1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
|
/*
* This file is part of AtracDEnc.
*
* AtracDEnc is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* AtracDEnc is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with AtracDEnc; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "atrac3_bitstream.h"
#include "atrac_psy_common.h"
#include "bitstream/bitstream.h"
#include "../util.h"
#include <algorithm>
#include <iostream>
#include <vector>
#include <cstdlib>
#include <cstring>
namespace NAtracDEnc {
namespace NAtrac3 {
using std::vector;
using std::memset;
static const uint32_t FixedBitAllocTable[TAtrac3Data::MaxBfus] = {
5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 2, 2, 1,
1, 0
};
std::vector<TFloat> TAtrac3BitStreamWriter::ATH;
TAtrac3BitStreamWriter::TAtrac3BitStreamWriter(ICompressedOutput* container, const TContainerParams& params, uint32_t bfuIdxConst)
: Container(container)
, Params(params)
, BfuIdxConst(bfuIdxConst)
{
NEnv::SetRoundFloat();
if (ATH.size()) {
return;
}
ATH.reserve(MaxBfus);
auto ATHSpec = CalcATH(1024, 44100);
for (size_t bandNum = 0; bandNum < this->NumQMF; ++bandNum) {
for (size_t blockNum = this->BlocksPerBand[bandNum]; blockNum < this->BlocksPerBand[bandNum + 1]; ++blockNum) {
const size_t specNumStart = this->SpecsStartLong[blockNum];
float x = 999;
for (size_t line = specNumStart; line < specNumStart + this->SpecsPerBlock[blockNum]; line++) {
x = fmin(x, ATHSpec[line]);
}
x = pow(10, 0.1 * x);
ATH.push_back(x / 100); //reduce efficiency of ATH, but prevents aliasing problem, TODO: fix it?
}
}
}
uint32_t TAtrac3BitStreamWriter::CLCEnc(const uint32_t selector, const int mantissas[MaxSpecsPerBlock],
const uint32_t blockSize, NBitStream::TBitStream* bitStream)
{
const uint32_t numBits = ClcLengthTab[selector];
const uint32_t bitsUsed = (selector > 1) ? numBits * blockSize : numBits * blockSize / 2;
if (!bitStream)
return bitsUsed;
if (selector > 1) {
for (uint32_t i = 0; i < blockSize; ++i) {
bitStream->Write(NBitStream::MakeSign(mantissas[i], numBits), numBits);
}
} else {
for (uint32_t i = 0; i < blockSize / 2; ++i) {
uint32_t code = MantissaToCLcIdx(mantissas[i * 2]) << 2;
code |= MantissaToCLcIdx(mantissas[i * 2 + 1]);
ASSERT(numBits == 4);
bitStream->Write(code, numBits);
}
}
return bitsUsed;
}
uint32_t TAtrac3BitStreamWriter::VLCEnc(const uint32_t selector, const int mantissas[MaxSpecsPerBlock],
const uint32_t blockSize, NBitStream::TBitStream* bitStream)
{
ASSERT(selector > 0);
const THuffEntry* huffTable = HuffTables[selector - 1].Table;
const uint8_t tableSz = HuffTables[selector - 1].Sz;
uint32_t bitsUsed = 0;
if (selector > 1) {
for (uint32_t i = 0; i < blockSize; ++i) {
int m = mantissas[i];
uint32_t huffS = (m < 0) ? (((uint32_t)(-m)) << 1) | 1 : ((uint32_t)m) << 1;
if (huffS)
huffS -= 1;
ASSERT(huffS < 256);
ASSERT(huffS < tableSz);
bitsUsed += huffTable[huffS].Bits;
if (bitStream)
bitStream->Write(huffTable[huffS].Code, huffTable[huffS].Bits);
}
} else {
ASSERT(tableSz == 9);
for (uint32_t i = 0; i < blockSize / 2; ++i) {
const int ma = mantissas[i * 2];
const int mb = mantissas[i * 2 + 1];
const uint32_t huffS = MantissasToVlcIndex(ma, mb);
bitsUsed += huffTable[huffS].Bits;
if (bitStream)
bitStream->Write(huffTable[huffS].Code, huffTable[huffS].Bits);
}
}
return bitsUsed;
}
static inline int ToInt(double x) {
#if defined(_MSC_VER) && !defined(_WIN64)
int n;
__asm {
fld x
fistp n
}
return n;
#else
return lrint(x);
#endif
}
static inline void CalcMantisas(const TFloat* values, const uint32_t first, const uint32_t last, const TFloat mul, int* mantisas) {
for (uint32_t j = 0, f = first; f < last; f++, j++) {
mantisas[f] = ToInt(values[j] * mul);
}
}
std::pair<uint8_t, uint32_t> TAtrac3BitStreamWriter::CalcSpecsBitsConsumption(const TSingleChannelElement& sce,
const vector<uint32_t>& precisionPerEachBlocks, int* mantisas)
{
const vector<TScaledBlock>& scaledBlocks = sce.ScaledBlocks;
const uint32_t numBlocks = precisionPerEachBlocks.size();
uint32_t bitsUsed = numBlocks * 3;
auto lambda = [this, numBlocks, mantisas, &precisionPerEachBlocks, &scaledBlocks](bool clcMode, bool calcMant) {
uint32_t bits = 0;
for (uint32_t i = 0; i < numBlocks; ++i) {
if (precisionPerEachBlocks[i] == 0)
continue;
bits += 6; //sfi
const uint32_t first = BlockSizeTab[i];
const uint32_t last = BlockSizeTab[i+1];
const uint32_t blockSize = last - first;
const TFloat mul = MaxQuant[std::min(precisionPerEachBlocks[i], (uint32_t)7)];
if (calcMant) {
const TFloat* values = scaledBlocks[i].Values.data();
CalcMantisas(values, first, last, mul, mantisas);
}
bits += clcMode ? CLCEnc(precisionPerEachBlocks[i], mantisas + first, blockSize, nullptr) :
VLCEnc(precisionPerEachBlocks[i], mantisas + first, blockSize, nullptr);
}
return bits;
};
const uint32_t clcBits = lambda(true, true);
const uint32_t vlcBits = lambda(false, false);
bool mode = clcBits <= vlcBits;
return std::make_pair(mode, bitsUsed + (mode ? clcBits : vlcBits));
}
//true - should reencode
//false - not need to
static inline bool CheckBfus(uint16_t* numBfu, const vector<uint32_t>& precisionPerEachBlocks)
{
ASSERT(*numBfu);
uint16_t curLastBfu = *numBfu - 1;
//assert(curLastBfu < precisionPerEachBlocks.size());
ASSERT(*numBfu == precisionPerEachBlocks.size());
if (precisionPerEachBlocks[curLastBfu] == 0) {
*numBfu = curLastBfu;
return true;
}
return false;
}
static const std::pair<uint8_t, vector<uint32_t>> DUMMY_ALLOC{1, vector<uint32_t>{0}};
std::pair<uint8_t, vector<uint32_t>> TAtrac3BitStreamWriter::CreateAllocation(const TSingleChannelElement& sce,
const uint16_t targetBits, int mt[MaxSpecs], float laudness)
{
const vector<TScaledBlock>& scaledBlocks = sce.ScaledBlocks;
if (scaledBlocks.empty()) {
return DUMMY_ALLOC;
}
TFloat spread = AnalizeScaleFactorSpread(scaledBlocks);
uint16_t numBfu = BfuIdxConst ? BfuIdxConst : 32;
// Limit number of BFU if target bitrate is not enough
// 3 bits to write each bfu without data
// 5 bits we need for tonal header
// 32 * 3 + 5 = 101
if (targetBits < 101) {
uint16_t lim = (targetBits - 5) / 3;
numBfu = std::min(numBfu, lim);
}
vector<uint32_t> precisionPerEachBlocks(numBfu);
uint8_t mode;
bool cont = true;
while (cont) {
precisionPerEachBlocks.resize(numBfu);
TFloat maxShift = 20;
TFloat minShift = -8;
for (;;) {
TFloat shift = (maxShift + minShift) / 2;
const vector<uint32_t>& tmpAlloc = CalcBitsAllocation(scaledBlocks, numBfu, spread, shift, laudness);
auto consumption = CalcSpecsBitsConsumption(sce, tmpAlloc, mt);
auto bitsUsedByTonal = EncodeTonalComponents(sce, tmpAlloc, nullptr);
// std::cerr << consumption.second << " |tonal: " << bitsUsedByTonal << " target: " << targetBits << " shift " << shift << " max | min " << maxShift << " " << minShift << " numBfu: " << numBfu << std::endl;
consumption.second += bitsUsedByTonal;
if (consumption.second < targetBits) {
if (maxShift - minShift < 0.1) {
precisionPerEachBlocks = tmpAlloc;
mode = consumption.first;
if (numBfu > 1) {
cont = !BfuIdxConst && CheckBfus(&numBfu, precisionPerEachBlocks);
} else {
cont = false;
}
break;
}
maxShift = shift - 0.01;
} else if (consumption.second > targetBits) {
minShift = shift + 0.01;
} else {
precisionPerEachBlocks = tmpAlloc;
mode = consumption.first;
cont = !BfuIdxConst && CheckBfus(&numBfu, precisionPerEachBlocks);;
break;
}
}
}
//std::cerr << "==" << std::endl;
return { mode, precisionPerEachBlocks };
}
void TAtrac3BitStreamWriter::EncodeSpecs(const TSingleChannelElement& sce, NBitStream::TBitStream* bitStream,
const std::pair<uint8_t, vector<uint32_t>>& allocation, const int mt[MaxSpecs])
{
const vector<TScaledBlock>& scaledBlocks = sce.ScaledBlocks;
const vector<uint32_t>& precisionPerEachBlocks = allocation.second;
EncodeTonalComponents(sce, precisionPerEachBlocks, bitStream);
const uint32_t numBlocks = precisionPerEachBlocks.size(); //number of blocks to save
const uint32_t codingMode = allocation.first;//0 - VLC, 1 - CLC
ASSERT(numBlocks <= 32);
bitStream->Write(numBlocks-1, 5);
bitStream->Write(codingMode, 1);
for (uint32_t i = 0; i < numBlocks; ++i) {
uint32_t val = precisionPerEachBlocks[i]; //coding table used (VLC) or number of bits used (CLC)
bitStream->Write(val, 3);
}
for (uint32_t i = 0; i < numBlocks; ++i) {
if (precisionPerEachBlocks[i] == 0)
continue;
bitStream->Write(scaledBlocks[i].ScaleFactorIndex, 6);
}
for (uint32_t i = 0; i < numBlocks; ++i) {
if (precisionPerEachBlocks[i] == 0)
continue;
const uint32_t first = BlockSizeTab[i];
const uint32_t last = BlockSizeTab[i+1];
const uint32_t blockSize = last - first;
if (codingMode == 1) {
CLCEnc(precisionPerEachBlocks[i], mt + first, blockSize, bitStream);
} else {
VLCEnc(precisionPerEachBlocks[i], mt + first, blockSize, bitStream);
}
}
}
uint8_t TAtrac3BitStreamWriter::GroupTonalComponents(const std::vector<TTonalBlock>& tonalComponents,
const vector<uint32_t>& allocTable,
TTonalComponentsSubGroup groups[64])
{
for (const TTonalBlock& tc : tonalComponents) {
ASSERT(tc.ScaledBlock.Values.size() < 8);
ASSERT(tc.ScaledBlock.Values.size() > 0);
ASSERT(tc.ValPtr->Bfu < allocTable.size());
auto quant = std::max((uint32_t)2, std::min(allocTable[tc.ValPtr->Bfu] + 1, (uint32_t)7));
//std::cerr << " | " << tc.ValPtr->Pos << " | " << (int)tc.ValPtr->Bfu << " | " << quant << std::endl;
groups[quant * 8 + tc.ScaledBlock.Values.size()].SubGroupPtr.push_back(&tc);
}
//std::cerr << "=====" << std::endl;
uint8_t tcsgn = 0;
//for each group
for (uint8_t i = 0; i < 64; ++i) {
size_t start_pos;
size_t cur_pos = 0;
//scan tonal components
while (cur_pos < groups[i].SubGroupPtr.size()) {
start_pos = cur_pos;
++tcsgn;
groups[i].SubGroupMap.push_back(static_cast<uint8_t>(cur_pos));
uint8_t groupLimiter = 0;
//allow not grather than 8 components in one subgroup limited by 64 specs
do {
++cur_pos;
if (cur_pos == groups[i].SubGroupPtr.size())
break;
if (groups[i].SubGroupPtr[cur_pos]->ValPtr->Pos - (groups[i].SubGroupPtr[start_pos]->ValPtr->Pos & ~63) < 64) {
++groupLimiter;
} else {
groupLimiter = 0;
start_pos = cur_pos;
}
} while (groupLimiter < 7);
}
}
return tcsgn;
}
uint16_t TAtrac3BitStreamWriter::EncodeTonalComponents(const TSingleChannelElement& sce,
const vector<uint32_t>& allocTable,
NBitStream::TBitStream* bitStream)
{
const uint16_t bitsUsedOld = bitStream ? (uint16_t)bitStream->GetSizeInBits() : 0;
const std::vector<TTonalBlock>& tonalComponents = sce.TonalBlocks;
const TAtrac3Data::SubbandInfo& subbandInfo = sce.SubbandInfo;
const uint8_t numQmfBand = subbandInfo.GetQmfNum();
uint16_t bitsUsed = 0;
//group tonal components with same quantizer and len
TTonalComponentsSubGroup groups[64];
const uint8_t tcsgn = GroupTonalComponents(tonalComponents, allocTable, groups);
ASSERT(tcsgn < 32);
bitsUsed += 5;
if (bitStream)
bitStream->Write(tcsgn, 5);
if (tcsgn == 0) {
for (int i = 0; i < 64; ++i)
ASSERT(groups[i].SubGroupPtr.size() == 0);
return bitsUsed;
}
//Coding mode:
// 0 - All are VLC
// 1 - All are CLC
// 2 - Error
// 3 - Own mode for each component
//TODO: implement switch for best coding mode. Now VLC for all
bitsUsed += 2;
if (bitStream)
bitStream->Write(0, 2);
uint8_t tcgnCheck = 0;
//for each group of equal quantiser and len
for (size_t i = 0; i < 64; ++i) {
const TTonalComponentsSubGroup& curGroup = groups[i];
if (curGroup.SubGroupPtr.size() == 0) {
ASSERT(curGroup.SubGroupMap.size() == 0);
continue;
}
ASSERT(curGroup.SubGroupMap.size());
ASSERT(curGroup.SubGroupMap.size() < UINT8_MAX);
for (size_t subgroup = 0; subgroup < curGroup.SubGroupMap.size(); ++subgroup) {
const uint8_t subGroupStartPos = curGroup.SubGroupMap[subgroup];
const uint8_t subGroupEndPos = (subgroup < curGroup.SubGroupMap.size() - 1) ?
curGroup.SubGroupMap[subgroup+1] : (uint8_t)curGroup.SubGroupPtr.size();
ASSERT(subGroupEndPos > subGroupStartPos);
//number of coded values are same in group
const uint8_t codedValues = (uint8_t)curGroup.SubGroupPtr[0]->ScaledBlock.Values.size();
//Number of tonal component for each 64spec block. Used to set qmf band flags and simplify band encoding loop
union {
uint8_t c[16];
uint32_t i[4] = {0};
} bandFlags;
ASSERT(numQmfBand <= 4);
for (uint8_t j = subGroupStartPos; j < subGroupEndPos; ++j) {
//assert num of coded values are same in group
ASSERT(codedValues == curGroup.SubGroupPtr[j]->ScaledBlock.Values.size());
uint8_t specBlock = (curGroup.SubGroupPtr[j]->ValPtr->Pos) >> 6;
ASSERT((specBlock >> 2) < numQmfBand);
bandFlags.c[specBlock]++;
}
ASSERT(numQmfBand == 4);
tcgnCheck++;
bitsUsed += numQmfBand;
if (bitStream) {
for (uint8_t j = 0; j < numQmfBand; ++j) {
bitStream->Write((bool)bandFlags.i[j], 1);
}
}
//write number of coded values for components in current group
ASSERT(codedValues > 0);
bitsUsed += 3;
if (bitStream)
bitStream->Write(codedValues - 1, 3);
//write quant index
ASSERT((i >> 3) > 1);
ASSERT((i >> 3) < 8);
bitsUsed += 3;
if (bitStream)
bitStream->Write(i >> 3, 3);
uint8_t lastPos = subGroupStartPos;
uint8_t checkPos = 0;
for (size_t j = 0; j < 16; ++j) {
if (!(bandFlags.i[j >> 2])) {
continue;
}
const uint8_t codedComponents = bandFlags.c[j];
ASSERT(codedComponents < 8);
bitsUsed += 3;
if (bitStream)
bitStream->Write(codedComponents, 3);
uint16_t k = lastPos;
for (; k < lastPos + codedComponents; ++k) {
ASSERT(curGroup.SubGroupPtr[k]->ValPtr->Pos >= j * 64);
uint16_t relPos = curGroup.SubGroupPtr[k]->ValPtr->Pos - j * 64;
ASSERT(curGroup.SubGroupPtr[k]->ScaledBlock.ScaleFactorIndex < 64);
bitsUsed += 6;
if (bitStream)
bitStream->Write(curGroup.SubGroupPtr[k]->ScaledBlock.ScaleFactorIndex, 6);
ASSERT(relPos < 64);
bitsUsed += 6;
if (bitStream)
bitStream->Write(relPos, 6);
ASSERT(curGroup.SubGroupPtr[k]->ScaledBlock.Values.size() < 8);
int mantisas[256];
const TFloat mul = MaxQuant[std::min((uint32_t)(i>>3), (uint32_t)7)];
ASSERT(codedValues == curGroup.SubGroupPtr[k]->ScaledBlock.Values.size());
for (uint32_t z = 0; z < curGroup.SubGroupPtr[k]->ScaledBlock.Values.size(); ++z) {
mantisas[z] = lrint(curGroup.SubGroupPtr[k]->ScaledBlock.Values[z] * mul);
}
//VLCEnc
ASSERT(i);
bitsUsed += VLCEnc(i>>3, mantisas, curGroup.SubGroupPtr[k]->ScaledBlock.Values.size(), bitStream);
}
lastPos = k;
checkPos = lastPos;
}
ASSERT(subGroupEndPos == checkPos);
}
}
ASSERT(tcgnCheck == tcsgn);
if (bitStream)
ASSERT(bitStream->GetSizeInBits() - bitsUsedOld == bitsUsed);
return bitsUsed;
}
vector<uint32_t> TAtrac3BitStreamWriter::CalcBitsAllocation(const std::vector<TScaledBlock>& scaledBlocks,
const uint32_t bfuNum,
const TFloat spread,
const TFloat shift,
const TFloat loudness)
{
vector<uint32_t> bitsPerEachBlock(bfuNum);
for (size_t i = 0; i < bitsPerEachBlock.size(); ++i) {
float ath = ATH[i] * loudness;
//std::cerr << "block: " << i << " Loudness: " << loudness << " " << 10 * log10(scaledBlocks[i].MaxEnergy / ath) << std::endl;
if (scaledBlocks[i].MaxEnergy < ath) {
bitsPerEachBlock[i] = 0;
} else {
const uint32_t fix = FixedBitAllocTable[i];
int tmp = spread * ( (TFloat)scaledBlocks[i].ScaleFactorIndex/3.2) + (1.0 - spread) * fix - shift;
if (tmp > 7) {
bitsPerEachBlock[i] = 7;
} else if (tmp < 0) {
bitsPerEachBlock[i] = 0;
} else {
bitsPerEachBlock[i] = tmp;
}
}
}
return bitsPerEachBlock;
}
void WriteJsParams(NBitStream::TBitStream* bs)
{
bs->Write(0, 1);
bs->Write(7, 3);
for (int i = 0; i < 4; i++) {
bs->Write(3, 2);
}
}
// 0.5 - M only (mono)
// 0.0 - Uncorrelated
// -0.5 - S only
static TFloat CalcMSRatio(TFloat mEnergy, TFloat sEnergy) {
TFloat total = sEnergy + mEnergy;
if (total > 0)
return mEnergy / total - 0.5;
// No signal - nothing to shift
return 0;
}
static int32_t CalcMSBytesShift(uint32_t frameSz,
const vector<TAtrac3BitStreamWriter::TSingleChannelElement>& elements,
const int32_t b[2])
{
const int32_t totalUsedBits = 0 - b[0] - b[1];
ASSERT(totalUsedBits > 0);
const int32_t maxAllowedShift = (frameSz / 2 - Div8Ceil(totalUsedBits));
if (elements[1].ScaledBlocks.empty()) {
return maxAllowedShift;
} else {
TFloat ratio = CalcMSRatio(elements[0].Loudness, elements[1].Loudness);
//std::cerr << ratio << std::endl;
return std::max(std::min(ToInt(frameSz * ratio), maxAllowedShift), -maxAllowedShift);
}
}
void TAtrac3BitStreamWriter::WriteSoundUnit(const vector<TSingleChannelElement>& singleChannelElements, float laudness)
{
ASSERT(singleChannelElements.size() == 1 || singleChannelElements.size() == 2);
const int halfFrameSz = Params.FrameSz >> 1;
NBitStream::TBitStream bitStreams[2];
int32_t bitsToAlloc[2] = {-6, -6}; // 6 bits used always to write num blocks and coding mode
// See EncodeSpecs
for (uint32_t channel = 0; channel < singleChannelElements.size(); channel++) {
const TSingleChannelElement& sce = singleChannelElements[channel];
const TAtrac3Data::SubbandInfo& subbandInfo = sce.SubbandInfo;
NBitStream::TBitStream* bitStream = &bitStreams[channel];
if (Params.Js && channel == 1) {
WriteJsParams(bitStream);
bitStream->Write(3, 2);
} else {
bitStream->Write(0x28, 6); //0x28 - id
}
const uint8_t numQmfBand = subbandInfo.GetQmfNum();
ASSERT(numQmfBand > 0);
bitStream->Write(numQmfBand - 1, 2);
//write gain info
for (uint32_t band = 0; band < numQmfBand; ++band) {
const vector<TAtrac3Data::SubbandInfo::TGainPoint>& GainPoints = subbandInfo.GetGainPoints(band);
ASSERT(GainPoints.size() < TAtrac3Data::SubbandInfo::MaxGainPointsNum);
bitStream->Write(GainPoints.size(), 3);
int s = 0;
for (const TAtrac3Data::SubbandInfo::TGainPoint& point : GainPoints) {
bitStream->Write(point.Level, 4);
bitStream->Write(point.Location, 5);
s++;
ASSERT(s < 8);
}
}
const int16_t bitsUsedByGainInfoAndHeader = (int16_t)bitStream->GetSizeInBits();
bitsToAlloc[channel] -= bitsUsedByGainInfoAndHeader;
}
int mt[2][MaxSpecs];
std::pair<uint8_t, vector<uint32_t>> allocations[2];
const int32_t msBytesShift = Params.Js ? CalcMSBytesShift(Params.FrameSz, singleChannelElements, bitsToAlloc) : 0; // positive - gain to m, negative to s. Must be zero if no joint stereo mode
bitsToAlloc[0] += 8 * (halfFrameSz + msBytesShift);
bitsToAlloc[1] += 8 * (halfFrameSz - msBytesShift);
for (uint32_t channel = 0; channel < singleChannelElements.size(); channel++) {
const TSingleChannelElement& sce = singleChannelElements[channel];
allocations[channel] = CreateAllocation(sce, bitsToAlloc[channel], mt[channel], laudness);
}
for (uint32_t channel = 0; channel < singleChannelElements.size(); channel++) {
const TSingleChannelElement& sce = singleChannelElements[channel];
NBitStream::TBitStream* bitStream = &bitStreams[channel];
EncodeSpecs(sce, bitStream, allocations[channel], mt[channel]);
if (!Container)
abort();
std::vector<char> channelData = bitStream->GetBytes();
if (Params.Js && channel == 1) {
channelData.resize(halfFrameSz - msBytesShift);
OutBuffer.insert(OutBuffer.end(), channelData.rbegin(), channelData.rend());
} else {
channelData.resize(halfFrameSz + msBytesShift);
OutBuffer.insert(OutBuffer.end(), channelData.begin(), channelData.end());
}
}
//No mone mode for atrac3, just make duplicate of first channel
if (singleChannelElements.size() == 1 && !Params.Js) {
int sz = OutBuffer.size();
ASSERT(sz == halfFrameSz);
OutBuffer.resize(sz << 1);
std::copy_n(OutBuffer.begin(), sz, OutBuffer.begin() + sz);
}
Container->WriteFrame(OutBuffer);
OutBuffer.clear();
}
} // namespace NAtrac3
} // namespace NAtracDEnc
|