aboutsummaryrefslogtreecommitdiffstats
path: root/library/cpp/histogram/adaptive/block_histogram.cpp
blob: 51e418405b6213428a57d0543b4e3a97fe282403 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#include "block_histogram.h"

#include <library/cpp/histogram/adaptive/protos/histo.pb.h>

#include <util/generic/algorithm.h>
#include <util/generic/yexception.h>
#include <util/generic/intrlist.h>
#include <util/generic/ptr.h>
#include <util/generic/queue.h>
#include <util/generic/ymath.h>
#include <util/string/printf.h>

namespace {
    struct TEmpty {
    };

    class TSmartHeap {
    private:
        TVector<ui32> A; 
        TVector<ui32> Pos; 
        const TVector<double>& Weights; 

    public:
        TSmartHeap(const TVector<double>& weights) 
            : A(weights.size())
            , Pos(weights.size())
            , Weights(weights)
        {
            for (ui32 i = 0; i < weights.size(); ++i) {
                A[i] = i;
                Pos[i] = i;
            }
            for (ui32 i = weights.size() / 2; i > 0; --i) {
                Down(i - 1);
            }
        }

        ui32 IdOfMin() {
            return A[0];
        }

        void Pop() {
            A[0] = A.back();
            Pos[A[0]] = 0;
            A.pop_back();
            Down(0);
        }

        void DownElement(ui32 id) {
            Down(Pos[id]);
        }

    private:
        void SwapPositions(ui32 x, ui32 y) {
            std::swap(A[x], A[y]);
            Pos[A[x]] = x;
            Pos[A[y]] = y;
        }

        void Down(ui32 pos) {
            while (1) {
                ui32 left = pos * 2 + 1;
                ui32 right = pos * 2 + 2;
                ui32 min = pos;
                if (left < A.size() && Weights[A[min]] > Weights[A[left]])
                    min = left;
                if (right < A.size() && Weights[A[min]] > Weights[A[right]])
                    min = right;
                if (pos == min)
                    break;
                SwapPositions(min, pos);
                pos = min;
            }
        }
    };

}

namespace NKiwiAggr {
    ///////////////////
    // TBlockHistogram
    ///////////////////

    TBlockHistogram::TBlockHistogram(EHistogramType type, TQualityFunction calcQuality,
                                     size_t intervals, ui64 id, size_t shrinkSize)
        : Type(type)
        , CalcQuality(calcQuality)
        , Intervals(intervals)
        , ShrinkSize(shrinkSize)
        , PrevSize(0)
        , Id(id)
        , Sum(0)
        , MinValue(0)
        , MaxValue(0)
    {
        CorrectShrinkSize();
    }

    void TBlockHistogram::Clear() {
        PrevSize = 0;
        Sum = 0.0;
        MinValue = 0.0;
        MaxValue = 0.0;
        Bins.clear();
    }

    void TBlockHistogram::Add(const THistoRec& rec) {
        if (!rec.HasId() || rec.GetId() == Id) {
            Add(rec.GetValue(), rec.GetWeight());
        }
    }

    void TBlockHistogram::Add(double value, double weight) {
        if (!IsValidFloat(value) || !IsValidFloat(weight)) {
            ythrow yexception() << Sprintf("Histogram id %lu: bad value %f weight %f", Id, value, weight);
        }

        if (weight <= 0.0) {
            return; // all zero-weighted values should be skipped because they don't affect the distribution, negative weights are forbidden
        }

        if (Bins.empty()) {
            MinValue = value;
            MaxValue = value;
        } else {
            MinValue = Min(MinValue, value);
            MaxValue = Max(MaxValue, value);
        }

        Sum += weight;

        if (Bins.size() > ShrinkSize) {
            SortAndShrink(Intervals * SHRINK_MULTIPLIER);
        }

        Bins.push_back(TWeightedValue(value, weight));
    }

    void TBlockHistogram::Merge(const THistogram& histo, double multiplier) {
        if (!IsValidFloat(histo.GetMinValue()) || !IsValidFloat(histo.GetMaxValue())) {
            fprintf(stderr, "Merging in histogram id %lu: skip bad histo with minvalue %f maxvalue %f\n", Id, histo.GetMinValue(), histo.GetMaxValue());
            return;
        }
        if (histo.FreqSize() == 0) {
            return; // skip empty histos
        }
        if (histo.GetType() == HT_ADAPTIVE_DISTANCE_HISTOGRAM ||
            histo.GetType() == HT_ADAPTIVE_WEIGHT_HISTOGRAM ||
            histo.GetType() == HT_ADAPTIVE_WARD_HISTOGRAM ||
            histo.GetType() == HT_ADAPTIVE_HISTOGRAM)
        {
            Y_VERIFY(histo.FreqSize() == histo.PositionSize(), "Corrupted histo");
            for (size_t j = 0; j < histo.FreqSize(); ++j) {
                double value = histo.GetPosition(j);
                double weight = histo.GetFreq(j);
                if (!IsValidFloat(value) || !IsValidFloat(weight)) {
                    fprintf(stderr, "Merging in histogram id %lu: skip bad value %f weight %f\n", Id, value, weight);
                    continue;
                }
                Add(value, weight * multiplier);
            }

            MinValue = Min(MinValue, histo.GetMinValue());
            MaxValue = Max(MaxValue, histo.GetMaxValue());
        } else if (histo.GetType() == HT_FIXED_BIN_HISTOGRAM) {
            double pos = histo.GetMinValue() + histo.GetBinRange() / 2.0;
            for (size_t j = 0; j < histo.FreqSize(); ++j) {
                double weight = histo.GetFreq(j);
                if (!IsValidFloat(pos) || !IsValidFloat(weight)) {
                    fprintf(stderr, "Merging in histogram id %lu: skip bad value %f weight %f\n", Id, pos, weight);
                    pos += histo.GetBinRange();
                    continue;
                }
                Add(pos, weight * multiplier);
                pos += histo.GetBinRange();
            }

            MinValue = Min(MinValue, histo.GetMinValue());
            MaxValue = Max(MaxValue, histo.GetMaxValue());
        } else {
            ythrow yexception() << "Unknown THistogram type";
        }
    }

    void TBlockHistogram::Merge(const TVector<THistogram>& histogramsToMerge) { 
        for (size_t i = 0; i < histogramsToMerge.size(); ++i) {
            Merge(histogramsToMerge[i], 1.0);
        }
    }

    void TBlockHistogram::Merge(TVector<IHistogramPtr> histogramsToMerge) {
        Y_UNUSED(histogramsToMerge);
        ythrow yexception() << "IHistogram::Merge(TVector<IHistogramPtr>) is not defined for TBlockHistogram"; 
    }

    void TBlockHistogram::Multiply(double factor) {
        if (!IsValidFloat(factor) || factor <= 0) {
            ythrow yexception() << "Not valid factor in IHistogram::Multiply(): " << factor;
        }
        Sum *= factor;
        for (TVector<TWeightedValue>::iterator it = Bins.begin(); it != Bins.end(); ++it) { 
            it->second *= factor;
        }
    }

    void TBlockHistogram::FromProto(const THistogram& histo) {
        Y_VERIFY(histo.HasType(), "Attempt to parse TBlockHistogram from THistogram protobuf with no Type field set");
        ;
        switch (histo.GetType()) { // check that histogram type is correct
            case HT_ADAPTIVE_DISTANCE_HISTOGRAM:
            case HT_ADAPTIVE_WEIGHT_HISTOGRAM:
            case HT_ADAPTIVE_WARD_HISTOGRAM:
            case HT_ADAPTIVE_HISTOGRAM:
                break; // ok
            default:   // not ok
                ythrow yexception() << "Attempt to parse TBlockHistogram from THistogram protobuf record of type = " << (ui32)histo.GetType();
        }

        if (histo.FreqSize() != histo.PositionSize()) {
            ythrow yexception() << "Attempt to parse TBlockHistogram from THistogram protobuf record where FreqSize != PositionSize. FreqSize == " << (ui32)histo.FreqSize() << ", PositionSize == " << (ui32)histo.PositionSize();
        }
        Id = histo.GetId();
        Sum = 0;
        Intervals = Max(Intervals, histo.FreqSize());
        CorrectShrinkSize();
        Bins.resize(histo.FreqSize());
        PrevSize = Bins.size();
        for (size_t i = 0; i < histo.FreqSize(); ++i) {
            double value = histo.GetPosition(i);
            double weight = histo.GetFreq(i);
            if (!IsValidFloat(value) || !IsValidFloat(weight)) {
                fprintf(stderr, "FromProto in histogram id %lu: skip bad value %f weight %f\n", Id, value, weight);
                continue;
            }
            Bins[i].first = value;
            Bins[i].second = weight;
            Sum += Bins[i].second;
        }

        if (!IsValidFloat(histo.GetMinValue()) || !IsValidFloat(histo.GetMaxValue())) {
            ythrow yexception() << Sprintf("FromProto in histogram id %lu: skip bad histo with minvalue %f maxvalue %f", Id, histo.GetMinValue(), histo.GetMaxValue());
        }
        MinValue = histo.GetMinValue();
        MaxValue = histo.GetMaxValue();
    }

    void TBlockHistogram::ToProto(THistogram& histo) {
        histo.Clear();
        histo.SetType(Type);
        histo.SetId(Id);
        if (Empty()) {
            return;
        }

        SortAndShrink(Intervals, true);
        histo.SetMinValue(MinValue);
        histo.SetMaxValue(MaxValue);
        for (TVector<TWeightedValue>::const_iterator it = Bins.begin(); it != Bins.end(); ++it) { 
            histo.AddFreq(it->second);
            histo.AddPosition(it->first);
        }
    }

    void TBlockHistogram::SetId(ui64 id) {
        Id = id;
    }

    ui64 TBlockHistogram::GetId() {
        return Id;
    }

    bool TBlockHistogram::Empty() {
        return Bins.empty();
    }

    double TBlockHistogram::GetMinValue() {
        return MinValue;
    }

    double TBlockHistogram::GetMaxValue() {
        return MaxValue;
    }

    double TBlockHistogram::GetSum() {
        return Sum;
    }

    void TBlockHistogram::SortAndShrink(size_t intervals, bool final) {
        Y_VERIFY(intervals > 0);

        if (Bins.size() <= intervals) {
            return;
        }

        if (Bins.size() >= Intervals * GREEDY_SHRINK_MULTIPLIER) {
            SortBins();
            UniquifyBins();
            FastGreedyShrink(intervals);

            if (final) {
                SlowShrink(intervals);
            }

        } else {
            SortBins();
            UniquifyBins();
            SlowShrink(intervals);
        }
    }

    void TBlockHistogram::SortBins() {
        Sort(Bins.begin() + PrevSize, Bins.end());
        if (PrevSize != 0) {
            TVector<TWeightedValue> temp(Bins.begin(), Bins.begin() + PrevSize); 
            std::merge(temp.begin(), temp.end(), Bins.begin() + PrevSize, Bins.end(), Bins.begin());
        }
    }

    void TBlockHistogram::UniquifyBins() {
        if (Bins.empty())
            return;

        auto it1 = Bins.begin();
        auto it2 = Bins.begin();
        while (++it2 != Bins.end()) {
            if (it1->first == it2->first) {
                it1->second += it2->second;
            } else {
                *(++it1) = *it2;
            }
        }

        Bins.erase(++it1, Bins.end());
    }

    void TBlockHistogram::CorrectShrinkSize() {
        ShrinkSize = Max(ShrinkSize, Intervals * (SHRINK_MULTIPLIER + GREEDY_SHRINK_MULTIPLIER));
    }

    void TBlockHistogram::SlowShrink(size_t intervals) {
        {
            size_t pos = 0;
            for (size_t i = 1; i < Bins.size(); ++i)
                if (Bins[i].first - Bins[pos].first < 1e-9) {
                    Bins[pos].second += Bins[i].second;
                } else {
                    ++pos;
                    Bins[pos] = Bins[i];
                }
            Bins.resize(pos + 1);
            PrevSize = pos + 1;
        }

        if (Bins.size() <= intervals) {
            return;
        }

        typedef TIntrusiveListItem<TEmpty> TListItem;

        ui32 n = Bins.size() - 1;
        const ui32 end = (ui32)Bins.size();

        TArrayHolder<TListItem> listElementsHolder(new TListItem[end + 1]);
        TListItem* const bins = listElementsHolder.Get();

        for (ui32 i = 1; i <= end; ++i) {
            bins[i].LinkAfter(&bins[i - 1]);
        }

        TVector<double> pairWeights(n); 

        for (ui32 i = 0; i < n; ++i) {
            pairWeights[i] = CalcQuality(Bins[i], Bins[i + 1]).first;
        }

        TSmartHeap heap(pairWeights);

        while (n + 1 > intervals) {
            ui32 b = heap.IdOfMin();
            heap.Pop();

            ui32 a = (ui32)(bins[b].Prev() - bins);
            ui32 c = (ui32)(bins[b].Next() - bins);
            ui32 d = (ui32)(bins[b].Next()->Next() - bins);
            Y_VERIFY(Bins[c].second != -1);

            double mass = Bins[b].second + Bins[c].second;
            Bins[c].first = (Bins[b].first * Bins[b].second + Bins[c].first * Bins[c].second) / mass;
            Bins[c].second = mass;

            bins[b].Unlink();
            Bins[b].second = -1;

            if (a != end) {
                pairWeights[a] = CalcQuality(Bins[a], Bins[c]).first;
                heap.DownElement(a);
            }

            if (d != end && c + 1 != Bins.size()) {
                pairWeights[c] = CalcQuality(Bins[c], Bins[d]).first;
                heap.DownElement(c);
            }

            --n;
        }

        size_t pos = 0;
        for (TListItem* it = bins[end].Next(); it != &bins[end]; it = it->Next()) {
            Bins[pos++] = Bins[it - bins];
        }

        Bins.resize(pos);
        PrevSize = pos;
        Y_VERIFY(pos == intervals);
    }

    double TBlockHistogram::GetSumInRange(double leftBound, double rightBound) {
        Y_UNUSED(leftBound);
        Y_UNUSED(rightBound);
        ythrow yexception() << "Method is not implemented for TBlockHistogram";
        return 0;
    }

    double TBlockHistogram::GetSumAboveBound(double bound) {
        Y_UNUSED(bound);
        ythrow yexception() << "Method is not implemented for TBlockHistogram";
        return 0;
    }

    double TBlockHistogram::GetSumBelowBound(double bound) {
        Y_UNUSED(bound);
        ythrow yexception() << "Method is not implemented for TBlockHistogram";
        return 0;
    }

    double TBlockHistogram::CalcUpperBound(double sum) {
        Y_UNUSED(sum);
        ythrow yexception() << "Method is not implemented for TBlockHistogram";
        return 0;
    }

    double TBlockHistogram::CalcLowerBound(double sum) {
        Y_UNUSED(sum);
        ythrow yexception() << "Method is not implemented for TBlockHistogram";
        return 0;
    }

    double TBlockHistogram::CalcUpperBoundSafe(double sum) {
        Y_UNUSED(sum);
        ythrow yexception() << "Method is not implemented for TBlockHistogram";
        return 0;
    }

    double TBlockHistogram::CalcLowerBoundSafe(double sum) {
        Y_UNUSED(sum);
        ythrow yexception() << "Method is not implemented for TBlockHistogram";
        return 0;
    }

    /////////////////////////
    // TBlockWeightHistogram
    /////////////////////////

    TBlockWeightHistogram::TBlockWeightHistogram(size_t intervals, ui64 id, size_t shrinkSize)
        : TBlockHistogram(HT_ADAPTIVE_WEIGHT_HISTOGRAM, CalcWeightQuality, intervals, id, shrinkSize)
    {
    }

    void TBlockWeightHistogram::FastGreedyShrink(size_t intervals) {
        if (Bins.size() <= intervals)
            return;

        double slab = Sum / intervals;

        size_t i = 0;
        size_t pos = 0;
        while (i < Bins.size()) {
            double curW = Bins[i].second;
            double curMul = Bins[i].first * Bins[i].second;
            ++i;
            while (i < Bins.size() && curW + Bins[i].second <= slab && pos + Bins.size() - i >= intervals) {
                curW += Bins[i].second;
                curMul += Bins[i].first * Bins[i].second;
                ++i;
            }
            Bins[pos++] = TWeightedValue(curMul / curW, curW);
        }

        Bins.resize(pos);
        PrevSize = pos;
    }

    ///////////////////////
    // TBlockWardHistogram
    ///////////////////////

    TBlockWardHistogram::TBlockWardHistogram(size_t intervals, ui64 id, size_t shrinkSize)
        : TBlockHistogram(HT_ADAPTIVE_WARD_HISTOGRAM, CalcWardQuality, intervals, id, shrinkSize)
    {
    }

    bool TBlockWardHistogram::CalcSplitInfo(
        const TCumulatives::const_iterator beg,
        const TCumulatives::const_iterator end, // (!) points to the final element
        TSplitInfo& splitInfo                   // out
    ) {
        if (end - beg < 2) {
            return false;
        }

        TCumulatives::const_iterator mid = LowerBound(beg, end + 1, TCumulative{(beg->first + end->first) / 2, 0.});

        if (mid == beg) {
            mid++;
        } else if (mid == end) {
            mid--;
        }

        // derived from Ward's minimum variance criterion
        double profit = 0.0;
        profit += (mid->second - beg->second) * (mid->second - beg->second) / (mid->first - beg->first);
        profit += (end->second - mid->second) * (end->second - mid->second) / (end->first - mid->first);
        profit -= (end->second - beg->second) * (end->second - beg->second) / (end->first - beg->first);

        splitInfo = {profit, beg, mid, end};

        return true;
    }

    void TBlockWardHistogram::FastGreedyShrink(size_t intervals) {
        Y_VERIFY(intervals > 0);

        if (Bins.size() <= intervals) {
            return;
        }

        // fill cumulative sums
        // sum at index i equals to the sum of all values before i
        // sum at index i+1 equals to the sum of all values before i with the value at i added
        TCumulatives cumulatives;
        cumulatives.reserve(Bins.size() + 1);

        TCumulative cumulative = {0., 0.};
        cumulatives.push_back(cumulative);
        for (size_t i = 0; i < Bins.size(); i++) {
            cumulative.first += Bins[i].second;
            cumulative.second += Bins[i].second * Bins[i].first;
            cumulatives.push_back(cumulative);
        }

        TVector<TCumulatives::const_iterator> splits; 
        splits.reserve(intervals + 1);
        splits.push_back(cumulatives.begin());
        splits.push_back(cumulatives.end() - 1);

        TPriorityQueue<TSplitInfo> candidates; 

        // explicitly add first split
        TSplitInfo newSplitInfo;
        if (CalcSplitInfo(cumulatives.begin(), cumulatives.end() - 1, newSplitInfo)) {
            candidates.push(newSplitInfo);
        }

        // recursively split until done
        for (size_t split = 0; split < intervals - 1 && !candidates.empty(); split++) {
            TSplitInfo curSplitInfo = candidates.top();
            candidates.pop();

            splits.push_back(curSplitInfo.mid);

            if (CalcSplitInfo(curSplitInfo.beg, curSplitInfo.mid, newSplitInfo)) {
                candidates.push(newSplitInfo);
            }
            if (CalcSplitInfo(curSplitInfo.mid, curSplitInfo.end, newSplitInfo)) {
                candidates.push(newSplitInfo);
            }
        }

        // calclate new bin centers and weights
        Sort(splits.begin(), splits.end());

        Bins.clear();
        for (auto it = splits.begin(); it + 1 != splits.end(); ++it) {
            auto splitBeg = *it;
            auto splitEnd = *(it + 1);
            double cnt = (splitEnd->first - splitBeg->first);
            double mu = (splitEnd->second - splitBeg->second) / cnt;

            Bins.push_back(TWeightedValue(mu, cnt));
        }
    }

}