1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
/*
* This file is part of AtracDEnc.
*
* AtracDEnc is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* AtracDEnc is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with AtracDEnc; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "atrac1_bitalloc.h"
#include "atrac_psy_common.h"
#include "atrac_scale.h"
#include "atrac1.h"
#include <math.h>
#include <cassert>
#include "bitstream/bitstream.h"
#include "../env.h"
namespace NAtracDEnc {
namespace NAtrac1 {
using std::vector;
using std::cerr;
using std::endl;
using std::pair;
static const uint32_t FixedBitAllocTableLong[TAtrac1Data::MaxBfus] = {
7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4,
4, 4, 3, 3, 3, 3, 3, 3, 2, 1, 1, 1, 1, 0, 0, 0
};
static const uint32_t FixedBitAllocTableShort[TAtrac1Data::MaxBfus] = {
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0
};
static const uint32_t BitBoostMask[TAtrac1Data::MaxBfus] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
TBitsBooster::TBitsBooster() {
for (uint32_t i = 0; i < TAtrac1Data::MaxBfus; ++i) {
if (BitBoostMask[i] == 0)
continue;
const uint32_t nBits = TAtrac1Data::SpecsPerBlock[i];
BitsBoostMap.insert(pair<uint32_t, uint32_t>(nBits, i));
}
MaxBitsPerIteration = BitsBoostMap.size() ? (--BitsBoostMap.end())->first : 0;
MinKey = BitsBoostMap.begin()->first;
}
uint32_t TBitsBooster::ApplyBoost(std::vector<uint32_t>* bitsPerEachBlock, uint32_t cur, uint32_t target) {
uint32_t surplus = target - cur;
uint32_t key = (surplus > MaxBitsPerIteration) ? MaxBitsPerIteration : surplus;
std::multimap<uint32_t, uint32_t>::iterator maxIt = BitsBoostMap.upper_bound(key);
//the key too low
if (maxIt == BitsBoostMap.begin())
return surplus;
while (surplus >= MinKey) {
bool done = true;
for (std::multimap<uint32_t, uint32_t>::iterator it = BitsBoostMap.begin(); it != maxIt; ++it) {
const uint32_t curBits = it->first;
const uint32_t curPos = it->second;
assert(key >= curBits);
if (curPos >= bitsPerEachBlock->size())
break;
if ((*bitsPerEachBlock)[curPos] == 16u)
continue;
const uint32_t nBitsPerSpec = (*bitsPerEachBlock)[curPos] ? 1 : 2;
if ((*bitsPerEachBlock)[curPos] == 0u && curBits * 2 > surplus)
continue;
if (curBits * nBitsPerSpec > surplus)
continue;
(*bitsPerEachBlock)[curPos] += nBitsPerSpec;
surplus -= curBits * nBitsPerSpec;
done = false;
}
if (done)
break;
}
return surplus;
}
std::vector<float> TAtrac1SimpleBitAlloc::ATHLong;
TAtrac1SimpleBitAlloc::TAtrac1SimpleBitAlloc(ICompressedOutput* container, uint32_t bfuIdxConst, bool fastBfuNumSearch)
: TAtrac1BitStreamWriter(container)
, BfuIdxConst(bfuIdxConst)
, FastBfuNumSearch(fastBfuNumSearch)
{
if (ATHLong.size()) {
return;
}
ATHLong.reserve(TAtrac1Data::MaxBfus);
auto ATHSpec = CalcATH(512, 44100);
for (size_t bandNum = 0; bandNum < TAtrac1Data::NumQMF; ++bandNum) {
for (size_t blockNum = TAtrac1Data::BlocksPerBand[bandNum]; blockNum < TAtrac1Data::BlocksPerBand[bandNum + 1]; ++blockNum) {
const size_t specNumStart = TAtrac1Data::SpecsStartLong[blockNum];
float x = 999;
for (size_t line = specNumStart; line < specNumStart + TAtrac1Data::SpecsPerBlock[blockNum]; line++) {
x = fmin(x, ATHSpec[line]);
}
x = pow(10, 0.1 * x);
ATHLong.push_back(x);
}
}
}
vector<uint32_t> TAtrac1SimpleBitAlloc::CalcBitsAllocation(const std::vector<TScaledBlock>& scaledBlocks,
const uint32_t bfuNum,
const float spread,
const float shift,
const TAtrac1Data::TBlockSizeMod& blockSize,
const float loudness) {
vector<uint32_t> bitsPerEachBlock(bfuNum);
for (size_t i = 0; i < bitsPerEachBlock.size(); ++i) {
bool shortBlock = blockSize.LogCount[TAtrac1Data::BfuToBand(i)];
const uint32_t fix = shortBlock ? FixedBitAllocTableShort[i] : FixedBitAllocTableLong[i];
float ath = ATHLong[i] * loudness;
//std::cerr << "block: " << i << " Loudness: " << loudness << " " << 10 * log10(scaledBlocks[i].MaxEnergy / ath) << std::endl;
if (!shortBlock && scaledBlocks[i].MaxEnergy < ath) {
bitsPerEachBlock[i] = 0;
} else {
int tmp = spread * ( (float)scaledBlocks[i].ScaleFactorIndex/3.2) + (1.0 - spread) * fix - shift;
if (tmp > 16) {
bitsPerEachBlock[i] = 16;
} else if (tmp < 2) {
bitsPerEachBlock[i] = 0;
} else {
bitsPerEachBlock[i] = tmp;
}
}
}
return bitsPerEachBlock;
}
uint32_t TAtrac1SimpleBitAlloc::GetMaxUsedBfuId(const vector<uint32_t>& bitsPerEachBlock) {
uint32_t idx = 7;
for (;;) {
uint32_t bfuNum = TAtrac1Data::BfuAmountTab[idx];
if (bfuNum > bitsPerEachBlock.size()) {
idx--;
} else if (idx != 0) {
assert(bfuNum == bitsPerEachBlock.size());
uint32_t i = 0;
while (idx && bitsPerEachBlock[bfuNum - 1 - i] == 0) {
if (++i >= (TAtrac1Data::BfuAmountTab[idx] - TAtrac1Data::BfuAmountTab[idx-1])) {
idx--;
bfuNum -= i;
i = 0;
}
assert(bfuNum - i >= 1);
}
break;
} else {
break;
}
}
return idx;
}
uint32_t TAtrac1SimpleBitAlloc::CheckBfuUsage(bool* changed,
uint32_t curBfuId, const vector<uint32_t>& bitsPerEachBlock) {
uint32_t usedBfuId = GetMaxUsedBfuId(bitsPerEachBlock);
if (usedBfuId < curBfuId) {
*changed = true;
curBfuId = FastBfuNumSearch ? usedBfuId : (curBfuId - 1);
}
return curBfuId;
}
uint32_t TAtrac1SimpleBitAlloc::Write(const std::vector<TScaledBlock>& scaledBlocks, const TAtrac1Data::TBlockSizeMod& blockSize, float loudness) {
uint32_t bfuIdx = BfuIdxConst ? BfuIdxConst - 1 : 7;
bool autoBfu = !BfuIdxConst;
float spread = AnalizeScaleFactorSpread(scaledBlocks);
vector<uint32_t> bitsPerEachBlock(TAtrac1Data::BfuAmountTab[bfuIdx]);
uint32_t targetBitsPerBfus;
uint32_t curBitsPerBfus;
for (;;) {
bitsPerEachBlock.resize(TAtrac1Data::BfuAmountTab[bfuIdx]);
const uint32_t bitsAvaliablePerBfus = TAtrac1Data::SoundUnitSize * 8 -
TAtrac1Data::BitsPerBfuAmountTabIdx - 32 - 2 - 3 -
bitsPerEachBlock.size() * (TAtrac1Data::BitsPerIDWL + TAtrac1Data::BitsPerIDSF);
float maxShift = 15;
float minShift = -3;
float shift = 3.0;
const uint32_t maxBits = bitsAvaliablePerBfus;
const uint32_t minBits = bitsAvaliablePerBfus - 110;
bool bfuNumChanged = false;
for (;;) {
const vector<uint32_t>& tmpAlloc = CalcBitsAllocation(scaledBlocks, TAtrac1Data::BfuAmountTab[bfuIdx],
spread, shift, blockSize, loudness);
uint32_t bitsUsed = 0;
for (size_t i = 0; i < tmpAlloc.size(); i++) {
bitsUsed += TAtrac1Data::SpecsPerBlock[i] * tmpAlloc[i];
}
if (bitsUsed < minBits) {
if (maxShift - minShift < 0.1) {
if (autoBfu) {
bfuIdx = CheckBfuUsage(&bfuNumChanged, bfuIdx, tmpAlloc);
}
if (!bfuNumChanged) {
bitsPerEachBlock = tmpAlloc;
}
curBitsPerBfus = bitsUsed;
break;
}
maxShift = shift;
shift -= (shift - minShift) / 2;
} else if (bitsUsed > maxBits) {
minShift = shift;
shift += (maxShift - shift) / 2;
} else {
if (autoBfu) {
bfuIdx = CheckBfuUsage(&bfuNumChanged, bfuIdx, tmpAlloc);
}
if (!bfuNumChanged) {
bitsPerEachBlock = tmpAlloc;
}
curBitsPerBfus = bitsUsed;
break;
}
}
if (!bfuNumChanged) {
targetBitsPerBfus = bitsAvaliablePerBfus;
break;
}
}
ApplyBoost(&bitsPerEachBlock, curBitsPerBfus, targetBitsPerBfus);
WriteBitStream(bitsPerEachBlock, scaledBlocks, bfuIdx, blockSize);
return TAtrac1Data::BfuAmountTab[bfuIdx];
}
TAtrac1BitStreamWriter::TAtrac1BitStreamWriter(ICompressedOutput* container)
: Container(container)
{
NEnv::SetRoundFloat();
};
void TAtrac1BitStreamWriter::WriteBitStream(const vector<uint32_t>& bitsPerEachBlock,
const std::vector<TScaledBlock>& scaledBlocks,
uint32_t bfuAmountIdx,
const TAtrac1Data::TBlockSizeMod& blockSize) {
NBitStream::TBitStream bitStream;
size_t bitUsed = 0;
if (bfuAmountIdx >= (1 << TAtrac1Data::BitsPerBfuAmountTabIdx)) {
cerr << "Wrong bfuAmountIdx (" << bfuAmountIdx << "), frame skiped" << endl;
return;
}
bitStream.Write(0x2 - blockSize.LogCount[0], 2);
bitUsed+=2;
bitStream.Write(0x2 - blockSize.LogCount[1], 2);
bitUsed+=2;
bitStream.Write(0x3 - blockSize.LogCount[2], 2);
bitStream.Write(0, 2);
bitUsed+=4;
bitStream.Write(bfuAmountIdx, TAtrac1Data::BitsPerBfuAmountTabIdx);
bitUsed += TAtrac1Data::BitsPerBfuAmountTabIdx;
bitStream.Write(0, 2);
bitStream.Write(0, 3);
bitUsed+= 5;
for (const auto wordLength : bitsPerEachBlock) {
const auto tmp = wordLength ? (wordLength - 1) : 0;
bitStream.Write(tmp, 4);
bitUsed+=4;
}
for (size_t i = 0; i < bitsPerEachBlock.size(); ++i) {
bitStream.Write(scaledBlocks[i].ScaleFactorIndex, 6);
bitUsed+=6;
}
for (size_t i = 0; i < bitsPerEachBlock.size(); ++i) {
const auto wordLength = bitsPerEachBlock[i];
if (wordLength == 0 || wordLength == 1)
continue;
const float multiple = ((1 << (wordLength - 1)) - 1);
for (const float val : scaledBlocks[i].Values) {
const int tmp = lrint(val * multiple);
const uint32_t testwl = bitsPerEachBlock[i] ? (bitsPerEachBlock[i] - 1) : 0;
const uint32_t a = !!testwl + testwl;
if (a != wordLength) {
cerr << "wordlen error " << a << " " << wordLength << endl;
abort();
}
bitStream.Write(NBitStream::MakeSign(tmp, wordLength), wordLength);
bitUsed+=wordLength;
}
}
bitStream.Write(0x0, 8);
bitStream.Write(0x0, 8);
bitUsed+=16;
bitStream.Write(0x0, 8);
bitUsed+=8;
if (bitUsed > TAtrac1Data::SoundUnitSize * 8) {
cerr << "ATRAC1 bitstream corrupted, used: " << bitUsed << " exp: " << TAtrac1Data::SoundUnitSize * 8 << endl;
abort();
}
Container->WriteFrame(bitStream.GetBytes());
}
} //namespace NAtrac1
} //namespace NAtracDEnc
|