aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/ragel6/parsedata.cpp
blob: fd92cbb5bcd38dedcc354aed54bc4e805271dc40 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
/*
 *  Copyright 2001-2008 Adrian Thurston <thurston@complang.org>
 */

/*  This file is part of Ragel.
 *
 *  Ragel is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 * 
 *  Ragel is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 * 
 *  You should have received a copy of the GNU General Public License
 *  along with Ragel; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 */

#include <iostream>
#include <iomanip>
#include <errno.h>
#include <stdlib.h>
#include <limits.h>

#include "ragel.h"
#include "rlparse.h"
#include "parsedata.h"
#include "parsetree.h"
#include "mergesort.h"
#include "xmlcodegen.h"
#include "version.h"
#include "inputdata.h"

using namespace std;

char mainMachine[] = "main";

void Token::set( const char *str, int len )
{
	length = len;
	data = new char[len+1];
	memcpy( data, str, len );
	data[len] = 0;
}

void Token::append( const Token &other )
{
	int newLength = length + other.length;
	char *newString = new char[newLength+1];
	memcpy( newString, data, length );
	memcpy( newString + length, other.data, other.length );
	newString[newLength] = 0;
	data = newString;
	length = newLength;
}

/* Perform minimization after an operation according 
 * to the command line args. */
void afterOpMinimize( FsmAp *fsm, bool lastInSeq )
{
	/* Switch on the prefered minimization algorithm. */
	if ( minimizeOpt == MinimizeEveryOp || ( minimizeOpt == MinimizeMostOps && lastInSeq ) ) {
		/* First clean up the graph. FsmAp operations may leave these
		 * lying around. There should be no dead end states. The subtract
		 * intersection operators are the only places where they may be
		 * created and those operators clean them up. */
		fsm->removeUnreachableStates();

		switch ( minimizeLevel ) {
			case MinimizeApprox:
				fsm->minimizeApproximate();
				break;
			case MinimizePartition1:
				fsm->minimizePartition1();
				break;
			case MinimizePartition2:
				fsm->minimizePartition2();
				break;
			case MinimizeStable:
				fsm->minimizeStable();
				break;
		}
	}
}

/* Count the transitions in the fsm by walking the state list. */
int countTransitions( FsmAp *fsm )
{
	int numTrans = 0;
	StateAp *state = fsm->stateList.head;
	while ( state != 0 ) {
		numTrans += state->outList.length();
		state = state->next;
	}
	return numTrans;
}

Key makeFsmKeyHex( char *str, const InputLoc &loc, ParseData *pd )
{
	/* Reset errno so we can check for overflow or underflow. In the event of
	 * an error, sets the return val to the upper or lower bound being tested
	 * against. */
	errno = 0;
	unsigned int size = keyOps->alphType->size;
	bool unusedBits = size < sizeof(unsigned long);

	unsigned long ul = strtoul( str, 0, 16 );

	if ( errno == ERANGE || ( unusedBits && ul >> (size * 8) ) ) {
		error(loc) << "literal " << str << " overflows the alphabet type" << endl;
		ul = 1 << (size * 8);
	}

	if ( unusedBits && keyOps->alphType->isSigned && ul >> (size * 8 - 1) )
		ul |= ( (unsigned long)(-1L) >> (size*8) ) << (size*8); 

	return Key( (long)ul );
}

#ifdef _MSC_VER
#   define strtoll _strtoi64
#endif

Key makeFsmKeyDec( char *str, const InputLoc &loc, ParseData *pd )
{
	if ( keyOps->alphType->isSigned ) {
		/* Convert the number to a decimal. First reset errno so we can check
		 * for overflow or underflow. */
		errno = 0;
		long long minVal = keyOps->alphType->sMinVal;
		long long maxVal = keyOps->alphType->sMaxVal;
	
		long long ll = strtoll( str, 0, 10 );
	
		/* Check for underflow. */
		if ( ( errno == ERANGE && ll < 0 ) || ll < minVal) {
			error(loc) << "literal " << str << " underflows the alphabet type" << endl;
			ll = minVal;
		}
		/* Check for overflow. */
		else if ( ( errno == ERANGE && ll > 0 ) || ll > maxVal ) {
			error(loc) << "literal " << str << " overflows the alphabet type" << endl;
			ll = maxVal;
		}
	
		return Key( (long)ll );
	}
	else {
		/* Convert the number to a decimal. First reset errno so we can check
		 * for overflow or underflow. */
		errno = 0;
		unsigned long long minVal = keyOps->alphType->uMinVal;
		unsigned long long maxVal = keyOps->alphType->uMaxVal;
	
		unsigned long long ull = strtoull( str, 0, 10 );
	
		/* Check for underflow. */
		if ( ( errno == ERANGE && ull < 0 ) || ull < minVal) {
			error(loc) << "literal " << str << " underflows the alphabet type" << endl;
			ull = minVal;
		}
		/* Check for overflow. */
		else if ( ( errno == ERANGE && ull > 0 ) || ull > maxVal ) {
			error(loc) << "literal " << str << " overflows the alphabet type" << endl;
			ull = maxVal;
		}
	
		return Key( (unsigned long)ull );
	}
}

/* Make an fsm key in int format (what the fsm graph uses) from an alphabet
 * number returned by the parser. Validates that the number doesn't overflow
 * the alphabet type. */
Key makeFsmKeyNum( char *str, const InputLoc &loc, ParseData *pd )
{
	/* Switch on hex/decimal format. */
	if ( str[0] == '0' && str[1] == 'x' )
		return makeFsmKeyHex( str, loc, pd );
	else
		return makeFsmKeyDec( str, loc, pd );
}

/* Make an fsm int format (what the fsm graph uses) from a single character.
 * Performs proper conversion depending on signed/unsigned property of the
 * alphabet. */
Key makeFsmKeyChar( char c, ParseData *pd )
{
	if ( keyOps->isSigned ) {
		/* Copy from a char type. */
		return Key( c );
	}
	else {
		/* Copy from an unsigned byte type. */
		return Key( (unsigned char)c );
	}
}

/* Make an fsm key array in int format (what the fsm graph uses) from a string
 * of characters. Performs proper conversion depending on signed/unsigned
 * property of the alphabet. */
void makeFsmKeyArray( Key *result, char *data, int len, ParseData *pd )
{
	if ( keyOps->isSigned ) {
		/* Copy from a char star type. */
		char *src = data;
		for ( int i = 0; i < len; i++ )
			result[i] = Key(src[i]);
	}
	else {
		/* Copy from an unsigned byte ptr type. */
		unsigned char *src = (unsigned char*) data;
		for ( int i = 0; i < len; i++ )
			result[i] = Key(src[i]);
	}
}

/* Like makeFsmKeyArray except the result has only unique keys. They ordering
 * will be changed. */
void makeFsmUniqueKeyArray( KeySet &result, char *data, int len, 
		bool caseInsensitive, ParseData *pd )
{
	/* Use a transitions list for getting unique keys. */
	if ( keyOps->isSigned ) {
		/* Copy from a char star type. */
		char *src = data;
		for ( int si = 0; si < len; si++ ) {
			Key key( src[si] );
			result.insert( key );
			if ( caseInsensitive ) {
				if ( key.isLower() )
					result.insert( key.toUpper() );
				else if ( key.isUpper() )
					result.insert( key.toLower() );
			}
		}
	}
	else {
		/* Copy from an unsigned byte ptr type. */
		unsigned char *src = (unsigned char*) data;
		for ( int si = 0; si < len; si++ ) {
			Key key( src[si] );
			result.insert( key );
			if ( caseInsensitive ) {
				if ( key.isLower() )
					result.insert( key.toUpper() );
				else if ( key.isUpper() )
					result.insert( key.toLower() );
			}
		}
	}
}

FsmAp *dotFsm( ParseData *pd )
{
	FsmAp *retFsm = new FsmAp();
	retFsm->rangeFsm( keyOps->minKey, keyOps->maxKey );
	return retFsm;
}

FsmAp *dotStarFsm( ParseData *pd )
{
	FsmAp *retFsm = new FsmAp();
	retFsm->rangeStarFsm( keyOps->minKey, keyOps->maxKey );
	return retFsm;
}

/* Make a builtin type. Depends on the signed nature of the alphabet type. */
FsmAp *makeBuiltin( BuiltinMachine builtin, ParseData *pd )
{
	/* FsmAp created to return. */
	FsmAp *retFsm = 0;
	bool isSigned = keyOps->isSigned;

	switch ( builtin ) {
	case BT_Any: {
		/* All characters. */
		retFsm = dotFsm( pd );
		break;
	}
	case BT_Ascii: {
		/* Ascii characters 0 to 127. */
		retFsm = new FsmAp();
		retFsm->rangeFsm( 0, 127 );
		break;
	}
	case BT_Extend: {
		/* Ascii extended characters. This is the full byte range. Dependent
		 * on signed, vs no signed. If the alphabet is one byte then just use
		 * dot fsm. */
		if ( isSigned ) {
			retFsm = new FsmAp();
			retFsm->rangeFsm( -128, 127 );
		}
		else {
			retFsm = new FsmAp();
			retFsm->rangeFsm( 0, 255 );
		}
		break;
	}
	case BT_Alpha: {
		/* Alpha [A-Za-z]. */
		FsmAp *upper = new FsmAp(), *lower = new FsmAp();
		upper->rangeFsm( 'A', 'Z' );
		lower->rangeFsm( 'a', 'z' );
		upper->unionOp( lower );
		upper->minimizePartition2();
		retFsm = upper;
		break;
	}
	case BT_Digit: {
		/* Digits [0-9]. */
		retFsm = new FsmAp();
		retFsm->rangeFsm( '0', '9' );
		break;
	}
	case BT_Alnum: {
		/* Alpha numerics [0-9A-Za-z]. */
		FsmAp *digit = new FsmAp(), *lower = new FsmAp();
		FsmAp *upper = new FsmAp();
		digit->rangeFsm( '0', '9' );
		upper->rangeFsm( 'A', 'Z' );
		lower->rangeFsm( 'a', 'z' );
		digit->unionOp( upper );
		digit->unionOp( lower );
		digit->minimizePartition2();
		retFsm = digit;
		break;
	}
	case BT_Lower: {
		/* Lower case characters. */
		retFsm = new FsmAp();
		retFsm->rangeFsm( 'a', 'z' );
		break;
	}
	case BT_Upper: {
		/* Upper case characters. */
		retFsm = new FsmAp();
		retFsm->rangeFsm( 'A', 'Z' );
		break;
	}
	case BT_Cntrl: {
		/* Control characters. */
		FsmAp *cntrl = new FsmAp();
		FsmAp *highChar = new FsmAp();
		cntrl->rangeFsm( 0, 31 );
		highChar->concatFsm( 127 );
		cntrl->unionOp( highChar );
		cntrl->minimizePartition2();
		retFsm = cntrl;
		break;
	}
	case BT_Graph: {
		/* Graphical ascii characters [!-~]. */
		retFsm = new FsmAp();
		retFsm->rangeFsm( '!', '~' );
		break;
	}
	case BT_Print: {
		/* Printable characters. Same as graph except includes space. */
		retFsm = new FsmAp();
		retFsm->rangeFsm( ' ', '~' );
		break;
	}
	case BT_Punct: {
		/* Punctuation. */
		FsmAp *range1 = new FsmAp();
		FsmAp *range2 = new FsmAp();
		FsmAp *range3 = new FsmAp(); 
		FsmAp *range4 = new FsmAp();
		range1->rangeFsm( '!', '/' );
		range2->rangeFsm( ':', '@' );
		range3->rangeFsm( '[', '`' );
		range4->rangeFsm( '{', '~' );
		range1->unionOp( range2 );
		range1->unionOp( range3 );
		range1->unionOp( range4 );
		range1->minimizePartition2();
		retFsm = range1;
		break;
	}
	case BT_Space: {
		/* Whitespace: [\t\v\f\n\r ]. */
		FsmAp *cntrl = new FsmAp();
		FsmAp *space = new FsmAp();
		cntrl->rangeFsm( '\t', '\r' );
		space->concatFsm( ' ' );
		cntrl->unionOp( space );
		cntrl->minimizePartition2();
		retFsm = cntrl;
		break;
	}
	case BT_Xdigit: {
		/* Hex digits [0-9A-Fa-f]. */
		FsmAp *digit = new FsmAp();
		FsmAp *upper = new FsmAp();
		FsmAp *lower = new FsmAp();
		digit->rangeFsm( '0', '9' );
		upper->rangeFsm( 'A', 'F' );
		lower->rangeFsm( 'a', 'f' );
		digit->unionOp( upper );
		digit->unionOp( lower );
		digit->minimizePartition2();
		retFsm = digit;
		break;
	}
	case BT_Lambda: {
		retFsm = new FsmAp();
		retFsm->lambdaFsm();
		break;
	}
	case BT_Empty: {
		retFsm = new FsmAp();
		retFsm->emptyFsm();
		break;
	}}

	return retFsm;
}

/* Check if this name inst or any name inst below is referenced. */
bool NameInst::anyRefsRec()
{
	if ( numRefs > 0 )
		return true;

	/* Recurse on children until true. */
	for ( NameVect::Iter ch = childVect; ch.lte(); ch++ ) {
		if ( (*ch)->anyRefsRec() )
			return true;
	}

	return false;
}

/*
 * ParseData
 */

/* Initialize the structure that will collect info during the parse of a
 * machine. */
ParseData::ParseData( const char *fileName, char *sectionName, 
		const InputLoc &sectionLoc )
:	
	sectionGraph(0),
	generatingSectionSubset(false),
	nextPriorKey(0),
	/* 0 is reserved for global error actions. */
	nextLocalErrKey(1),
	nextNameId(0),
	nextCondId(0),
	alphTypeSet(false),
	getKeyExpr(0),
	accessExpr(0),
	prePushExpr(0),
	postPopExpr(0),
	pExpr(0),
	peExpr(0),
	eofExpr(0),
	csExpr(0),
	topExpr(0),
	stackExpr(0),
	actExpr(0),
	tokstartExpr(0),
	tokendExpr(0),
	dataExpr(0),
	lowerNum(0),
	upperNum(0),
	fileName(fileName),
	sectionName(sectionName),
	sectionLoc(sectionLoc),
	curActionOrd(0),
	curPriorOrd(0),
	rootName(0),
	exportsRootName(0),
	nextEpsilonResolvedLink(0),
	nextLongestMatchId(1),
	lmRequiresErrorState(false),
	cgd(0)
{
	/* Initialize the dictionary of graphs. This is our symbol table. The
	 * initialization needs to be done on construction which happens at the
	 * beginning of a machine spec so any assignment operators can reference
	 * the builtins. */
	initGraphDict();
}

/* Clean up the data collected during a parse. */
ParseData::~ParseData()
{
	/* Delete all the nodes in the action list. Will cause all the
	 * string data that represents the actions to be deallocated. */
	actionList.empty();
}

/* Make a name id in the current name instantiation scope if it is not
 * already there. */
NameInst *ParseData::addNameInst( const InputLoc &loc, const char *data, bool isLabel )
{
	/* Create the name instantitaion object and insert it. */
	NameInst *newNameInst = new NameInst( loc, curNameInst, data, nextNameId++, isLabel );
	curNameInst->childVect.append( newNameInst );
	if ( data != 0 )
		curNameInst->children.insertMulti( data, newNameInst );
	return newNameInst;
}

void ParseData::initNameWalk()
{
	curNameInst = rootName;
	curNameChild = 0;
}

void ParseData::initExportsNameWalk()
{
	curNameInst = exportsRootName;
	curNameChild = 0;
}

/* Goes into the next child scope. The number of the child is already set up.
 * We need this for the syncronous name tree and parse tree walk to work
 * properly. It is reset on entry into a scope and advanced on poping of a
 * scope. A call to enterNameScope should be accompanied by a corresponding
 * popNameScope. */
NameFrame ParseData::enterNameScope( bool isLocal, int numScopes )
{
	/* Save off the current data. */
	NameFrame retFrame;
	retFrame.prevNameInst = curNameInst;
	retFrame.prevNameChild = curNameChild;
	retFrame.prevLocalScope = localNameScope;

	/* Enter into the new name scope. */
	for ( int i = 0; i < numScopes; i++ ) {
		curNameInst = curNameInst->childVect[curNameChild];
		curNameChild = 0;
	}

	if ( isLocal )
		localNameScope = curNameInst;

	return retFrame;
}

/* Return from a child scope to a parent. The parent info must be specified as
 * an argument and is obtained from the corresponding call to enterNameScope.
 * */
void ParseData::popNameScope( const NameFrame &frame )
{
	/* Pop the name scope. */
	curNameInst = frame.prevNameInst;
	curNameChild = frame.prevNameChild+1;
	localNameScope = frame.prevLocalScope;
}

void ParseData::resetNameScope( const NameFrame &frame )
{
	/* Pop the name scope. */
	curNameInst = frame.prevNameInst;
	curNameChild = frame.prevNameChild;
	localNameScope = frame.prevLocalScope;
}


void ParseData::unsetObsoleteEntries( FsmAp *graph )
{
	/* Loop the reference names and increment the usage. Names that are no
	 * longer needed will be unset in graph. */
	for ( NameVect::Iter ref = curNameInst->referencedNames; ref.lte(); ref++ ) {
		/* Get the name. */
		NameInst *name = *ref;
		name->numUses += 1;

		/* If the name is no longer needed unset its corresponding entry. */
		if ( name->numUses == name->numRefs ) {
			assert( graph->entryPoints.find( name->id ) != 0 );
			graph->unsetEntry( name->id );
			assert( graph->entryPoints.find( name->id ) == 0 );
		}
	}
}

NameSet ParseData::resolvePart( NameInst *refFrom, const char *data, bool recLabelsOnly )
{
	/* Queue needed for breadth-first search, load it with the start node. */
	NameInstList nameQueue;
	nameQueue.append( refFrom );

	NameSet result;
	while ( nameQueue.length() > 0 ) {
		/* Pull the next from location off the queue. */
		NameInst *from = nameQueue.detachFirst();

		/* Look for the name. */
		NameMapEl *low, *high;
		if ( from->children.findMulti( data, low, high ) ) {
			/* Record all instances of the name. */
			for ( ; low <= high; low++ )
				result.insert( low->value );
		}

		/* Name not there, do breadth-first operation of appending all
		 * childrent to the processing queue. */
		for ( NameVect::Iter name = from->childVect; name.lte(); name++ ) {
			if ( !recLabelsOnly || (*name)->isLabel )
				nameQueue.append( *name );
		}
	}

	/* Queue exhausted and name never found. */
	return result;
}

void ParseData::resolveFrom( NameSet &result, NameInst *refFrom, 
		const NameRef &nameRef, int namePos )
{
	/* Look for the name in the owning scope of the factor with aug. */
	NameSet partResult = resolvePart( refFrom, nameRef[namePos], false );
	
	/* If there are more parts to the name then continue on. */
	if ( ++namePos < nameRef.length() ) {
		/* There are more components to the name, search using all the part
		 * results as the base. */
		for ( NameSet::Iter name = partResult; name.lte(); name++ )
			resolveFrom( result, *name, nameRef, namePos );
	}
	else {
		/* This is the last component, append the part results to the final
		 * results. */
		result.insert( partResult );
	}
}

/* Write out a name reference. */
ostream &operator<<( ostream &out, const NameRef &nameRef )
{
	int pos = 0;
	if ( nameRef[pos] == 0 ) {
		out << "::";
		pos += 1;
	}
	out << nameRef[pos++];
	for ( ; pos < nameRef.length(); pos++ )
		out << "::" << nameRef[pos];
	return out;
}

ostream &operator<<( ostream &out, const NameInst &nameInst )
{
	/* Count the number fully qualified name parts. */
	int numParents = 0;
	NameInst *curParent = nameInst.parent;
	while ( curParent != 0 ) {
		numParents += 1;
		curParent = curParent->parent;
	}

	/* Make an array and fill it in. */
	curParent = nameInst.parent;
	NameInst **parents = new NameInst*[numParents];
	for ( int p = numParents-1; p >= 0; p-- ) {
		parents[p] = curParent;
		curParent = curParent->parent;
	}
		
	/* Write the parents out, skip the root. */
	for ( int p = 1; p < numParents; p++ )
		out << "::" << ( parents[p]->name != 0 ? parents[p]->name : "<ANON>" );

	/* Write the name and cleanup. */
	out << "::" << ( nameInst.name != 0 ? nameInst.name : "<ANON>" );
	delete[] parents;
	return out;
}

struct CmpNameInstLoc
{
	static int compare( const NameInst *ni1, const NameInst *ni2 )
	{
		if ( ni1->loc.line < ni2->loc.line )
			return -1;
		else if ( ni1->loc.line > ni2->loc.line )
			return 1;
		else if ( ni1->loc.col < ni2->loc.col )
			return -1;
		else if ( ni1->loc.col > ni2->loc.col )
			return 1;
		return 0;
	}
};

void errorStateLabels( const NameSet &resolved )
{
	MergeSort<NameInst*, CmpNameInstLoc> mergeSort;
	mergeSort.sort( resolved.data, resolved.length() );
	for ( NameSet::Iter res = resolved; res.lte(); res++ )
		error((*res)->loc) << "  -> " << **res << endl;
}


NameInst *ParseData::resolveStateRef( const NameRef &nameRef, InputLoc &loc, Action *action )
{
	NameInst *nameInst = 0;

	/* Do the local search if the name is not strictly a root level name
	 * search. */
	if ( nameRef[0] != 0 ) {
		/* If the action is referenced, resolve all of them. */
		if ( action != 0 && action->actionRefs.length() > 0 ) {
			/* Look for the name in all referencing scopes. */
			NameSet resolved;
			for ( ActionRefs::Iter actRef = action->actionRefs; actRef.lte(); actRef++ )
				resolveFrom( resolved, *actRef, nameRef, 0 );

			if ( resolved.length() > 0 ) {
				/* Take the first one. */
				nameInst = resolved[0];
				if ( resolved.length() > 1 ) {
					/* Complain about the multiple references. */
					error(loc) << "state reference " << nameRef << 
							" resolves to multiple entry points" << endl;
					errorStateLabels( resolved );
				}
			}
		}
	}

	/* If not found in the local scope, look in global. */
	if ( nameInst == 0 ) {
		NameSet resolved;
		int fromPos = nameRef[0] != 0 ? 0 : 1;
		resolveFrom( resolved, rootName, nameRef, fromPos );

		if ( resolved.length() > 0 ) {
			/* Take the first. */
			nameInst = resolved[0];
			if ( resolved.length() > 1 ) {
				/* Complain about the multiple references. */
				error(loc) << "state reference " << nameRef << 
						" resolves to multiple entry points" << endl;
				errorStateLabels( resolved );
			}
		}
	}

	if ( nameInst == 0 ) {
		/* If not found then complain. */
		error(loc) << "could not resolve state reference " << nameRef << endl;
	}
	return nameInst;
}

void ParseData::resolveNameRefs( InlineList *inlineList, Action *action )
{
	for ( InlineList::Iter item = *inlineList; item.lte(); item++ ) {
		switch ( item->type ) {
			case InlineItem::Entry: case InlineItem::Goto:
			case InlineItem::Call: case InlineItem::Next: {
				/* Resolve, pass action for local search. */
				NameInst *target = resolveStateRef( *item->nameRef, item->loc, action );

				/* Name lookup error reporting is handled by resolveStateRef. */
				if ( target != 0 ) {
					/* Check if the target goes into a longest match. */
					NameInst *search = target->parent;
					while ( search != 0 ) {
						if ( search->isLongestMatch ) {
							error(item->loc) << "cannot enter inside a longest "
									"match construction as an entry point" << endl;
							break;
						}
						search = search->parent;
					}

					/* Record the reference in the name. This will cause the
					 * entry point to survive to the end of the graph
					 * generating walk. */
					target->numRefs += 1;
				}

				item->nameTarg = target;
				break;
			}
			default:
				break;
		}

		/* Some of the item types may have children. */
		if ( item->children != 0 )
			resolveNameRefs( item->children, action );
	}
}

/* Resolve references to labels in actions. */
void ParseData::resolveActionNameRefs()
{
	for ( ActionList::Iter act = actionList; act.lte(); act++ ) {
		/* Only care about the actions that are referenced. */
		if ( act->actionRefs.length() > 0 )
			resolveNameRefs( act->inlineList, act );
	}
}

/* Walk a name tree starting at from and fill the name index. */
void ParseData::fillNameIndex( NameInst *from )
{
	/* Fill the value for from in the name index. */
	nameIndex[from->id] = from;

	/* Recurse on the implicit final state and then all children. */
	if ( from->final != 0 )
		fillNameIndex( from->final );
	for ( NameVect::Iter name = from->childVect; name.lte(); name++ )
		fillNameIndex( *name );
}

void ParseData::makeRootNames()
{
	/* Create the root name. */
	rootName = new NameInst( InputLoc(), 0, 0, nextNameId++, false );
	exportsRootName = new NameInst( InputLoc(), 0, 0, nextNameId++, false );
}

/* Build the name tree and supporting data structures. */
void ParseData::makeNameTree( GraphDictEl *dictEl )
{
	/* Set up curNameInst for the walk. */
	initNameWalk();

	if ( dictEl != 0 ) {
		/* A start location has been specified. */
		dictEl->value->makeNameTree( dictEl->loc, this );
	}
	else {
		/* First make the name tree. */
		for ( GraphList::Iter glel = instanceList; glel.lte(); glel++ ) {
			/* Recurse on the instance. */
			glel->value->makeNameTree( glel->loc, this );
		}
	}
	
	/* The number of nodes in the tree can now be given by nextNameId */
	nameIndex = new NameInst*[nextNameId];
	memset( nameIndex, 0, sizeof(NameInst*)*nextNameId );
	fillNameIndex( rootName );
	fillNameIndex( exportsRootName );
}


void ParseData::createBuiltin( const char *name, BuiltinMachine builtin )
{
	Expression *expression = new Expression( builtin );
	Join *join = new Join( expression );
	MachineDef *machineDef = new MachineDef( join );
	VarDef *varDef = new VarDef( name, machineDef );
	GraphDictEl *graphDictEl = new GraphDictEl( name, varDef );
	graphDict.insert( graphDictEl );
}

/* Initialize the graph dict with builtin types. */
void ParseData::initGraphDict( )
{
	createBuiltin( "any", BT_Any );
	createBuiltin( "ascii", BT_Ascii );
	createBuiltin( "extend", BT_Extend );
	createBuiltin( "alpha", BT_Alpha );
	createBuiltin( "digit", BT_Digit );
	createBuiltin( "alnum", BT_Alnum );
	createBuiltin( "lower", BT_Lower );
	createBuiltin( "upper", BT_Upper );
	createBuiltin( "cntrl", BT_Cntrl );
	createBuiltin( "graph", BT_Graph );
	createBuiltin( "print", BT_Print );
	createBuiltin( "punct", BT_Punct );
	createBuiltin( "space", BT_Space );
	createBuiltin( "xdigit", BT_Xdigit );
	createBuiltin( "null", BT_Lambda );
	createBuiltin( "zlen", BT_Lambda );
	createBuiltin( "empty", BT_Empty );
}

/* Set the alphabet type. If the types are not valid returns false. */
bool ParseData::setAlphType( const InputLoc &loc, char *s1, char *s2 )
{
	alphTypeLoc = loc;
	userAlphType = findAlphType( s1, s2 );
	alphTypeSet = true;
	return userAlphType != 0;
}

/* Set the alphabet type. If the types are not valid returns false. */
bool ParseData::setAlphType( const InputLoc &loc, char *s1 )
{
	alphTypeLoc = loc;
	userAlphType = findAlphType( s1 );
	alphTypeSet = true;
	return userAlphType != 0;
}

bool ParseData::setVariable( char *var, InlineList *inlineList )
{
	bool set = true;

	if ( strcmp( var, "p" ) == 0 )
		pExpr = inlineList;
	else if ( strcmp( var, "pe" ) == 0 )
		peExpr = inlineList;
	else if ( strcmp( var, "eof" ) == 0 )
		eofExpr = inlineList;
	else if ( strcmp( var, "cs" ) == 0 )
		csExpr = inlineList;
	else if ( strcmp( var, "data" ) == 0 )
		dataExpr = inlineList;
	else if ( strcmp( var, "top" ) == 0 )
		topExpr = inlineList;
	else if ( strcmp( var, "stack" ) == 0 )
		stackExpr = inlineList;
	else if ( strcmp( var, "act" ) == 0 )
		actExpr = inlineList;
	else if ( strcmp( var, "ts" ) == 0 )
		tokstartExpr = inlineList;
	else if ( strcmp( var, "te" ) == 0 )
		tokendExpr = inlineList;
	else
		set = false;

	return set;
}

/* Initialize the key operators object that will be referenced by all fsms
 * created. */
void ParseData::initKeyOps( )
{
	/* Signedness and bounds. */
	HostType *alphType = alphTypeSet ? userAlphType : hostLang->defaultAlphType;
	thisKeyOps.setAlphType( alphType );

	if ( lowerNum != 0 ) {
		/* If ranges are given then interpret the alphabet type. */
		thisKeyOps.minKey = makeFsmKeyNum( lowerNum, rangeLowLoc, this );
		thisKeyOps.maxKey = makeFsmKeyNum( upperNum, rangeHighLoc, this );
	}

	thisCondData.lastCondKey = thisKeyOps.maxKey;
}

void ParseData::printNameInst( NameInst *nameInst, int level )
{
	for ( int i = 0; i < level; i++ )
		cerr << "  ";
	cerr << (nameInst->name != 0 ? nameInst->name : "<ANON>") << 
			"  id: " << nameInst->id << 
			"  refs: " << nameInst->numRefs <<
			"  uses: " << nameInst->numUses << endl;
	for ( NameVect::Iter name = nameInst->childVect; name.lte(); name++ )
		printNameInst( *name, level+1 );
}

/* Remove duplicates of unique actions from an action table. */
void ParseData::removeDups( ActionTable &table )
{
	/* Scan through the table looking for unique actions to 
	 * remove duplicates of. */
	for ( int i = 0; i < table.length(); i++ ) {
		/* Remove any duplicates ahead of i. */
		for ( int r = i+1; r < table.length(); ) {
			if ( table[r].value == table[i].value )
				table.vremove(r);
			else
				r += 1;
		}
	}
}

/* Remove duplicates from action lists. This operates only on transition and
 * eof action lists and so should be called once all actions have been
 * transfered to their final resting place. */
void ParseData::removeActionDups( FsmAp *graph )
{
	/* Loop all states. */
	for ( StateList::Iter state = graph->stateList; state.lte(); state++ ) {
		/* Loop all transitions. */
		for ( TransList::Iter trans = state->outList; trans.lte(); trans++ )
			removeDups( trans->actionTable );
		removeDups( state->toStateActionTable );
		removeDups( state->fromStateActionTable );
		removeDups( state->eofActionTable );
	}
}

Action *ParseData::newAction( const char *name, InlineList *inlineList )
{
	InputLoc loc;
	loc.line = 1;
	loc.col = 1;
	loc.fileName = "NONE";

	Action *action = new Action( loc, name, inlineList, nextCondId++ );
	action->actionRefs.append( rootName );
	actionList.append( action );
	return action;
}

void ParseData::initLongestMatchData()
{
	if ( lmList.length() > 0 ) {
		/* The initTokStart action resets the token start. */
		InlineList *il1 = new InlineList;
		il1->append( new InlineItem( InputLoc(), InlineItem::LmInitTokStart ) );
		initTokStart = newAction( "initts", il1 );
		initTokStart->isLmAction = true;

		/* The initActId action gives act a default value. */
		InlineList *il4 = new InlineList;
		il4->append( new InlineItem( InputLoc(), InlineItem::LmInitAct ) );
		initActId = newAction( "initact", il4 );
		initActId->isLmAction = true;

		/* The setTokStart action sets tokstart. */
		InlineList *il5 = new InlineList;
		il5->append( new InlineItem( InputLoc(), InlineItem::LmSetTokStart ) );
		setTokStart = newAction( "ts", il5 );
		setTokStart->isLmAction = true;

		/* The setTokEnd action sets tokend. */
		InlineList *il3 = new InlineList;
		il3->append( new InlineItem( InputLoc(), InlineItem::LmSetTokEnd ) );
		setTokEnd = newAction( "te", il3 );
		setTokEnd->isLmAction = true;

		/* The action will also need an ordering: ahead of all user action
		 * embeddings. */
		initTokStartOrd = curActionOrd++;
		initActIdOrd = curActionOrd++;
		setTokStartOrd = curActionOrd++;
		setTokEndOrd = curActionOrd++;
	}
}

/* After building the graph, do some extra processing to ensure the runtime
 * data of the longest mactch operators is consistent. */
void ParseData::setLongestMatchData( FsmAp *graph )
{
	if ( lmList.length() > 0 ) {
		/* Make sure all entry points (targets of fgoto, fcall, fnext, fentry)
		 * init the tokstart. */
		for ( EntryMap::Iter en = graph->entryPoints; en.lte(); en++ ) {
			/* This is run after duplicates are removed, we must guard against
			 * inserting a duplicate. */
			ActionTable &actionTable = en->value->toStateActionTable;
			if ( ! actionTable.hasAction( initTokStart ) )
				actionTable.setAction( initTokStartOrd, initTokStart );
		}

		/* Find the set of states that are the target of transitions with
		 * actions that have calls. These states will be targeted by fret
		 * statements. */
		StateSet states;
		for ( StateList::Iter state = graph->stateList; state.lte(); state++ ) {
			for ( TransList::Iter trans = state->outList; trans.lte(); trans++ ) {
				for ( ActionTable::Iter ati = trans->actionTable; ati.lte(); ati++ ) {
					if ( ati->value->anyCall && trans->toState != 0 )
						states.insert( trans->toState );
				}
			}
		}


		/* Init tokstart upon entering the above collected states. */
		for ( StateSet::Iter ps = states; ps.lte(); ps++ ) {
			/* This is run after duplicates are removed, we must guard against
			 * inserting a duplicate. */
			ActionTable &actionTable = (*ps)->toStateActionTable;
			if ( ! actionTable.hasAction( initTokStart ) )
				actionTable.setAction( initTokStartOrd, initTokStart );
		}
	}
}

/* Make the graph from a graph dict node. Does minimization and state sorting. */
FsmAp *ParseData::makeInstance( GraphDictEl *gdNode )
{
	/* Build the graph from a walk of the parse tree. */
	FsmAp *graph = gdNode->value->walk( this );

	/* Resolve any labels that point to multiple states. Any labels that are
	 * still around are referenced only by gotos and calls and they need to be
	 * made into deterministic entry points. */
	graph->deterministicEntry();

	/*
	 * All state construction is now complete.
	 */

	/* Transfer actions from the out action tables to eof action tables. */
	for ( StateSet::Iter state = graph->finStateSet; state.lte(); state++ )
		graph->transferOutActions( *state );

	/* Transfer global error actions. */
	for ( StateList::Iter state = graph->stateList; state.lte(); state++ )
		graph->transferErrorActions( state, 0 );
	
	if ( ::wantDupsRemoved )
		removeActionDups( graph );

	/* Remove unreachable states. There should be no dead end states. The
	 * subtract and intersection operators are the only places where they may
	 * be created and those operators clean them up. */
	graph->removeUnreachableStates();

	/* No more fsm operations are to be done. Action ordering numbers are
	 * no longer of use and will just hinder minimization. Clear them. */
	graph->nullActionKeys();

	/* Transition priorities are no longer of use. We can clear them
	 * because they will just hinder minimization as well. Clear them. */
	graph->clearAllPriorities();

	if ( minimizeOpt != MinimizeNone ) {
		/* Minimize here even if we minimized at every op. Now that function
		 * keys have been cleared we may get a more minimal fsm. */
		switch ( minimizeLevel ) {
			case MinimizeApprox:
				graph->minimizeApproximate();
				break;
			case MinimizeStable:
				graph->minimizeStable();
				break;
			case MinimizePartition1:
				graph->minimizePartition1();
				break;
			case MinimizePartition2:
				graph->minimizePartition2();
				break;
		}
	}

	graph->compressTransitions();

	return graph;
}

void ParseData::printNameTree()
{
	/* Print the name instance map. */
	for ( NameVect::Iter name = rootName->childVect; name.lte(); name++ )
		printNameInst( *name, 0 );
	
	cerr << "name index:" << endl;
	/* Show that the name index is correct. */
	for ( int ni = 0; ni < nextNameId; ni++ ) {
		cerr << ni << ": ";
		const char *name = nameIndex[ni]->name;
		cerr << ( name != 0 ? name : "<ANON>" ) << endl;
	}
}

FsmAp *ParseData::makeSpecific( GraphDictEl *gdNode )
{
	/* Build the name tree and supporting data structures. */
	makeNameTree( gdNode );

	/* Resove name references from gdNode. */
	initNameWalk();
	gdNode->value->resolveNameRefs( this );

	/* Do not resolve action references. Since we are not building the entire
	 * graph there's a good chance that many name references will fail. This
	 * is okay since generating part of the graph is usually only done when
	 * inspecting the compiled machine. */

	/* Same story for extern entry point references. */

	/* Flag this case so that the XML code generator is aware that we haven't
	 * looked up name references in actions. It can then avoid segfaulting. */
	generatingSectionSubset = true;

	/* Just building the specified graph. */
	initNameWalk();
	FsmAp *mainGraph = makeInstance( gdNode );

	return mainGraph;
}

FsmAp *ParseData::makeAll()
{
	/* Build the name tree and supporting data structures. */
	makeNameTree( 0 );

	/* Resove name references in the tree. */
	initNameWalk();
	for ( GraphList::Iter glel = instanceList; glel.lte(); glel++ )
		glel->value->resolveNameRefs( this );

	/* Resolve action code name references. */
	resolveActionNameRefs();

	/* Force name references to the top level instantiations. */
	for ( NameVect::Iter inst = rootName->childVect; inst.lte(); inst++ )
		(*inst)->numRefs += 1;

	FsmAp *mainGraph = 0;
	FsmAp **graphs = new FsmAp*[instanceList.length()];
	int numOthers = 0;

	/* Make all the instantiations, we know that main exists in this list. */
	initNameWalk();
	for ( GraphList::Iter glel = instanceList; glel.lte();  glel++ ) {
		if ( strcmp( glel->key, mainMachine ) == 0 ) {
			/* Main graph is always instantiated. */
			mainGraph = makeInstance( glel );
		}
		else {
			/* Instantiate and store in others array. */
			graphs[numOthers++] = makeInstance( glel );
		}
	}

	if ( mainGraph == 0 )
		mainGraph = graphs[--numOthers];

	if ( numOthers > 0 ) {
		/* Add all the other graphs into main. */
		mainGraph->globOp( graphs, numOthers );
	}

	delete[] graphs;
	return mainGraph;
}

void ParseData::analyzeAction( Action *action, InlineList *inlineList )
{
	/* FIXME: Actions used as conditions should be very constrained. */
	for ( InlineList::Iter item = *inlineList; item.lte(); item++ ) {
		if ( item->type == InlineItem::Call || item->type == InlineItem::CallExpr )
			action->anyCall = true;

		/* Need to recurse into longest match items. */
		if ( item->type == InlineItem::LmSwitch ) {
			LongestMatch *lm = item->longestMatch;
			for ( LmPartList::Iter lmi = *lm->longestMatchList; lmi.lte(); lmi++ ) {
				if ( lmi->action != 0 )
					analyzeAction( action, lmi->action->inlineList );
			}
		}

		if ( item->type == InlineItem::LmOnLast || 
				item->type == InlineItem::LmOnNext ||
				item->type == InlineItem::LmOnLagBehind )
		{
			LongestMatchPart *lmi = item->longestMatchPart;
			if ( lmi->action != 0 )
				analyzeAction( action, lmi->action->inlineList );
		}

		if ( item->children != 0 )
			analyzeAction( action, item->children );
	}
}


/* Check actions for bad uses of fsm directives. We don't go inside longest
 * match items in actions created by ragel, since we just want the user
 * actions. */
void ParseData::checkInlineList( Action *act, InlineList *inlineList )
{
	for ( InlineList::Iter item = *inlineList; item.lte(); item++ ) {
		/* EOF checks. */
		if ( act->numEofRefs > 0 ) {
			switch ( item->type ) {
				/* Currently no checks. */
				default:
					break;
			}
		}

		/* Recurse. */
		if ( item->children != 0 )
			checkInlineList( act, item->children );
	}
}

void ParseData::checkAction( Action *action )
{
	/* Check for actions with calls that are embedded within a longest match
	 * machine. */
	if ( !action->isLmAction && action->numRefs() > 0 && action->anyCall ) {
		for ( ActionRefs::Iter ar = action->actionRefs; ar.lte(); ar++ ) {
			NameInst *check = *ar;
			while ( check != 0 ) {
				if ( check->isLongestMatch ) {
					error(action->loc) << "within a scanner, fcall is permitted"
						" only in pattern actions" << endl;
					break;
				}
				check = check->parent;
			}
		}
	}

	checkInlineList( action, action->inlineList );
}


void ParseData::analyzeGraph( FsmAp *graph )
{
	for ( ActionList::Iter act = actionList; act.lte(); act++ )
		analyzeAction( act, act->inlineList );

	for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
		/* The transition list. */
		for ( TransList::Iter trans = st->outList; trans.lte(); trans++ ) {
			for ( ActionTable::Iter at = trans->actionTable; at.lte(); at++ )
				at->value->numTransRefs += 1;
		}

		for ( ActionTable::Iter at = st->toStateActionTable; at.lte(); at++ )
			at->value->numToStateRefs += 1;

		for ( ActionTable::Iter at = st->fromStateActionTable; at.lte(); at++ )
			at->value->numFromStateRefs += 1;

		for ( ActionTable::Iter at = st->eofActionTable; at.lte(); at++ )
			at->value->numEofRefs += 1;

		for ( StateCondList::Iter sc = st->stateCondList; sc.lte(); sc++ ) {
			for ( CondSet::Iter sci = sc->condSpace->condSet; sci.lte(); sci++ )
				(*sci)->numCondRefs += 1;
		}
	}

	/* Checks for bad usage of directives in action code. */
	for ( ActionList::Iter act = actionList; act.lte(); act++ )
		checkAction( act );
}

void ParseData::makeExportsNameTree()
{
	/* Make a name tree for the exports. */
	initExportsNameWalk();

	/* First make the name tree. */
	for ( GraphDict::Iter gdel = graphDict; gdel.lte(); gdel++ ) {
		if ( gdel->value->isExport ) {
			/* Recurse on the instance. */
			gdel->value->makeNameTree( gdel->loc, this );
		}
	}
}

void ParseData::makeExports()
{
	makeExportsNameTree();

	/* Resove name references in the tree. */
	initExportsNameWalk();
	for ( GraphDict::Iter gdel = graphDict; gdel.lte(); gdel++ ) {
		if ( gdel->value->isExport )
			gdel->value->resolveNameRefs( this );
	}

	/* Make all the instantiations, we know that main exists in this list. */
	initExportsNameWalk();
	for ( GraphDict::Iter gdel = graphDict; gdel.lte();  gdel++ ) {
		/* Check if this var def is an export. */
		if ( gdel->value->isExport ) {
			/* Build the graph from a walk of the parse tree. */
			FsmAp *graph = gdel->value->walk( this );

			/* Build the graph from a walk of the parse tree. */
			if ( !graph->checkSingleCharMachine() ) {
				error(gdel->loc) << "bad export machine, must define "
						"a single character" << endl;
			}
			else {
				/* Safe to extract the key and declare the export. */
				Key exportKey = graph->startState->outList.head->lowKey;
				exportList.append( new Export( gdel->value->name, exportKey ) );
			}
		}
	}

}

/* Construct the machine and catch failures which can occur during
 * construction. */
void ParseData::prepareMachineGen( GraphDictEl *graphDictEl )
{
	try {
		/* This machine construction can fail. */
		prepareMachineGenTBWrapped( graphDictEl );
	}
	catch ( FsmConstructFail fail ) {
		switch ( fail.reason ) {
			case FsmConstructFail::CondNoKeySpace: {
				InputLoc &loc = alphTypeSet ? alphTypeLoc : sectionLoc;
				error(loc) << "sorry, no more characters are "
						"available in the alphabet space" << endl;
				error(loc) << "  for conditions, please use a "
						"smaller alphtype or reduce" << endl;
				error(loc) << "  the span of characters on which "
						"conditions are embedded" << endl;
				break;
			}
		}
	}
}

void ParseData::prepareMachineGenTBWrapped( GraphDictEl *graphDictEl )
{
	beginProcessing();
	initKeyOps();
	makeRootNames();
	initLongestMatchData();

	/* Make the graph, do minimization. */
	if ( graphDictEl == 0 )
		sectionGraph = makeAll();
	else
		sectionGraph = makeSpecific( graphDictEl );
	
	/* Compute exports from the export definitions. */
	makeExports();

	/* If any errors have occured in the input file then don't write anything. */
	if ( gblErrorCount > 0 )
		return;

	analyzeGraph( sectionGraph );

	/* Depends on the graph analysis. */
	setLongestMatchData( sectionGraph );

	/* Decide if an error state is necessary.
	 *  1. There is an error transition
	 *  2. There is a gap in the transitions
	 *  3. The longest match operator requires it. */
	if ( lmRequiresErrorState || sectionGraph->hasErrorTrans() )
		sectionGraph->errState = sectionGraph->addState();

	/* State numbers need to be assigned such that all final states have a
	 * larger state id number than all non-final states. This enables the
	 * first_final mechanism to function correctly. We also want states to be
	 * ordered in a predictable fashion. So we first apply a depth-first
	 * search, then do a stable sort by final state status, then assign
	 * numbers. */

	sectionGraph->depthFirstOrdering();
	sectionGraph->sortStatesByFinal();
	sectionGraph->setStateNumbers( 0 );
}

void ParseData::generateReduced( InputData &inputData )
{
	beginProcessing();

	cgd = makeCodeGen( inputData.inputFileName, sectionName, *inputData.outStream );

	/* Make the generator. */
	BackendGen backendGen( sectionName, this, sectionGraph, cgd );

	/* Write out with it. */
	backendGen.makeBackend();

	if ( printStatistics ) {
		cerr << "fsm name  : " << sectionName << endl;
		cerr << "num states: " << sectionGraph->stateList.length() << endl;
		cerr << endl;
	}
}

void ParseData::generateXML( ostream &out )
{
	beginProcessing();

	/* Make the generator. */
	XMLCodeGen codeGen( sectionName, this, sectionGraph, out );

	/* Write out with it. */
	codeGen.writeXML();

	if ( printStatistics ) {
		cerr << "fsm name  : " << sectionName << endl;
		cerr << "num states: " << sectionGraph->stateList.length() << endl;
		cerr << endl;
	}
}