aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Modules/_statisticsmodule.c
blob: fd65b659b4bf71ced9dbd0bc4b188ffd92baba48 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/* statistics accelerator C extension: _statistics module. */ 
 
#include "Python.h" 
#include "clinic/_statisticsmodule.c.h" 
 
/*[clinic input] 
module _statistics 
 
[clinic start generated code]*/ 
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/ 
 
/* 
 * There is no closed-form solution to the inverse CDF for the normal 
 * distribution, so we use a rational approximation instead: 
 * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the 
 * Normal Distribution".  Applied Statistics. Blackwell Publishing. 37 
 * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. 
 */ 
 
/*[clinic input] 
_statistics._normal_dist_inv_cdf -> double 
   p: double 
   mu: double 
   sigma: double 
   / 
[clinic start generated code]*/ 
 
static double 
_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, 
                                      double sigma) 
/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/ 
{ 
    double q, num, den, r, x; 
    if (p <= 0.0 || p >= 1.0 || sigma <= 0.0) { 
        goto error; 
    } 
 
    q = p - 0.5; 
    if(fabs(q) <= 0.425) { 
        r = 0.180625 - q * q; 
        // Hash sum-55.8831928806149014439 
        num = (((((((2.5090809287301226727e+3 * r + 
                     3.3430575583588128105e+4) * r + 
                     6.7265770927008700853e+4) * r + 
                     4.5921953931549871457e+4) * r + 
                     1.3731693765509461125e+4) * r + 
                     1.9715909503065514427e+3) * r + 
                     1.3314166789178437745e+2) * r + 
                     3.3871328727963666080e+0) * q; 
        den = (((((((5.2264952788528545610e+3 * r + 
                     2.8729085735721942674e+4) * r + 
                     3.9307895800092710610e+4) * r + 
                     2.1213794301586595867e+4) * r + 
                     5.3941960214247511077e+3) * r + 
                     6.8718700749205790830e+2) * r + 
                     4.2313330701600911252e+1) * r + 
                     1.0); 
        if (den == 0.0) { 
            goto error; 
        } 
        x = num / den; 
        return mu + (x * sigma); 
    } 
    r = (q <= 0.0) ? p : (1.0 - p); 
    if (r <= 0.0 || r >= 1.0) { 
        goto error; 
    } 
    r = sqrt(-log(r)); 
    if (r <= 5.0) { 
        r = r - 1.6; 
        // Hash sum-49.33206503301610289036 
        num = (((((((7.74545014278341407640e-4 * r + 
                     2.27238449892691845833e-2) * r + 
                     2.41780725177450611770e-1) * r + 
                     1.27045825245236838258e+0) * r + 
                     3.64784832476320460504e+0) * r + 
                     5.76949722146069140550e+0) * r + 
                     4.63033784615654529590e+0) * r + 
                     1.42343711074968357734e+0); 
        den = (((((((1.05075007164441684324e-9 * r + 
                     5.47593808499534494600e-4) * r + 
                     1.51986665636164571966e-2) * r + 
                     1.48103976427480074590e-1) * r + 
                     6.89767334985100004550e-1) * r + 
                     1.67638483018380384940e+0) * r + 
                     2.05319162663775882187e+0) * r + 
                     1.0); 
    } else { 
        r -= 5.0; 
        // Hash sum-47.52583317549289671629 
        num = (((((((2.01033439929228813265e-7 * r + 
                     2.71155556874348757815e-5) * r + 
                     1.24266094738807843860e-3) * r + 
                     2.65321895265761230930e-2) * r + 
                     2.96560571828504891230e-1) * r + 
                     1.78482653991729133580e+0) * r + 
                     5.46378491116411436990e+0) * r + 
                     6.65790464350110377720e+0); 
        den = (((((((2.04426310338993978564e-15 * r + 
                     1.42151175831644588870e-7) * r + 
                     1.84631831751005468180e-5) * r + 
                     7.86869131145613259100e-4) * r + 
                     1.48753612908506148525e-2) * r + 
                     1.36929880922735805310e-1) * r + 
                     5.99832206555887937690e-1) * r + 
                     1.0); 
    } 
    if (den == 0.0) { 
        goto error; 
    } 
    x = num / den; 
    if (q < 0.0) { 
        x = -x; 
    } 
    return mu + (x * sigma); 
 
  error: 
    PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters"); 
    return -1.0; 
} 
 
 
static PyMethodDef statistics_methods[] = { 
    _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF 
    {NULL, NULL, 0, NULL} 
}; 
 
PyDoc_STRVAR(statistics_doc, 
"Accelerators for the statistics module.\n"); 
 
static struct PyModuleDef_Slot _statisticsmodule_slots[] = { 
    {0, NULL} 
}; 
 
static struct PyModuleDef statisticsmodule = { 
        PyModuleDef_HEAD_INIT, 
        "_statistics", 
        statistics_doc, 
        0, 
        statistics_methods, 
        _statisticsmodule_slots, 
        NULL, 
        NULL, 
        NULL 
}; 
 
PyMODINIT_FUNC 
PyInit__statistics(void) 
{ 
    return PyModuleDef_Init(&statisticsmodule); 
}