1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/*
* ATRAC3+ compatible decoder
*
* Copyright (c) 2010-2013 Maxim Poliakovski
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* DSP functions for ATRAC3+ decoder.
*/
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include "atrac3plus.h"
#define TWOPI (2 * M_PI)
#define DEQUANT_PHASE(ph) (((ph) & 0x1F) << 6)
static float sine_table[2048]; ///< wave table
static float hann_window[256]; ///< Hann windowing function
static float amp_sf_tab[64]; ///< scalefactors for quantized amplitudes
static void vector_fmul(float *dst, const float *src0, const float *src1,
int len)
{
int i;
for (i = 0; i < len; i++)
dst[i] = src0[i] * src1[i];
}
void ff_atrac3p_init_dsp_static(void)
{
int i;
/* generate sine wave table */
for (i = 0; i < 2048; i++)
sine_table[i] = sin(TWOPI * i / 2048);
/* generate Hann window */
for (i = 0; i < 256; i++)
hann_window[i] = (1.0f - cos(TWOPI * i / 256.0f)) * 0.5f;
/* generate amplitude scalefactors table */
for (i = 0; i < 64; i++)
amp_sf_tab[i] = exp2f((i - 3) / 4.0f);
}
/**
* Synthesize sine waves according to given parameters.
*
* @param[in] synth_param ptr to common synthesis parameters
* @param[in] waves_info parameters for each sine wave
* @param[in] envelope envelope data for all waves in a group
* @param[in] invert_phase flag indicating 180° phase shift
* @param[in] reg_offset region offset for trimming envelope data
* @param[out] out receives sythesized data
*/
static void waves_synth(Atrac3pWaveSynthParams *synth_param,
Atrac3pWavesData *waves_info,
Atrac3pWaveEnvelope *envelope,
int invert_phase, int reg_offset, float *out)
{
int i, wn, inc, pos;
double amp;
Atrac3pWaveParam *wave_param = &synth_param->waves[waves_info->start_index];
for (wn = 0; wn < waves_info->num_wavs; wn++, wave_param++) {
/* amplitude dequantization */
amp = amp_sf_tab[wave_param->amp_sf] *
(!synth_param->amplitude_mode
? (wave_param->amp_index + 1) / 15.13f
: 1.0f);
inc = wave_param->freq_index;
pos = DEQUANT_PHASE(wave_param->phase_index) - (reg_offset ^ 128) * inc & 2047;
/* waveform generation */
for (i = 0; i < 128; i++) {
out[i] += sine_table[pos] * amp;
pos = (pos + inc) & 2047;
}
}
/* invert phase if requested */
if (invert_phase)
for (i = 0; i < 128; i++)
out[i] *= -1.0f;
/* fade in with steep Hann window if requested */
if (envelope->has_start_point) {
pos = (envelope->start_pos << 2) - reg_offset;
if (pos > 0 && pos <= 128) {
memset(out, 0, pos * sizeof(*out));
if (!envelope->has_stop_point ||
envelope->start_pos != envelope->stop_pos) {
out[pos + 0] *= hann_window[0];
out[pos + 1] *= hann_window[32];
out[pos + 2] *= hann_window[64];
out[pos + 3] *= hann_window[96];
}
}
}
/* fade out with steep Hann window if requested */
if (envelope->has_stop_point) {
pos = ((envelope->stop_pos + 1) << 2) - reg_offset;
if (pos > 0 && pos <= 128) {
out[pos - 4] *= hann_window[96];
out[pos - 3] *= hann_window[64];
out[pos - 2] *= hann_window[32];
out[pos - 1] *= hann_window[0];
memset(&out[pos], 0, (128 - pos) * sizeof(out[pos]));
}
}
}
void ff_atrac3p_generate_tones(Atrac3pChanUnitCtx *ch_unit,
int ch_num, int sb, float *out)
{
float wavreg1[128] = { 0 };
float wavreg2[128] = { 0 };
int i, reg1_env_nonzero, reg2_env_nonzero;
Atrac3pWavesData *tones_now = &ch_unit->channels[ch_num].tones_info_prev[sb];
Atrac3pWavesData *tones_next = &ch_unit->channels[ch_num].tones_info[sb];
/* reconstruct full envelopes for both overlapping regions
* from truncated bitstream data */
if (tones_next->pend_env.has_start_point &&
tones_next->pend_env.start_pos < tones_next->pend_env.stop_pos) {
tones_next->curr_env.has_start_point = 1;
tones_next->curr_env.start_pos = tones_next->pend_env.start_pos + 32;
} else if (tones_now->pend_env.has_start_point) {
tones_next->curr_env.has_start_point = 1;
tones_next->curr_env.start_pos = tones_now->pend_env.start_pos;
} else {
tones_next->curr_env.has_start_point = 0;
tones_next->curr_env.start_pos = 0;
}
if (tones_now->pend_env.has_stop_point &&
tones_now->pend_env.stop_pos >= tones_next->curr_env.start_pos) {
tones_next->curr_env.has_stop_point = 1;
tones_next->curr_env.stop_pos = tones_now->pend_env.stop_pos;
} else if (tones_next->pend_env.has_stop_point) {
tones_next->curr_env.has_stop_point = 1;
tones_next->curr_env.stop_pos = tones_next->pend_env.stop_pos + 32;
} else {
tones_next->curr_env.has_stop_point = 0;
tones_next->curr_env.stop_pos = 64;
}
/* is the visible part of the envelope non-zero? */
reg1_env_nonzero = (tones_now->curr_env.stop_pos < 32) ? 0 : 1;
reg2_env_nonzero = (tones_next->curr_env.start_pos >= 32) ? 0 : 1;
/* synthesize waves for both overlapping regions */
if (tones_now->num_wavs && reg1_env_nonzero) {
waves_synth(ch_unit->waves_info_prev, tones_now, &tones_now->curr_env,
ch_unit->waves_info_prev->invert_phase[sb] & ch_num,
128, wavreg1);
}
if (tones_next->num_wavs && reg2_env_nonzero) {
waves_synth(ch_unit->waves_info, tones_next, &tones_next->curr_env,
ch_unit->waves_info->invert_phase[sb] & ch_num, 0, wavreg2);
}
/* Hann windowing for non-faded wave signals */
if (tones_now->num_wavs && tones_next->num_wavs &&
reg1_env_nonzero && reg2_env_nonzero) {
vector_fmul(wavreg1, wavreg1, &hann_window[128], 128);
vector_fmul(wavreg2, wavreg2, hann_window, 128);
} else {
if (tones_now->num_wavs && !tones_now->curr_env.has_stop_point)
vector_fmul(wavreg1, wavreg1, &hann_window[128], 128);
if (tones_next->num_wavs && !tones_next->curr_env.has_start_point)
vector_fmul(wavreg2, wavreg2, hann_window, 128);
}
/* Overlap and subtract to get residual */
for (i = 0; i < 128; i++) {
out[i] -= wavreg1[i] + wavreg2[i];
}
}
|