aboutsummaryrefslogtreecommitdiffstats
path: root/src/atrac/at3p/at3p_bitstream.cpp
blob: 0b5e2394d6bc593c43994d20e318cb75fed35281 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/*
 * This file is part of AtracDEnc.
 *
 * AtracDEnc is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * AtracDEnc is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with AtracDEnc; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "at3p_bitstream_impl.h"
#include "at3p_bitstream.h"
#include "at3p_gha.h"
#include "at3p_tables.h"
#include <env.h>
#include <util.h>

#include "ff/atrac3plus_data.h"

#include <iostream>
#include <limits>
#include <memory>

namespace NAtracDEnc {

using namespace NAt3p;
using std::vector;
using std::make_pair;
using std::pair;

static THuffTables HuffTabs;

TTonePackResult CreateFreqBitPack(const TAt3PGhaData::TWaveParam* const param, int len)
{
    const int MaxBits = 10;

    int bits[2] = {MaxBits, MaxBits};

    std::vector<TTonePackResult::TEntry> res[2];
    res[0].reserve(len);
    res[1].reserve(len);

    // try ascending order
    {
        auto& t = res[0];
        uint16_t prevFreqIndex = param->FreqIndex & 1023;
        t.emplace_back(TTonePackResult::TEntry{prevFreqIndex, MaxBits});

        for (int i = 1; i < len; i++) {
            uint16_t curFreqIndex = param[i].FreqIndex & 1023;
            if (prevFreqIndex < 512) {
                t.emplace_back(TTonePackResult::TEntry{curFreqIndex, MaxBits});
                bits[0] += MaxBits;
            } else {
                uint16_t b = GetFirstSetBit(1023 - prevFreqIndex) + 1;
                uint16_t code = curFreqIndex - (1024 - (1 << b));
                t.emplace_back(TTonePackResult::TEntry{code, b});
                bits[0] += b;
            }
            prevFreqIndex = curFreqIndex;
        }
    }

    // try descending order
    if (len > 1) {
        auto& t = res[1];
        uint16_t prevFreqIndex = param[len - 1].FreqIndex & 1023;
        t.emplace_back(TTonePackResult::TEntry{prevFreqIndex, MaxBits});

        for (int i = len - 2; i >= 0; i--) {
            uint16_t curFreqIndex = param[i].FreqIndex & 1023;
            uint16_t b = GetFirstSetBit(prevFreqIndex) + 1;
            t.emplace_back(TTonePackResult::TEntry{curFreqIndex, b});
            bits[1] += b;
            prevFreqIndex = curFreqIndex;
        }

    }

    if (len == 1 || bits[0] < bits[1]) {
        return {res[0], bits[0], ETonePackOrder::ASC};
    } else {
        return {res[1], bits[1], ETonePackOrder::DESC};
    }
}

uint32_t TDumper::GetConsumption() const noexcept
{
    return std::accumulate(Buf.begin(), Buf.end(), 0,
        [](uint32_t acc, const std::pair<uint16_t, uint8_t>& x) noexcept -> uint32_t { return acc + x.second; });
}

IBitStreamPartEncoder::EStatus TConfigure::Encode(void* frameData, TBitAllocHandler&)
{
    TSpecFrame* frame = TSpecFrame::Cast(frameData);

    frame->WordLen.resize(frame->NumQuantUnits);

    for (size_t i = 0; i < frame->WordLen.size(); i++) {
        static uint8_t allocTable[32] = {
            7, 7, 7, 7, 7, 7, 7, 7,
            7, 7, 7, 7, 7, 7, 7, 7,
            7, 6, 6, 6, 6, 6, 6, 6,
            6, 6, 5, 5, 4, 3, 2, 1
        };
        frame->WordLen[i].first = allocTable[i];
        frame->WordLen[i].second = allocTable[i];
    }

    frame->SfIdx.resize(frame->NumQuantUnits);

    for (size_t i = 0; i < frame->SfIdx.size(); i++) {
        frame->SfIdx[i].first = frame->Chs[0].Sce.ScaledBlocks.at(i).ScaleFactorIndex;
        if (frame->Chs.size() > 1)
            frame->SfIdx[i].second = frame->Chs[1].Sce.ScaledBlocks.at(i).ScaleFactorIndex;
    }

    frame->SpecTabIdx.resize(frame->NumQuantUnits);

    Insert(frame->NumQuantUnits - 1, 5);
    Insert(0, 1); //mute flag

    frame->AllocatedBits = GetConsumption();

    return EStatus::Ok;
}

size_t FindBestWlDeltaEncode(const int8_t* delta, uint32_t sz, size_t tableStart, size_t tableEndl) noexcept {
    size_t best = 0;
    size_t consumed = std::numeric_limits<size_t>::max();
    static_assert(HuffTabs.WordLens.size() == 4, "unexpected wordlen huffman code table size");
    for (size_t i = tableStart; i <= tableEndl; i++) {
        const std::array<TVlcElement, 8>& wlTab = HuffTabs.WordLens[i];
        size_t t = 0;
        for (size_t j = 1; j < sz; j++) {
            t += wlTab[delta[j]].Len;
        }
        if (t < consumed) {
            consumed = t;
            best = i;
        }
    }

    return best;
}

void TWordLenEncoder::VlEncode(const std::array<TVlcElement, 8>& wlTab, size_t idx, size_t sz, const int8_t* data) noexcept {
    Insert(3, 2); // 0 - constant number of bits, 3 - VLC
    Insert(0, 2); // weight_idx
    Insert(0, 2); // chan->num_coded_vals = ctx->num_quant_units;

    Insert(idx, 2);
    Insert(data[0], 3);
    for (size_t i = 1; i < sz; i++) {
        Insert(wlTab[data[i]].Code,  wlTab[data[i]].Len);
    }
}

IBitStreamPartEncoder::EStatus TWordLenEncoder::Encode(void* frameData, TBitAllocHandler&) {
    auto specFrame = TSpecFrame::Cast(frameData);

    ASSERT(specFrame->WordLen.size() >= specFrame->NumQuantUnits);

    int8_t deltasCh0[32];
    //int8_t deltasCh1[32];
    int8_t interChDeltas[32];
    int8_t maxDeltaCh0 = 0;
    //int8_t maxDeltaCh1 = 0;
    int8_t maxInterChDelta;

    {
        int8_t t = specFrame->WordLen[0].second - specFrame->WordLen[0].first;
        maxInterChDelta = abs(t);
        interChDeltas[0] = t & 7;
    }

    deltasCh0[0] = specFrame->WordLen[0].first;
    //deltasCh1[0] = specFrame->WordLen[0].second;

    for (size_t i = 1; i < specFrame->NumQuantUnits; i++) {
        int8_t deltaCh0 = specFrame->WordLen[i].first - specFrame->WordLen[i-1].first;
        //int8_t deltaCh1 = specFrame->WordLen[i].second - specFrame->WordLen[i-1].second;
        int8_t t = specFrame->WordLen[i].second - specFrame->WordLen[i].first;
        //0 - 7, so only 3 bits
        maxDeltaCh0 |= abs(deltaCh0);
        //maxDeltaCh1 |= abs(deltaCh1);
        deltasCh0[i] = deltaCh0 & 7;
        //deltasCh1[i] = deltaCh1 & 7;

        maxInterChDelta |= abs(t);
        interChDeltas[i] = t & 7;
    }

    {
        size_t tableStart, tableEnd;
        if (maxDeltaCh0 >= 3) {
            tableStart = 2;
            tableEnd = 3;
        } else if (maxDeltaCh0 == 2) {
            tableStart = 1;
            tableEnd = 1;
        } else {
            tableStart = 0;
            tableEnd = 0;
        }

        const size_t idx = FindBestWlDeltaEncode(deltasCh0, specFrame->NumQuantUnits, tableStart, tableEnd);
        const std::array<TVlcElement, 8>& wlTab = HuffTabs.WordLens[idx];

        VlEncode(wlTab, idx, specFrame->NumQuantUnits, deltasCh0);
    }

    if (specFrame->Chs.size() == 2) {
        size_t tableStart, tableEnd;
        if (maxInterChDelta >= 3) {
            tableStart = 2;
            tableEnd = 3;
        } else if (maxInterChDelta == 2) {
            tableStart = 1;
            tableEnd = 1;
        } else {
            tableStart = 0;
            tableEnd = 0;
        }

        const size_t idx = FindBestWlDeltaEncode(interChDeltas, specFrame->NumQuantUnits, tableStart, tableEnd);
        const std::array<TVlcElement, 8>& wlTab = HuffTabs.WordLens[idx];

        Insert(1, 2); // 0 - constant number of bits
        Insert(0, 2); // chan->num_coded_vals = ctx->num_quant_units;

        Insert(idx, 2);
        for (size_t i = 0; i < specFrame->NumQuantUnits; i++) {
            Insert(wlTab[interChDeltas[i]].Code,  wlTab[interChDeltas[i]].Len);
        }
    }

    return EStatus::Ok;
}

IBitStreamPartEncoder::EStatus TSfIdxEncoder::Encode(void* frameData, TBitAllocHandler&) {
    auto specFrame = TSpecFrame::Cast(frameData);

    if (specFrame->SfIdx.empty()) {
        return EStatus::Ok;
    }

    for (size_t ch = 0; ch < specFrame->Chs.size(); ch++) {

        Insert(0, 2); // 0 - constant number of bits

        if (ch == 0) {
            for (size_t i = 0; i < specFrame->NumQuantUnits; i++) {
                Insert(specFrame->SfIdx[i].first, 6);
            }
        } else {
            for (size_t i = 0; i < specFrame->NumQuantUnits; i++) {
                Insert(specFrame->SfIdx[i].second, 6);
            }
        }
    }

    return EStatus::Ok;
}

void TQuantUnitsEncoder::EncodeCodeTab(bool useFullTable, size_t channels,
    size_t numQuantUnits, const std::vector<std::pair<uint8_t, uint8_t>>& specTabIdx,
    std::vector<std::pair<uint16_t, uint8_t>>& data)
{
    data.emplace_back(useFullTable, 1); // use full table

    for (size_t ch = 0; ch < channels; ch++) {

        data.emplace_back(0, 1); // table type

        data.emplace_back(0, 2); // 0 - constant number of bits

        data.emplace_back(0, 1); // num_coded_vals equal to used_quant_units

        if (ch == 0) {
            for (size_t i = 0; i < numQuantUnits; i++) {
                data.emplace_back(specTabIdx[i].first, useFullTable + 2);
            }
        } else {
            for (size_t i = 0; i < numQuantUnits; i++) {
                data.emplace_back(specTabIdx[i].second, useFullTable + 2);
            }
        }
    }
}

void TQuantUnitsEncoder::EncodeQuSpectra(const int* qspec, const size_t num_spec, const size_t idx,
    std::vector<std::pair<uint16_t, uint8_t>>& data) {
    const Atrac3pSpecCodeTab *tab = &atrac3p_spectra_tabs[idx];
    const std::array<TVlcElement, 256>& vlcTab = HuffTabs.VlcSpecs[idx];

    size_t groupSize = tab->group_size;
    size_t numCoeffs = tab->num_coeffs;
    size_t bitsCoeff = tab->bits;
    bool isSigned  = tab->is_signed;

    for (size_t pos = 0; pos < num_spec;) {
        if (groupSize != 1) {
            // TODO: Acording to FFmpeg it should be possible
            // to skip group, if all rest of coeffs is zero
            // but this should be checked with real AT3P decoder
            data.emplace_back(1, 1);
        }

        for (size_t j = 0; j < groupSize; j++) {
            uint32_t val = 0;
            int8_t signs[4] = {0};
            for (size_t i = 0; i < numCoeffs; i++) {
                int16_t t = qspec[pos++];
#ifndef NDEBUG
                {
                    uint16_t x = std::abs(t);
                    x >>= (uint16_t)(bitsCoeff - (int)isSigned);
                    ASSERT(x == 0);
                }
#endif
                if (!isSigned && t != 0) {
                    signs[i] = t > 0 ? 1 : -1;
                    if (t < 0)
                        t = -t;
                } else {
                    t = t & ((1u << (bitsCoeff)) - 1);
                }
                t <<= (bitsCoeff * i);
                val |= t;
            }

            ASSERT(val <= 255);

            const TVlcElement& el = vlcTab.at(val);

            data.emplace_back(el.Code, el.Len);
            for (size_t i = 0; i < 4; i++) {
                if (signs[i] != 0) {
                    if (signs[i] > 0) {
                        data.emplace_back(0, 1);
                    } else {
                        data.emplace_back(1, 1);
                    }
                }
            }
        }
    }
}

size_t TQuantUnitsEncoder::TUnit::MakeKey(size_t ch, size_t qu, size_t worlen) {
    ASSERT(qu < 32);
    ASSERT(worlen < 8);
    return (ch << 8) | (qu << 3) | worlen;
}

TQuantUnitsEncoder::TUnit::TUnit(size_t qu, size_t wordlen)
    : Wordlen(wordlen)
    , Multiplier(1.0f / atrac3p_mant_tab[wordlen])
{
    Mantisas.resize(TScaleTable::SpecsPerBlock[qu]);
}

size_t TQuantUnitsEncoder::TUnit::GetOrCompute(const float* val, std::vector<std::pair<uint16_t, uint8_t>>& res)
{
    QuantMantisas(val, 0, Mantisas.size(), Multiplier, false, Mantisas.data());

    std::vector<std::pair<uint16_t, uint8_t>> tmp;

    size_t bestTab = 0;
    size_t consumed = std::numeric_limits<size_t>::max();

    for (size_t i = 0, tabIndex = Wordlen - 1; i < 8; i++, tabIndex += 7) {

        EncodeQuSpectra(Mantisas.data(), Mantisas.size(), tabIndex, tmp);

        size_t t = std::accumulate(tmp.begin(), tmp.end(), 0,
            [](size_t acc, const std::pair<uint8_t, uint16_t>& x) noexcept -> size_t
                { return acc + x.second; });

        if (t < consumed) {
            consumed = t;
            ConsumedBits = t;
            bestTab = i;
            res.clear();
            res.swap(tmp);
            tmp.clear();
        } else {
            tmp.clear();
        }
    }
    return bestTab;
}

IBitStreamPartEncoder::EStatus TQuantUnitsEncoder::Encode(void* frameData, TBitAllocHandler&)
{
    auto specFrame = TSpecFrame::Cast(frameData);
    std::vector<
            std::vector<std::pair<uint16_t, uint8_t>>> data;
    for (size_t ch = 0; ch < specFrame->Chs.size(); ch++) {
        auto& chData = specFrame->Chs.at(ch);
        auto scaledBlocks = chData.Sce.ScaledBlocks;

        for (size_t qu = 0; qu < specFrame->NumQuantUnits; qu++) {
            size_t len = (ch == 0) ?
                specFrame->WordLen.at(qu).first :
                specFrame->WordLen.at(qu).second;

            size_t key = TUnit::MakeKey(ch, qu, len);

            TUnit* unit;
            //  try_emplace
            auto it = UnitBuffers.find(key);
            if (it == UnitBuffers.end()) {
                unit = &(UnitBuffers.emplace(key, TUnit(qu, len)).first->second);
            } else {
                unit = &it->second;
            }

            const float* values = scaledBlocks.at(qu).Values.data();

            data.push_back(std::vector<std::pair<uint16_t, uint8_t>>());
            auto tabIdx = unit->GetOrCompute(values, data.back());

            if (ch == 0) {
                specFrame->SpecTabIdx[qu].first = tabIdx;
            } else {
                specFrame->SpecTabIdx[qu].second = tabIdx;
            }
        }
        if (true /*frame.NumUsedQuantUnits > 2*/) {
            size_t numPwrSpec = atrac3p_subband_to_num_powgrps[atrac3p_qu_to_subband[specFrame->NumQuantUnits - 1]];
            data.push_back(std::vector<std::pair<uint16_t, uint8_t>>());
            auto& t = data.back();
            for (size_t i = 0; i < numPwrSpec; i++) {
                t.emplace_back(15, 4);
            }
        }
    }

    {
        std::vector<std::pair<uint16_t, uint8_t>> tabIdxData;
        EncodeCodeTab(true, specFrame->Chs.size(), specFrame->NumQuantUnits, specFrame->SpecTabIdx, tabIdxData);
        for (size_t i = 0; i < tabIdxData.size(); i++) {
            Insert(tabIdxData[i].first, tabIdxData[i].second);
        }
    }

    for (const auto& x : data) {
        for (size_t i = 0; i < x.size(); i++) {
            Insert(x[i].first, x[i].second);
        }
    }

    return EStatus::Ok;
}

static std::vector<IBitStreamPartEncoder::TPtr> CreateEncParts()
{
    vector<IBitStreamPartEncoder::TPtr> parts;
    parts.emplace_back(new TConfigure());
    parts.emplace_back(new TWordLenEncoder());
    parts.emplace_back(new TSfIdxEncoder());
    parts.emplace_back(new TQuantUnitsEncoder());
    parts.emplace_back(new TTonalComponentEncoder());

    return parts;
}

TAt3PBitStream::TAt3PBitStream(ICompressedOutput* container, uint16_t frameSz)
    : Container(container)
    , Encoder(CreateEncParts())
    , FrameSzToAllocBits((uint32_t)frameSz * 8 - 3) //Size of frame in bits for allocation. 3 bits is start bit and channel configuration
    , FrameSz(frameSz)
{
    NEnv::SetRoundFloat();
}

void TTonalComponentEncoder::WriteSubbandFlags(const bool* flags, size_t numFlags)
{

    size_t sum = 0;
    for (size_t i = 0; i < numFlags; i++) {
        sum += (uint32_t)flags[i];
    }

    if (sum == 0) {
        Insert(0, 1);
    } else if (sum == numFlags) {
        Insert(1, 1);
        Insert(0, 1);
    } else {
        Insert(1, 1);
        Insert(1, 1);
        for (size_t i = 0; i < numFlags; i++) {
           Insert(flags[i], 1);
        }
    }
}

void TTonalComponentEncoder::WriteTonalBlock(size_t channels, const TAt3PGhaData* tonalBlock)
{
    //GHA amplidude mode 1
    Insert(1, 1);

    //Num tone bands
    const TVlcElement& tbHuff = HuffTabs.NumToneBands[tonalBlock->NumToneBands - 1];
    Insert(tbHuff.Code, tbHuff.Len);

    if (channels == 2) {
        WriteSubbandFlags(tonalBlock->ToneSharing, tonalBlock->NumToneBands);
        WriteSubbandFlags(&tonalBlock->SecondIsLeader, 1);
        Insert(0, 1);
    }

    for (size_t ch = 0; ch < channels; ch++) {
        if (ch) {
            // each channel has own envelope
            Insert(0, 1);
        }
        // Envelope data
        for (int i = 0; i < tonalBlock->NumToneBands; i++) {
            if (ch && tonalBlock->ToneSharing[i]) {
                continue;
            }

            const auto envelope = tonalBlock->GetEnvelope(ch, i);

            if (envelope.first != TAt3PGhaData::EMPTY_POINT) {
                // start point present
                Insert(1, 1);
                Insert(envelope.first, 5);
            } else {
                Insert(0, 1);
            }

            if (envelope.second != TAt3PGhaData::EMPTY_POINT) {
                // stop point present
                Insert(1, 1);
                Insert(envelope.second, 5);
            } else {
                Insert(0, 1);
            }
        }

        // Num waves
        int mode = 0; //TODO: Calc mode
        Insert(mode, ch + 1);
        for (int i = 0; i < tonalBlock->NumToneBands; i++) {
            if (ch && tonalBlock->ToneSharing[i]) {
                continue;
            }
            Insert(tonalBlock->GetNumWaves(ch, i), 4);
        }
        // Tones freq
        if (ch) {
            // 0 - independed
            // 1 - delta to leader
            Insert(0, 1);
        }

        for (int i = 0; i < tonalBlock->NumToneBands; i++) {
            if (ch && tonalBlock->ToneSharing[i]) {
                continue;
            }

            auto numWaves = tonalBlock->GetNumWaves(ch, i);
            if (numWaves == 0) {
                continue;
            }

            const auto w = tonalBlock->GetWaves(ch, i);
            const auto pkt = CreateFreqBitPack(w.first, w.second);

            if (numWaves > 1) {
                Insert(static_cast<bool>(pkt.Order), 1);
            }

            for (const auto& d : pkt.Data) {
                Insert(d.Code, d.Bits);
            }
        }

        // Amplitude
        mode = 0; //TODO: Calc mode
        Insert(mode, ch + 1);

        for (int i = 0; i < tonalBlock->NumToneBands; i++) {
            if (ch && tonalBlock->ToneSharing[i]) {
                continue;
            }

            auto numWaves = tonalBlock->GetNumWaves(ch, i);
            if (numWaves == 0) {
                continue;
            }

            const auto w = tonalBlock->GetWaves(ch, i);
            for (size_t j = 0; j < numWaves; j++) {
                Insert(w.first[j].AmpSf, 6);
            }
        }

        // Phase
        for (int i = 0; i < tonalBlock->NumToneBands; i++) {
            if (ch && tonalBlock->ToneSharing[i]) {
                continue;
            }

            auto numWaves = tonalBlock->GetNumWaves(ch, i);
            if (numWaves == 0) {
                continue;
            }

            const auto w = tonalBlock->GetWaves(ch, i);
            for (size_t j = 0; j < w.second; j++) {
                Insert(w.first[j].PhaseIndex, 5);
            }
        }
    }
}

IBitStreamPartEncoder::EStatus TTonalComponentEncoder::CheckFrameDone(TSpecFrame* frame, TBitAllocHandler& ba) noexcept
{
    uint32_t totalConsumption = BitsUsed + ba.GetCurGlobalConsumption();

    if (totalConsumption > frame->SizeBits) {
        if (frame->NumQuantUnits == 32) {
            frame->NumQuantUnits = 28;
        } else {
            frame->NumQuantUnits--;
        }
        return EStatus::Repeat;
    }
    return EStatus::Ok;
}

IBitStreamPartEncoder::EStatus TTonalComponentEncoder::Encode(void* frameData, TBitAllocHandler& ba)
{
    auto specFrame = TSpecFrame::Cast(frameData);
    auto tonalBlock = specFrame->TonalBlock;

    // Check tonal component already encoded
    if (BitsUsed != 0) {
        if (tonalBlock && tonalBlock->NumToneBands > specFrame->NumQuantUnits) {
            std::cerr << "TODO" << std::endl;
            abort();
        }
        return CheckFrameDone(specFrame, ba);
    }

    const size_t chNum = specFrame->Chs.size();

    if (chNum == 2) {
        Insert(0, 2); //swap_channels and negate_coeffs
    }

    for (size_t ch = 0; ch < chNum; ch++) {
        TAt3pMDCTWin winType = specFrame->Chs[ch].Sce.SubbandInfo.Win;
        uint8_t sbNum = atrac3p_qu_to_subband[specFrame->NumQuantUnits - 1] + 1;
        if (winType.IsAllSine()) {
            Insert(0, 1);
        } else if (winType.IsAllSteep(sbNum)) {
            Insert(1, 1);
            Insert(0, 1);
        } else {
            Insert(1, 1);
            Insert(1, 1);
            for (size_t i = 0; i < sbNum; i++) {
                Insert(winType.IsSbSteep(i), 1);
            }
        }
    }

    for (size_t ch = 0; ch < chNum; ch++) {
        Insert(0, 1); //gain comp
    }

    if (tonalBlock && tonalBlock->NumToneBands) {
        Insert(1, 1);
        WriteTonalBlock(chNum, tonalBlock);
    } else {
        Insert(0, 1);
    }

    Insert(0, 1); // no noise info
    // Terminator
    Insert(3, 2);

    BitsUsed = GetConsumption();

    return CheckFrameDone(specFrame, ba);
}

void TAt3PBitStream::WriteFrame(int channels, const TAt3PGhaData* tonalBlock, const std::vector<TSingleChannelElement>& sces)
{
    NBitStream::TBitStream bitStream;
    // First bit must be zero
    bitStream.Write(0, 1);
    // Channel block type
    // 0 - MONO block
    // 1 - STEREO block
    // 2 - Nobody know
    bitStream.Write(channels - 1, 2);

    const uint32_t initialNumQuantUnits = 32;

    TSpecFrame frame(FrameSzToAllocBits, initialNumQuantUnits, channels, tonalBlock, sces);

    Encoder.Do(&frame, bitStream);

    std::vector<char> buf = bitStream.GetBytes();

    ASSERT(bitStream.GetSizeInBits() <= FrameSz * 8);

    buf.resize(FrameSz);
    Container->WriteFrame(buf);
}

}