aboutsummaryrefslogtreecommitdiffstats
path: root/src/atrac3denc.cpp
blob: 432fb188c62fa89b7207cb7c15810024fc87576f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include "atrac3denc.h"
#include "transient_detector.h"
#include "util.h"
#include <assert.h>
#include <algorithm>
#include <iostream>
#include <cmath>
namespace NAtracDEnc {

using namespace NMDCT;
using namespace NAtrac3;
using std::vector;

void TAtrac3MDCT::Mdct(TFloat specs[1024], TFloat* bands[4], TGainModulatorArray gainModulators) {
    for (int band = 0; band < 4; ++band) {
        TFloat* srcBuff = bands[band];
        TFloat* const curSpec = &specs[band*256];
        TGainModulator modFn = gainModulators[band];
        vector<TFloat> tmp(512);
        memcpy(&tmp[0], &srcBuff[256], 256 * sizeof(TFloat));
        if (modFn) {
            modFn(tmp.data(), srcBuff);
        }
        for (int i = 0; i < 256; i++) {
            srcBuff[256+i] = TAtrac3Data::EncodeWindow[i] * srcBuff[i];
            srcBuff[i] = TAtrac3Data::EncodeWindow[255-i] * srcBuff[i];
        }
        memcpy(&tmp[256], &srcBuff[0], 256 * sizeof(TFloat));
        const vector<TFloat>& sp = Mdct512(&tmp[0]);
        assert(sp.size() == 256);
        memcpy(curSpec, sp.data(), 256 * sizeof(TFloat));
        if (band & 1) {
            SwapArray(curSpec, 256);
        }
    }
}

void TAtrac3MDCT::Midct(TFloat specs[1024], TFloat* bands[4], TGainDemodulatorArray gainDemodulators) {
    for (int band = 0; band < 4; ++band) {
        TFloat* dstBuff = bands[band];
        TFloat* curSpec = &specs[band*256];
        TFloat* prevBuff = dstBuff + 256;
        TAtrac3GainProcessor::TGainDemodulator demodFn = gainDemodulators[band];
        if (band & 1) {
            SwapArray(curSpec, 256);
        }
        vector<TFloat> inv  = Midct512(curSpec);
        assert(inv.size()/2 == 256);
        for (int j = 0; j < 256; ++j) {
            inv[j] *= /*2 */ DecodeWindow[j];
            inv[511 - j] *= /*2*/ DecodeWindow[j];
        }
        if (demodFn) {
            demodFn(dstBuff, inv.data(), prevBuff);
        } else {
            for (uint32_t j = 0; j < 256; ++j) {
                dstBuff[j] = inv[j] + prevBuff[j];
            }
        }
        memcpy(prevBuff, &inv[256], sizeof(TFloat)*256);
    }
}

TAtrac3Processor::TAtrac3Processor(TCompressedIOPtr&& oma, TAtrac3EncoderSettings&& encoderSettings)
    : Oma(std::move(oma))
    , Params(std::move(encoderSettings))
    , TransientDetectors(2 * 4, TTransientDetector(8, 256)) //2 - channels, 4 - bands
{}

TAtrac3Processor::~TAtrac3Processor()
{}

TAtrac3MDCT::TGainModulatorArray TAtrac3MDCT::MakeGainModulatorArray(const TAtrac3Data::SubbandInfo& si) {
    switch (si.GetQmfNum()) {
        case 1:
        {
            return {{ GainProcessor.Modulate(si.GetGainPoints(0)), TAtrac3MDCT::TGainModulator(),
                TAtrac3MDCT::TGainModulator(), TAtrac3MDCT::TGainModulator() }};
        }
        case 2:
        {
            return {{ GainProcessor.Modulate(si.GetGainPoints(0)), GainProcessor.Modulate(si.GetGainPoints(1)),
                TAtrac3MDCT::TGainModulator(), TAtrac3MDCT::TGainModulator() }};
        }
        case 3:
        {
            return {{ GainProcessor.Modulate(si.GetGainPoints(0)), GainProcessor.Modulate(si.GetGainPoints(1)),
                GainProcessor.Modulate(si.GetGainPoints(2)), TAtrac3MDCT::TGainModulator() }};
        }
        case 4:
        {
            return {{ GainProcessor.Modulate(si.GetGainPoints(0)), GainProcessor.Modulate(si.GetGainPoints(1)),
                GainProcessor.Modulate(si.GetGainPoints(2)), GainProcessor.Modulate(si.GetGainPoints(3)) }};
        }
        default:
            assert(false);
            return {};

    }
}

//TODO:
TAtrac3Data::TTonalComponents TAtrac3Processor::ExtractTonalComponents(TFloat* specs, TTonalDetector fn) {
    TAtrac3Data::TTonalComponents res;
    const float thresholds[TAtrac3Data::NumQMF] = { 0.9, 2.4, 2.8, 3.2 };
    for (uint8_t bandNum = 0; bandNum < this->NumQMF; ++bandNum) {
        //disable for frequence above 16KHz until we works without proper psy
        if (bandNum > 2)
            continue;
        for (uint8_t blockNum = BlocksPerBand[bandNum]; blockNum < BlocksPerBand[bandNum + 1]; ++blockNum) {
            const uint16_t specNumStart = SpecsStartLong[blockNum];
            const uint16_t specNumEnd = specNumStart + SpecsPerBlock[blockNum];
            float level = fn(specs + specNumStart, SpecsPerBlock[blockNum]);
            if (!isnan(level)) {
                for (uint16_t n = specNumStart; n < specNumEnd; ++n) {
                    //TODO:
                    TFloat absValue = std::abs(specs[n]);
                    if (absValue > 65535.0) {
                        TFloat shift = (specs[n] > 0) ? 65535.0 : -65535.0;

                        std::cerr << "shift overflowed value " << specs[n] << " " << specs[n] - shift << " " << shift << std::endl;
                        res.push_back({n, specs[n] - shift});
                        specs[n] = shift;
                    } else if (log10(std::abs(specs[n])) - log10(level) > thresholds[bandNum]) {
                        res.push_back({n, specs[n]/* - level*/});
                        specs[n] = 0;//level;
                    }
                    
                }

            }
        }
    }
    return res;
}
std::vector<TTonalComponent> TAtrac3Processor::MapTonalComponents(const TTonalComponents& tonalComponents) {
    vector<TTonalComponent> componentMap;
    for (uint16_t i = 0; i < tonalComponents.size();) {
        const uint16_t startPos = i;
        uint16_t curPos;
        do {
            curPos = tonalComponents[i].Pos;
            ++i;
        } while ( i < tonalComponents.size() && tonalComponents[i].Pos == curPos + 1 && i - startPos < 7);
        const uint16_t len = i - startPos;
        TFloat tmp[8];
        for (uint8_t j = 0; j < len; ++j)
            tmp[j] = tonalComponents[startPos + j].Val;
        const TScaledBlock& scaledBlock = Scaler.Scale(tmp, len);
        componentMap.push_back({&tonalComponents[startPos], 7, scaledBlock});
    }
    return componentMap;
}

TAtrac3Data::SubbandInfo TAtrac3Processor::CreateSubbandInfo(TFloat* in[4], uint32_t channel, TTransientDetector* transientDetector) {
    assert(false); //not implemented
    return {};
}

TPCMEngine<TFloat>::TProcessLambda TAtrac3Processor::GetEncodeLambda() {
    TOma* omaptr = dynamic_cast<TOma*>(Oma.get());
    if (!omaptr) {
        std::cerr << "Wrong container" << std::endl;
        abort();
    }

    TAtrac3BitStreamWriter* bitStreamWriter = new TAtrac3BitStreamWriter(omaptr, *Params.ConteinerParams);
    return [this, bitStreamWriter](TFloat* data, const TPCMEngine<TFloat>::ProcessMeta& meta) {
        for (uint32_t channel=0; channel < 2; channel++) {
            vector<TFloat> specs(1024);
            TFloat src[NumSamples];
            for (int i = 0; i < NumSamples; ++i) {
                src[i] = data[meta.Channels == 1 ? i : (i * 2 + channel)] / 4.0; //no mono mode in atrac3. //TODO we can TFloat frame after encoding
            }

            TFloat* p[4] = {&PcmBuffer[channel][0][0], &PcmBuffer[channel][1][0], &PcmBuffer[channel][2][0], &PcmBuffer[channel][3][0]};
            SplitFilterBank[channel].Split(&src[0], p);
            
            TAtrac3Data::SubbandInfo siCur = Params.NoGainControll ?
                TAtrac3Data::SubbandInfo() : CreateSubbandInfo(p, channel, &TransientDetectors[channel*4]); //4 detectors per band

            Mdct(specs.data(), p, MakeGainModulatorArray(siCur));
            TTonalComponents tonals = Params.NoTonalComponents ? 
                    TAtrac3Data::TTonalComponents() : ExtractTonalComponents(specs.data(), [](const TFloat* spec, uint16_t len) {
                std::vector<TFloat> magnitude(len);
                for (uint16_t i = 0; i < len; ++i) {
                    magnitude[i] = std::abs(spec[i]);
                }
                float median = CalcMedian(magnitude.data(), len);
                for (uint16_t i = 0; i < len; ++i) {
                    if (median > 0.001) {
                        return median;
                    }
                }
                return NAN;
            });

            const std::vector<TTonalComponent>& components = MapTonalComponents(tonals);

            //TBlockSize for ATRAC3 - 4 subband, all are long (no short window)
            bitStreamWriter->WriteSoundUnit(siCur, components, Scaler.ScaleFrame(specs, TBlockSize())); 
        }
    };
}

TPCMEngine<TFloat>::TProcessLambda TAtrac3Processor::GetDecodeLambda() {
    abort();
    return {};
}

}//namespace NAtracDEnc