &sch->enc[fg->outputs[out_idx].dst.idx], frame);
}

static int filter_done(Scheduler *sch, unsigned fg_idx)
{
    SchFilterGraph *fg = &sch->filters[fg_idx];
    int ret = 0;

    for (unsigned i = 0; i <= fg->nb_inputs; i++)
        tq_receive_finish(fg->queue, i);

    for (unsigned i = 0; i < fg->nb_outputs; i++) {
        SchEnc *enc = &sch->enc[fg->outputs[i].dst.idx];
        int err = send_to_enc(sch, enc, NULL);
        if (err < 0 && err != AVERROR_EOF)
            ret = err_merge(ret, err);
    }

    pthread_mutex_lock(&sch->schedule_lock);

    fg->task_exited = 1;

    schedule_update_locked(sch);

    pthread_mutex_unlock(&sch->schedule_lock);

    return ret;
}

int sch_filter_command(Scheduler *sch, unsigned fg_idx, AVFrame *frame)
{
    SchFilterGraph *fg;

    av_assert0(fg_idx < sch->nb_filters);
    fg = &sch->filters[fg_idx];

    return send_to_filter(sch, fg, fg->nb_inputs, frame);
}

static void *task_wrapper(void *arg)
{
    SchTask  *task = arg;
    Scheduler *sch = task->parent;
    int ret;
    int err = 0;

    ret = (intptr_t)task->func(task->func_arg);
    if (ret < 0)
        av_log(task->func_arg, AV_LOG_ERROR,
               "Task finished with error code: %d (%s)\n", ret, av_err2str(ret));

    switch (task->node.type) {
    case SCH_NODE_TYPE_DEMUX:       err = demux_done (sch, task->node.idx); break;
    case SCH_NODE_TYPE_MUX:         err = mux_done   (sch, task->node.idx); break;
    case SCH_NODE_TYPE_DEC:         err = dec_done   (sch, task->node.idx); break;
    case SCH_NODE_TYPE_ENC:         err = enc_done   (sch, task->node.idx); break;
    case SCH_NODE_TYPE_FILTER_IN:   err = filter_done(sch, task->node.idx); break;
    default: av_assert0(0);
    }

    ret = err_merge(ret, err);

    // EOF is considered normal termination
    if (ret == AVERROR_EOF)
        ret = 0;
    if (ret < 0)
        atomic_store(&sch->task_failed, 1);

    av_log(task->func_arg, ret < 0 ? AV_LOG_ERROR : AV_LOG_VERBOSE,
           "Terminating thread with return code %d (%s)\n", ret,
           ret < 0 ? av_err2str(ret) : "success");

    return (void*)(intptr_t)ret;
}