aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/googletest/googlemock/include/gmock/gmock-matchers.h
blob: b073798ba30731859ee975e2cc166668896fe81e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
// Copyright 2007, Google Inc. 
// All rights reserved. 
// 
// Redistribution and use in source and binary forms, with or without 
// modification, are permitted provided that the following conditions are 
// met: 
// 
//     * Redistributions of source code must retain the above copyright 
// notice, this list of conditions and the following disclaimer. 
//     * Redistributions in binary form must reproduce the above 
// copyright notice, this list of conditions and the following disclaimer 
// in the documentation and/or other materials provided with the 
// distribution. 
//     * Neither the name of Google Inc. nor the names of its 
// contributors may be used to endorse or promote products derived from 
// this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 

// Google Mock - a framework for writing C++ mock classes. 
// 
// The MATCHER* family of macros can be used in a namespace scope to
// define custom matchers easily.
//
// Basic Usage
// ===========
//
// The syntax
//
//   MATCHER(name, description_string) { statements; }
//
// defines a matcher with the given name that executes the statements,
// which must return a bool to indicate if the match succeeds.  Inside
// the statements, you can refer to the value being matched by 'arg',
// and refer to its type by 'arg_type'.
//
// The description string documents what the matcher does, and is used
// to generate the failure message when the match fails.  Since a
// MATCHER() is usually defined in a header file shared by multiple
// C++ source files, we require the description to be a C-string
// literal to avoid possible side effects.  It can be empty, in which
// case we'll use the sequence of words in the matcher name as the
// description.
//
// For example:
//
//   MATCHER(IsEven, "") { return (arg % 2) == 0; }
//
// allows you to write
//
//   // Expects mock_foo.Bar(n) to be called where n is even.
//   EXPECT_CALL(mock_foo, Bar(IsEven()));
//
// or,
//
//   // Verifies that the value of some_expression is even.
//   EXPECT_THAT(some_expression, IsEven());
//
// If the above assertion fails, it will print something like:
//
//   Value of: some_expression
//   Expected: is even
//     Actual: 7
//
// where the description "is even" is automatically calculated from the
// matcher name IsEven.
//
// Argument Type
// =============
//
// Note that the type of the value being matched (arg_type) is
// determined by the context in which you use the matcher and is
// supplied to you by the compiler, so you don't need to worry about
// declaring it (nor can you).  This allows the matcher to be
// polymorphic.  For example, IsEven() can be used to match any type
// where the value of "(arg % 2) == 0" can be implicitly converted to
// a bool.  In the "Bar(IsEven())" example above, if method Bar()
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
// 'arg_type' will be unsigned long; and so on.
//
// Parameterizing Matchers
// =======================
//
// Sometimes you'll want to parameterize the matcher.  For that you
// can use another macro:
//
//   MATCHER_P(name, param_name, description_string) { statements; }
//
// For example:
//
//   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
//
// will allow you to write:
//
//   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
//
// which may lead to this message (assuming n is 10):
//
//   Value of: Blah("a")
//   Expected: has absolute value 10
//     Actual: -9
//
// Note that both the matcher description and its parameter are
// printed, making the message human-friendly.
//
// In the matcher definition body, you can write 'foo_type' to
// reference the type of a parameter named 'foo'.  For example, in the
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
// 'value_type' to refer to the type of 'value'.
//
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
// support multi-parameter matchers.
//
// Describing Parameterized Matchers
// =================================
//
// The last argument to MATCHER*() is a string-typed expression.  The
// expression can reference all of the matcher's parameters and a
// special bool-typed variable named 'negation'.  When 'negation' is
// false, the expression should evaluate to the matcher's description;
// otherwise it should evaluate to the description of the negation of
// the matcher.  For example,
//
//   using testing::PrintToString;
//
//   MATCHER_P2(InClosedRange, low, hi,
//       std::string(negation ? "is not" : "is") + " in range [" +
//       PrintToString(low) + ", " + PrintToString(hi) + "]") {
//     return low <= arg && arg <= hi;
//   }
//   ...
//   EXPECT_THAT(3, InClosedRange(4, 6));
//   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
//   Expected: is in range [4, 6]
//   ...
//   Expected: is not in range [2, 4]
//
// If you specify "" as the description, the failure message will
// contain the sequence of words in the matcher name followed by the
// parameter values printed as a tuple.  For example,
//
//   MATCHER_P2(InClosedRange, low, hi, "") { ... }
//   ...
//   EXPECT_THAT(3, InClosedRange(4, 6));
//   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
//   Expected: in closed range (4, 6)
//   ...
//   Expected: not (in closed range (2, 4))
//
// Types of Matcher Parameters
// ===========================
//
// For the purpose of typing, you can view
//
//   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
//
// as shorthand for
//
//   template <typename p1_type, ..., typename pk_type>
//   FooMatcherPk<p1_type, ..., pk_type>
//   Foo(p1_type p1, ..., pk_type pk) { ... }
//
// When you write Foo(v1, ..., vk), the compiler infers the types of
// the parameters v1, ..., and vk for you.  If you are not happy with
// the result of the type inference, you can specify the types by
// explicitly instantiating the template, as in Foo<long, bool>(5,
// false).  As said earlier, you don't get to (or need to) specify
// 'arg_type' as that's determined by the context in which the matcher
// is used.  You can assign the result of expression Foo(p1, ..., pk)
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
// can be useful when composing matchers.
//
// While you can instantiate a matcher template with reference types,
// passing the parameters by pointer usually makes your code more
// readable.  If, however, you still want to pass a parameter by
// reference, be aware that in the failure message generated by the
// matcher you will see the value of the referenced object but not its
// address.
//
// Explaining Match Results
// ========================
//
// Sometimes the matcher description alone isn't enough to explain why
// the match has failed or succeeded.  For example, when expecting a
// long string, it can be very helpful to also print the diff between
// the expected string and the actual one.  To achieve that, you can
// optionally stream additional information to a special variable
// named result_listener, whose type is a pointer to class
// MatchResultListener:
//
//   MATCHER_P(EqualsLongString, str, "") {
//     if (arg == str) return true;
//
//     *result_listener << "the difference: "
///                     << DiffStrings(str, arg);
//     return false;
//   }
//
// Overloading Matchers
// ====================
//
// You can overload matchers with different numbers of parameters:
//
//   MATCHER_P(Blah, a, description_string1) { ... }
//   MATCHER_P2(Blah, a, b, description_string2) { ... }
//
// Caveats
// =======
//
// When defining a new matcher, you should also consider implementing
// MatcherInterface or using MakePolymorphicMatcher().  These
// approaches require more work than the MATCHER* macros, but also
// give you more control on the types of the value being matched and
// the matcher parameters, which may leads to better compiler error
// messages when the matcher is used wrong.  They also allow
// overloading matchers based on parameter types (as opposed to just
// based on the number of parameters).
//
// MATCHER*() can only be used in a namespace scope as templates cannot be
// declared inside of a local class.
//
// More Information
// ================
//
// To learn more about using these macros, please search for 'MATCHER'
// on
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
//
// This file also implements some commonly used argument matchers.  More
// matchers can be defined by the user implementing the 
// MatcherInterface<T> interface if necessary. 
//
// See googletest/include/gtest/gtest-matchers.h for the definition of class
// Matcher, class MatcherInterface, and others.
 
// GOOGLETEST_CM0002 DO NOT DELETE

#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
 
#include <algorithm> 
#include <cmath>
#include <initializer_list>
#include <iterator> 
#include <limits> 
#include <memory>
#include <ostream>  // NOLINT 
#include <sstream> 
#include <string> 
#include <type_traits>
#include <utility> 
#include <vector> 

#include "gmock/internal/gmock-internal-utils.h" 
#include "gmock/internal/gmock-port.h" 
#include "gmock/internal/gmock-pp.h"
#include "gtest/gtest.h" 
 
// MSVC warning C5046 is new as of VS2017 version 15.8.
#if defined(_MSC_VER) && _MSC_VER >= 1915
#define GMOCK_MAYBE_5046_ 5046
#else
#define GMOCK_MAYBE_5046_
#endif 
 
GTEST_DISABLE_MSC_WARNINGS_PUSH_(
    4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
                              clients of class B */
    /* Symbol involving type with internal linkage not defined */)

namespace testing { 
 
// To implement a matcher Foo for type T, define: 
//   1. a class FooMatcherImpl that implements the 
//      MatcherInterface<T> interface, and 
//   2. a factory function that creates a Matcher<T> object from a 
//      FooMatcherImpl*. 
// 
// The two-level delegation design makes it possible to allow a user 
// to write "v" instead of "Eq(v)" where a Matcher is expected, which 
// is impossible if we pass matchers by pointers.  It also eases 
// ownership management as Matcher objects can now be copied like 
// plain values. 
 
// A match result listener that stores the explanation in a string. 
class StringMatchResultListener : public MatchResultListener { 
 public: 
  StringMatchResultListener() : MatchResultListener(&ss_) {} 
 
  // Returns the explanation accumulated so far. 
  std::string str() const { return ss_.str(); }
 
  // Clears the explanation accumulated so far. 
  void Clear() { ss_.str(""); } 
 
 private: 
  ::std::stringstream ss_; 
 
  GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); 
}; 
 
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION 
// and MUST NOT BE USED IN USER CODE!!! 
namespace internal { 
 
// The MatcherCastImpl class template is a helper for implementing 
// MatcherCast().  We need this helper in order to partially 
// specialize the implementation of MatcherCast() (C++ allows 
// class/struct templates to be partially specialized, but not 
// function templates.). 
 
// This general version is used when MatcherCast()'s argument is a 
// polymorphic matcher (i.e. something that can be converted to a 
// Matcher but is not one yet; for example, Eq(value)) or a value (for 
// example, "hello"). 
template <typename T, typename M> 
class MatcherCastImpl { 
 public: 
  static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { 
    // M can be a polymorphic matcher, in which case we want to use
    // its conversion operator to create Matcher<T>.  Or it can be a value 
    // that should be passed to the Matcher<T>'s constructor. 
    // 
    // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a 
    // polymorphic matcher because it'll be ambiguous if T has an implicit 
    // constructor from M (this usually happens when T has an implicit 
    // constructor from any type). 
    // 
    // It won't work to unconditionally implicit_cast
    // polymorphic_matcher_or_value to Matcher<T> because it won't trigger 
    // a user-defined conversion from M to T if one exists (assuming M is 
    // a value). 
    return CastImpl(polymorphic_matcher_or_value,
                    std::is_convertible<M, Matcher<T>>{},
                    std::is_convertible<M, T>{});
  } 
 
 private: 
  template <bool Ignore>
  static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, 
                             std::true_type /* convertible_to_matcher */,
                             std::integral_constant<bool, Ignore>) {
    // M is implicitly convertible to Matcher<T>, which means that either 
    // M is a polymorphic matcher or Matcher<T> has an implicit constructor
    // from M.  In both cases using the implicit conversion will produce a 
    // matcher. 
    // 
    // Even if T has an implicit constructor from M, it won't be called because 
    // creating Matcher<T> would require a chain of two user-defined conversions 
    // (first to create T from M and then to create Matcher<T> from T). 
    return polymorphic_matcher_or_value; 
  } 

  // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
  // matcher. It's a value of a type implicitly convertible to T. Use direct
  // initialization to create a matcher.
  static Matcher<T> CastImpl(const M& value,
                             std::false_type /* convertible_to_matcher */,
                             std::true_type /* convertible_to_T */) {
    return Matcher<T>(ImplicitCast_<T>(value));
  }

  // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
  // polymorphic matcher Eq(value) in this case.
  //
  // Note that we first attempt to perform an implicit cast on the value and
  // only fall back to the polymorphic Eq() matcher afterwards because the
  // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
  // which might be undefined even when Rhs is implicitly convertible to Lhs
  // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
  //
  // We don't define this method inline as we need the declaration of Eq().
  static Matcher<T> CastImpl(const M& value,
                             std::false_type /* convertible_to_matcher */,
                             std::false_type /* convertible_to_T */);
}; 
 
// This more specialized version is used when MatcherCast()'s argument 
// is already a Matcher.  This only compiles when type T can be 
// statically converted to type U. 
template <typename T, typename U> 
class MatcherCastImpl<T, Matcher<U> > { 
 public: 
  static Matcher<T> Cast(const Matcher<U>& source_matcher) { 
    return Matcher<T>(new Impl(source_matcher)); 
  } 
 
 private: 
  class Impl : public MatcherInterface<T> { 
   public: 
    explicit Impl(const Matcher<U>& source_matcher) 
        : source_matcher_(source_matcher) {} 
 
    // We delegate the matching logic to the source matcher. 
    bool MatchAndExplain(T x, MatchResultListener* listener) const override {
      using FromType = typename std::remove_cv<typename std::remove_pointer<
          typename std::remove_reference<T>::type>::type>::type;
      using ToType = typename std::remove_cv<typename std::remove_pointer<
          typename std::remove_reference<U>::type>::type>::type;
      // Do not allow implicitly converting base*/& to derived*/&.
      static_assert(
          // Do not trigger if only one of them is a pointer. That implies a
          // regular conversion and not a down_cast.
          (std::is_pointer<typename std::remove_reference<T>::type>::value !=
           std::is_pointer<typename std::remove_reference<U>::type>::value) ||
              std::is_same<FromType, ToType>::value ||
              !std::is_base_of<FromType, ToType>::value,
          "Can't implicitly convert from <base> to <derived>");

      // Do the cast to `U` explicitly if necessary.
      // Otherwise, let implicit conversions do the trick.
      using CastType =
          typename std::conditional<std::is_convertible<T&, const U&>::value,
                                    T&, U>::type;

      return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
                                             listener);
    } 
 
    void DescribeTo(::std::ostream* os) const override {
      source_matcher_.DescribeTo(os); 
    } 
 
    void DescribeNegationTo(::std::ostream* os) const override {
      source_matcher_.DescribeNegationTo(os); 
    } 
 
   private: 
    const Matcher<U> source_matcher_; 
  }; 
}; 
 
// This even more specialized version is used for efficiently casting 
// a matcher to its own type. 
template <typename T> 
class MatcherCastImpl<T, Matcher<T> > { 
 public: 
  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } 
}; 
 
// Template specialization for parameterless Matcher.
template <typename Derived>
class MatcherBaseImpl {
 public:
  MatcherBaseImpl() = default;

  template <typename T>
  operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
    return ::testing::Matcher<T>(new
                                 typename Derived::template gmock_Impl<T>());
  }
};

// Template specialization for Matcher with parameters.
template <template <typename...> class Derived, typename... Ts>
class MatcherBaseImpl<Derived<Ts...>> {
 public:
  // Mark the constructor explicit for single argument T to avoid implicit
  // conversions.
  template <typename E = std::enable_if<sizeof...(Ts) == 1>,
            typename E::type* = nullptr>
  explicit MatcherBaseImpl(Ts... params)
      : params_(std::forward<Ts>(params)...) {}
  template <typename E = std::enable_if<sizeof...(Ts) != 1>,
            typename = typename E::type>
  MatcherBaseImpl(Ts... params)  // NOLINT
      : params_(std::forward<Ts>(params)...) {}

  template <typename F>
  operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
    return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
  }

 private:
  template <typename F, std::size_t... tuple_ids>
  ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
    return ::testing::Matcher<F>(
        new typename Derived<Ts...>::template gmock_Impl<F>(
            std::get<tuple_ids>(params_)...));
  }

  const std::tuple<Ts...> params_;
};

}  // namespace internal 
 
// In order to be safe and clear, casting between different matcher 
// types is done explicitly via MatcherCast<T>(m), which takes a 
// matcher m and returns a Matcher<T>.  It compiles only when T can be 
// statically converted to the argument type of m. 
template <typename T, typename M> 
inline Matcher<T> MatcherCast(const M& matcher) { 
  return internal::MatcherCastImpl<T, M>::Cast(matcher); 
} 
 
// This overload handles polymorphic matchers and values only since
// monomorphic matchers are handled by the next one.
template <typename T, typename M> 
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
  return MatcherCast<T>(polymorphic_matcher_or_value);
} 
 
// This overload handles monomorphic matchers.
//
// In general, if type T can be implicitly converted to type U, we can
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
// contravariant): just keep a copy of the original Matcher<U>, convert the
// argument from type T to U, and then pass it to the underlying Matcher<U>.
// The only exception is when U is a reference and T is not, as the
// underlying Matcher<U> may be interested in the argument's address, which
// is not preserved in the conversion from T to U.
template <typename T, typename U>
inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
  // Enforce that T can be implicitly converted to U.
  static_assert(std::is_convertible<const T&, const U&>::value,
                "T must be implicitly convertible to U");
  // Enforce that we are not converting a non-reference type T to a reference
  // type U.
  GTEST_COMPILE_ASSERT_(
      std::is_reference<T>::value || !std::is_reference<U>::value,
      cannot_convert_non_reference_arg_to_reference);
  // In case both T and U are arithmetic types, enforce that the
  // conversion is not lossy.
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
  constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
  constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
  GTEST_COMPILE_ASSERT_(
      kTIsOther || kUIsOther ||
      (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
      conversion_of_arithmetic_types_must_be_lossless);
  return MatcherCast<T>(matcher);
}

// A<T>() returns a matcher that matches any value of type T. 
template <typename T> 
Matcher<T> A(); 
 
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION 
// and MUST NOT BE USED IN USER CODE!!! 
namespace internal { 
 
// If the explanation is not empty, prints it to the ostream. 
inline void PrintIfNotEmpty(const std::string& explanation,
                            ::std::ostream* os) { 
  if (explanation != "" && os != nullptr) {
    *os << ", " << explanation; 
  } 
} 
 
// Returns true if the given type name is easy to read by a human. 
// This is used to decide whether printing the type of a value might 
// be helpful. 
inline bool IsReadableTypeName(const std::string& type_name) {
  // We consider a type name readable if it's short or doesn't contain 
  // a template or function type. 
  return (type_name.length() <= 20 || 
          type_name.find_first_of("<(") == std::string::npos);
} 
 
// Matches the value against the given matcher, prints the value and explains 
// the match result to the listener. Returns the match result. 
// 'listener' must not be NULL. 
// Value cannot be passed by const reference, because some matchers take a 
// non-const argument. 
template <typename Value, typename T> 
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, 
                          MatchResultListener* listener) { 
  if (!listener->IsInterested()) { 
    // If the listener is not interested, we do not need to construct the 
    // inner explanation. 
    return matcher.Matches(value); 
  } 
 
  StringMatchResultListener inner_listener; 
  const bool match = matcher.MatchAndExplain(value, &inner_listener); 
 
  UniversalPrint(value, listener->stream()); 
#if GTEST_HAS_RTTI 
  const std::string& type_name = GetTypeName<Value>();
  if (IsReadableTypeName(type_name)) 
    *listener->stream() << " (of type " << type_name << ")"; 
#endif 
  PrintIfNotEmpty(inner_listener.str(), listener->stream()); 
 
  return match; 
} 
 
// An internal helper class for doing compile-time loop on a tuple's 
// fields. 
template <size_t N> 
class TuplePrefix { 
 public: 
  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true 
  // if and only if the first N fields of matcher_tuple matches
  // the first N fields of value_tuple, respectively.
  template <typename MatcherTuple, typename ValueTuple> 
  static bool Matches(const MatcherTuple& matcher_tuple, 
                      const ValueTuple& value_tuple) { 
    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
           std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
  } 
 
  // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) 
  // describes failures in matching the first N fields of matchers 
  // against the first N fields of values.  If there is no failure, 
  // nothing will be streamed to os. 
  template <typename MatcherTuple, typename ValueTuple> 
  static void ExplainMatchFailuresTo(const MatcherTuple& matchers, 
                                     const ValueTuple& values, 
                                     ::std::ostream* os) { 
    // First, describes failures in the first N - 1 fields. 
    TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); 
 
    // Then describes the failure (if any) in the (N - 1)-th (0-based) 
    // field. 
    typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
        std::get<N - 1>(matchers);
    typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
    const Value& value = std::get<N - 1>(values);
    StringMatchResultListener listener; 
    if (!matcher.MatchAndExplain(value, &listener)) { 
      *os << "  Expected arg #" << N - 1 << ": "; 
      std::get<N - 1>(matchers).DescribeTo(os);
      *os << "\n           Actual: "; 
      // We remove the reference in type Value to prevent the 
      // universal printer from printing the address of value, which 
      // isn't interesting to the user most of the time.  The 
      // matcher's MatchAndExplain() method handles the case when 
      // the address is interesting. 
      internal::UniversalPrint(value, os); 
      PrintIfNotEmpty(listener.str(), os); 
      *os << "\n"; 
    } 
  } 
}; 
 
// The base case. 
template <> 
class TuplePrefix<0> { 
 public: 
  template <typename MatcherTuple, typename ValueTuple> 
  static bool Matches(const MatcherTuple& /* matcher_tuple */, 
                      const ValueTuple& /* value_tuple */) { 
    return true; 
  } 
 
  template <typename MatcherTuple, typename ValueTuple> 
  static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, 
                                     const ValueTuple& /* values */, 
                                     ::std::ostream* /* os */) {} 
}; 
 
// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
// all matchers in matcher_tuple match the corresponding fields in
// value_tuple.  It is a compiler error if matcher_tuple and 
// value_tuple have different number of fields or incompatible field 
// types. 
template <typename MatcherTuple, typename ValueTuple> 
bool TupleMatches(const MatcherTuple& matcher_tuple, 
                  const ValueTuple& value_tuple) { 
  // Makes sure that matcher_tuple and value_tuple have the same 
  // number of fields. 
  GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
                            std::tuple_size<ValueTuple>::value,
                        matcher_and_value_have_different_numbers_of_fields); 
  return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
                                                                  value_tuple);
} 
 
// Describes failures in matching matchers against values.  If there 
// is no failure, nothing will be streamed to os. 
template <typename MatcherTuple, typename ValueTuple> 
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, 
                                const ValueTuple& values, 
                                ::std::ostream* os) { 
  TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
      matchers, values, os); 
} 
 
// TransformTupleValues and its helper. 
// 
// TransformTupleValuesHelper hides the internal machinery that 
// TransformTupleValues uses to implement a tuple traversal. 
template <typename Tuple, typename Func, typename OutIter> 
class TransformTupleValuesHelper { 
 private: 
  typedef ::std::tuple_size<Tuple> TupleSize;
 
 public: 
  // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. 
  // Returns the final value of 'out' in case the caller needs it. 
  static OutIter Run(Func f, const Tuple& t, OutIter out) { 
    return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); 
  } 
 
 private: 
  template <typename Tup, size_t kRemainingSize> 
  struct IterateOverTuple { 
    OutIter operator() (Func f, const Tup& t, OutIter out) const { 
      *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
      return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); 
    } 
  }; 
  template <typename Tup> 
  struct IterateOverTuple<Tup, 0> { 
    OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { 
      return out; 
    } 
  }; 
}; 
 
// Successively invokes 'f(element)' on each element of the tuple 't', 
// appending each result to the 'out' iterator. Returns the final value 
// of 'out'. 
template <typename Tuple, typename Func, typename OutIter> 
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { 
  return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); 
} 
 
// Implements _, a matcher that matches any value of any
// type.  This is a polymorphic matcher, so we need a template type
// conversion operator to make it appearing as a Matcher<T> for any
// type T.
class AnythingMatcher {
 public: 
  using is_gtest_matcher = void;

  template <typename T>
  bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
    return true;
  }
  void DescribeTo(std::ostream* os) const { *os << "is anything"; }
  void DescribeNegationTo(::std::ostream* os) const {
    // This is mostly for completeness' sake, as it's not very useful
    // to write Not(A<bool>()).  However we cannot completely rule out 
    // such a possibility, and it doesn't hurt to be prepared. 
    *os << "never matches"; 
  } 
}; 
 
// Implements the polymorphic IsNull() matcher, which matches any raw or smart 
// pointer that is NULL. 
class IsNullMatcher { 
 public: 
  template <typename Pointer> 
  bool MatchAndExplain(const Pointer& p, 
                       MatchResultListener* /* listener */) const { 
    return p == nullptr; 
  } 
 
  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "isn't NULL"; 
  } 
}; 
 
// Implements the polymorphic NotNull() matcher, which matches any raw or smart 
// pointer that is not NULL. 
class NotNullMatcher { 
 public: 
  template <typename Pointer> 
  bool MatchAndExplain(const Pointer& p, 
                       MatchResultListener* /* listener */) const { 
    return p != nullptr; 
  } 
 
  void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "is NULL"; 
  } 
}; 
 
// Ref(variable) matches any argument that is a reference to 
// 'variable'.  This matcher is polymorphic as it can match any 
// super type of the type of 'variable'. 
// 
// The RefMatcher template class implements Ref(variable).  It can 
// only be instantiated with a reference type.  This prevents a user 
// from mistakenly using Ref(x) to match a non-reference function 
// argument.  For example, the following will righteously cause a 
// compiler error: 
// 
//   int n; 
//   Matcher<int> m1 = Ref(n);   // This won't compile. 
//   Matcher<int&> m2 = Ref(n);  // This will compile. 
template <typename T> 
class RefMatcher; 
 
template <typename T> 
class RefMatcher<T&> { 
  // Google Mock is a generic framework and thus needs to support 
  // mocking any function types, including those that take non-const 
  // reference arguments.  Therefore the template parameter T (and 
  // Super below) can be instantiated to either a const type or a 
  // non-const type. 
 public: 
  // RefMatcher() takes a T& instead of const T&, as we want the 
  // compiler to catch using Ref(const_value) as a matcher for a 
  // non-const reference. 
  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT 
 
  template <typename Super> 
  operator Matcher<Super&>() const { 
    // By passing object_ (type T&) to Impl(), which expects a Super&, 
    // we make sure that Super is a super type of T.  In particular, 
    // this catches using Ref(const_value) as a matcher for a 
    // non-const reference, as you cannot implicitly convert a const 
    // reference to a non-const reference. 
    return MakeMatcher(new Impl<Super>(object_)); 
  } 
 
 private: 
  template <typename Super> 
  class Impl : public MatcherInterface<Super&> { 
   public: 
    explicit Impl(Super& x) : object_(x) {}  // NOLINT 
 
    // MatchAndExplain() takes a Super& (as opposed to const Super&) 
    // in order to match the interface MatcherInterface<Super&>. 
    bool MatchAndExplain(Super& x,
                         MatchResultListener* listener) const override {
      *listener << "which is located @" << static_cast<const void*>(&x); 
      return &x == &object_; 
    } 
 
    void DescribeTo(::std::ostream* os) const override {
      *os << "references the variable "; 
      UniversalPrinter<Super&>::Print(object_, os); 
    } 
 
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "does not reference the variable "; 
      UniversalPrinter<Super&>::Print(object_, os); 
    } 
 
   private: 
    const Super& object_; 
  }; 
 
  T& object_; 
}; 
 
// Polymorphic helper functions for narrow and wide string matchers. 
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { 
  return String::CaseInsensitiveCStringEquals(lhs, rhs); 
} 
 
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, 
                                         const wchar_t* rhs) { 
  return String::CaseInsensitiveWideCStringEquals(lhs, rhs); 
} 
 
// String comparison for narrow or wide strings that can have embedded NUL 
// characters. 
template <typename StringType> 
bool CaseInsensitiveStringEquals(const StringType& s1, 
                                 const StringType& s2) { 
  // Are the heads equal? 
  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { 
    return false; 
  } 
 
  // Skip the equal heads. 
  const typename StringType::value_type nul = 0; 
  const size_t i1 = s1.find(nul), i2 = s2.find(nul); 
 
  // Are we at the end of either s1 or s2? 
  if (i1 == StringType::npos || i2 == StringType::npos) { 
    return i1 == i2; 
  } 
 
  // Are the tails equal? 
  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); 
} 
 
// String matchers. 
 
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc. 
template <typename StringType> 
class StrEqualityMatcher { 
 public: 
  StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
      : string_(std::move(str)),
        expect_eq_(expect_eq),
        case_sensitive_(case_sensitive) {}
 
#if GTEST_INTERNAL_HAS_STRING_VIEW
  bool MatchAndExplain(const internal::StringView& s,
                       MatchResultListener* listener) const {
    // This should fail to compile if StringView is used with wide
    // strings.
    const StringType& str = std::string(s);
    return MatchAndExplain(str, listener);
  }
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW

  // Accepts pointer types, particularly: 
  //   const char* 
  //   char* 
  //   const wchar_t* 
  //   wchar_t* 
  template <typename CharType> 
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
    if (s == nullptr) {
      return !expect_eq_; 
    } 
    return MatchAndExplain(StringType(s), listener); 
  } 
 
  // Matches anything that can convert to StringType. 
  // 
  // This is a template, not just a plain function with const StringType&, 
  // because StringView has some interfering non-explicit constructors.
  template <typename MatcheeStringType> 
  bool MatchAndExplain(const MatcheeStringType& s, 
                       MatchResultListener* /* listener */) const { 
    const StringType s2(s);
    const bool eq = case_sensitive_ ? s2 == string_ : 
        CaseInsensitiveStringEquals(s2, string_); 
    return expect_eq_ == eq; 
  } 
 
  void DescribeTo(::std::ostream* os) const { 
    DescribeToHelper(expect_eq_, os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const { 
    DescribeToHelper(!expect_eq_, os); 
  } 
 
 private: 
  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { 
    *os << (expect_eq ? "is " : "isn't "); 
    *os << "equal to "; 
    if (!case_sensitive_) { 
      *os << "(ignoring case) "; 
    } 
    UniversalPrint(string_, os); 
  } 
 
  const StringType string_; 
  const bool expect_eq_; 
  const bool case_sensitive_; 
}; 
 
// Implements the polymorphic HasSubstr(substring) matcher, which 
// can be used as a Matcher<T> as long as T can be converted to a 
// string. 
template <typename StringType> 
class HasSubstrMatcher { 
 public: 
  explicit HasSubstrMatcher(const StringType& substring) 
      : substring_(substring) {} 
 
#if GTEST_INTERNAL_HAS_STRING_VIEW
  bool MatchAndExplain(const internal::StringView& s,
                       MatchResultListener* listener) const {
    // This should fail to compile if StringView is used with wide
    // strings.
    const StringType& str = std::string(s);
    return MatchAndExplain(str, listener);
  }
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW

  // Accepts pointer types, particularly: 
  //   const char* 
  //   char* 
  //   const wchar_t* 
  //   wchar_t* 
  template <typename CharType> 
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
    return s != nullptr && MatchAndExplain(StringType(s), listener);
  } 
 
  // Matches anything that can convert to StringType. 
  // 
  // This is a template, not just a plain function with const StringType&, 
  // because StringView has some interfering non-explicit constructors.
  template <typename MatcheeStringType> 
  bool MatchAndExplain(const MatcheeStringType& s, 
                       MatchResultListener* /* listener */) const { 
    return StringType(s).find(substring_) != StringType::npos;
  } 
 
  // Describes what this matcher matches. 
  void DescribeTo(::std::ostream* os) const { 
    *os << "has substring "; 
    UniversalPrint(substring_, os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "has no substring "; 
    UniversalPrint(substring_, os); 
  } 
 
 private: 
  const StringType substring_; 
}; 
 
// Implements the polymorphic StartsWith(substring) matcher, which 
// can be used as a Matcher<T> as long as T can be converted to a 
// string. 
template <typename StringType> 
class StartsWithMatcher { 
 public: 
  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { 
  } 
 
#if GTEST_INTERNAL_HAS_STRING_VIEW
  bool MatchAndExplain(const internal::StringView& s,
                       MatchResultListener* listener) const {
    // This should fail to compile if StringView is used with wide
    // strings.
    const StringType& str = std::string(s);
    return MatchAndExplain(str, listener);
  }
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW

  // Accepts pointer types, particularly: 
  //   const char* 
  //   char* 
  //   const wchar_t* 
  //   wchar_t* 
  template <typename CharType> 
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
    return s != nullptr && MatchAndExplain(StringType(s), listener);
  } 
 
  // Matches anything that can convert to StringType. 
  // 
  // This is a template, not just a plain function with const StringType&, 
  // because StringView has some interfering non-explicit constructors.
  template <typename MatcheeStringType> 
  bool MatchAndExplain(const MatcheeStringType& s, 
                       MatchResultListener* /* listener */) const { 
    const StringType& s2(s); 
    return s2.length() >= prefix_.length() && 
        s2.substr(0, prefix_.length()) == prefix_; 
  } 
 
  void DescribeTo(::std::ostream* os) const { 
    *os << "starts with "; 
    UniversalPrint(prefix_, os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "doesn't start with "; 
    UniversalPrint(prefix_, os); 
  } 
 
 private: 
  const StringType prefix_; 
}; 
 
// Implements the polymorphic EndsWith(substring) matcher, which 
// can be used as a Matcher<T> as long as T can be converted to a 
// string. 
template <typename StringType> 
class EndsWithMatcher { 
 public: 
  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} 
 
#if GTEST_INTERNAL_HAS_STRING_VIEW
  bool MatchAndExplain(const internal::StringView& s,
                       MatchResultListener* listener) const {
    // This should fail to compile if StringView is used with wide
    // strings.
    const StringType& str = std::string(s);
    return MatchAndExplain(str, listener);
  }
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW

  // Accepts pointer types, particularly: 
  //   const char* 
  //   char* 
  //   const wchar_t* 
  //   wchar_t* 
  template <typename CharType> 
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { 
    return s != nullptr && MatchAndExplain(StringType(s), listener);
  } 
 
  // Matches anything that can convert to StringType. 
  // 
  // This is a template, not just a plain function with const StringType&, 
  // because StringView has some interfering non-explicit constructors.
  template <typename MatcheeStringType> 
  bool MatchAndExplain(const MatcheeStringType& s, 
                       MatchResultListener* /* listener */) const { 
    const StringType& s2(s); 
    return s2.length() >= suffix_.length() && 
        s2.substr(s2.length() - suffix_.length()) == suffix_; 
  } 
 
  void DescribeTo(::std::ostream* os) const { 
    *os << "ends with "; 
    UniversalPrint(suffix_, os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "doesn't end with "; 
    UniversalPrint(suffix_, os); 
  } 
 
 private: 
  const StringType suffix_; 
}; 
 
// Implements a matcher that compares the two fields of a 2-tuple 
// using one of the ==, <=, <, etc, operators.  The two fields being 
// compared don't have to have the same type. 
// 
// The matcher defined here is polymorphic (for example, Eq() can be 
// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
// etc).  Therefore we use a template type conversion operator in the 
// implementation. 
template <typename D, typename Op> 
class PairMatchBase { 
 public: 
  template <typename T1, typename T2> 
  operator Matcher<::std::tuple<T1, T2>>() const {
    return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
  } 
  template <typename T1, typename T2> 
  operator Matcher<const ::std::tuple<T1, T2>&>() const {
    return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
  } 
 
 private: 
  static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT 
    return os << D::Desc(); 
  } 
 
  template <typename Tuple> 
  class Impl : public MatcherInterface<Tuple> { 
   public: 
    bool MatchAndExplain(Tuple args,
                         MatchResultListener* /* listener */) const override {
      return Op()(::std::get<0>(args), ::std::get<1>(args));
    } 
    void DescribeTo(::std::ostream* os) const override {
      *os << "are " << GetDesc; 
    } 
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "aren't " << GetDesc; 
    } 
  }; 
}; 
 
class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { 
 public: 
  static const char* Desc() { return "an equal pair"; } 
}; 
class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { 
 public: 
  static const char* Desc() { return "an unequal pair"; } 
}; 
class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { 
 public: 
  static const char* Desc() { return "a pair where the first < the second"; } 
}; 
class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { 
 public: 
  static const char* Desc() { return "a pair where the first > the second"; } 
}; 
class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { 
 public: 
  static const char* Desc() { return "a pair where the first <= the second"; } 
}; 
class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { 
 public: 
  static const char* Desc() { return "a pair where the first >= the second"; } 
}; 
 
// Implements the Not(...) matcher for a particular argument type T. 
// We do not nest it inside the NotMatcher class template, as that 
// will prevent different instantiations of NotMatcher from sharing 
// the same NotMatcherImpl<T> class. 
template <typename T> 
class NotMatcherImpl : public MatcherInterface<const T&> {
 public: 
  explicit NotMatcherImpl(const Matcher<T>& matcher) 
      : matcher_(matcher) {} 
 
  bool MatchAndExplain(const T& x,
                       MatchResultListener* listener) const override {
    return !matcher_.MatchAndExplain(x, listener); 
  } 
 
  void DescribeTo(::std::ostream* os) const override {
    matcher_.DescribeNegationTo(os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const override {
    matcher_.DescribeTo(os); 
  } 
 
 private: 
  const Matcher<T> matcher_; 
}; 
 
// Implements the Not(m) matcher, which matches a value that doesn't 
// match matcher m. 
template <typename InnerMatcher> 
class NotMatcher { 
 public: 
  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} 
 
  // This template type conversion operator allows Not(m) to be used 
  // to match any type m can match. 
  template <typename T> 
  operator Matcher<T>() const { 
    return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); 
  } 
 
 private: 
  InnerMatcher matcher_; 
}; 
 
// Implements the AllOf(m1, m2) matcher for a particular argument type 
// T. We do not nest it inside the BothOfMatcher class template, as 
// that will prevent different instantiations of BothOfMatcher from 
// sharing the same BothOfMatcherImpl<T> class. 
template <typename T> 
class AllOfMatcherImpl : public MatcherInterface<const T&> {
 public: 
  explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
      : matchers_(std::move(matchers)) {}
 
  void DescribeTo(::std::ostream* os) const override {
    *os << "("; 
    for (size_t i = 0; i < matchers_.size(); ++i) {
      if (i != 0) *os << ") and (";
      matchers_[i].DescribeTo(os);
    }
    *os << ")"; 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const override {
    *os << "("; 
    for (size_t i = 0; i < matchers_.size(); ++i) {
      if (i != 0) *os << ") or (";
      matchers_[i].DescribeNegationTo(os);
    }
    *os << ")"; 
  } 
 
  bool MatchAndExplain(const T& x,
                       MatchResultListener* listener) const override {
    // If either matcher1_ or matcher2_ doesn't match x, we only need 
    // to explain why one of them fails. 
    std::string all_match_result;
 
    for (size_t i = 0; i < matchers_.size(); ++i) {
      StringMatchResultListener slistener;
      if (matchers_[i].MatchAndExplain(x, &slistener)) {
        if (all_match_result.empty()) {
          all_match_result = slistener.str();
        } else {
          std::string result = slistener.str();
          if (!result.empty()) {
            all_match_result += ", and ";
            all_match_result += result;
          }
        }
      } else {
        *listener << slistener.str();
        return false;
      }
    } 
 
    // Otherwise we need to explain why *both* of them match. 
    *listener << all_match_result;
    return true; 
  } 
 
 private: 
  const std::vector<Matcher<T> > matchers_;
}; 
 
// VariadicMatcher is used for the variadic implementation of 
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). 
// CombiningMatcher<T> is used to recursively combine the provided matchers 
// (of type Args...). 
template <template <typename T> class CombiningMatcher, typename... Args> 
class VariadicMatcher { 
 public: 
  VariadicMatcher(const Args&... matchers)  // NOLINT 
      : matchers_(matchers...) {
    static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
  }
 
  VariadicMatcher(const VariadicMatcher&) = default;
  VariadicMatcher& operator=(const VariadicMatcher&) = delete;

  // This template type conversion operator allows an 
  // VariadicMatcher<Matcher1, Matcher2...> object to match any type that 
  // all of the provided matchers (Matcher1, Matcher2, ...) can match. 
  template <typename T> 
  operator Matcher<T>() const { 
    std::vector<Matcher<T> > values;
    CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
    return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
  } 
 
 private: 
  template <typename T, size_t I>
  void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
                             std::integral_constant<size_t, I>) const {
    values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
    CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
  }
 
  template <typename T>
  void CreateVariadicMatcher(
      std::vector<Matcher<T> >*,
      std::integral_constant<size_t, sizeof...(Args)>) const {}
 
  std::tuple<Args...> matchers_;
}; 
 
template <typename... Args> 
using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
 
// Implements the AnyOf(m1, m2) matcher for a particular argument type 
// T.  We do not nest it inside the AnyOfMatcher class template, as 
// that will prevent different instantiations of AnyOfMatcher from 
// sharing the same EitherOfMatcherImpl<T> class. 
template <typename T> 
class AnyOfMatcherImpl : public MatcherInterface<const T&> {
 public: 
  explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
      : matchers_(std::move(matchers)) {}
 
  void DescribeTo(::std::ostream* os) const override {
    *os << "("; 
    for (size_t i = 0; i < matchers_.size(); ++i) {
      if (i != 0) *os << ") or (";
      matchers_[i].DescribeTo(os);
    }
    *os << ")"; 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const override {
    *os << "("; 
    for (size_t i = 0; i < matchers_.size(); ++i) {
      if (i != 0) *os << ") and (";
      matchers_[i].DescribeNegationTo(os);
    }
    *os << ")"; 
  } 
 
  bool MatchAndExplain(const T& x,
                       MatchResultListener* listener) const override {
    std::string no_match_result;

    // If either matcher1_ or matcher2_ matches x, we just need to 
    // explain why *one* of them matches. 
    for (size_t i = 0; i < matchers_.size(); ++i) {
      StringMatchResultListener slistener;
      if (matchers_[i].MatchAndExplain(x, &slistener)) {
        *listener << slistener.str();
        return true;
      } else {
        if (no_match_result.empty()) {
          no_match_result = slistener.str();
        } else {
          std::string result = slistener.str();
          if (!result.empty()) {
            no_match_result += ", and ";
            no_match_result += result;
          }
        }
      }
    } 
 
    // Otherwise we need to explain why *both* of them fail. 
    *listener << no_match_result;
    return false; 
  } 
 
 private: 
  const std::vector<Matcher<T> > matchers_;
}; 
 
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). 
template <typename... Args> 
using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
 
// Wrapper for implementation of Any/AllOfArray().
template <template <class> class MatcherImpl, typename T>
class SomeOfArrayMatcher {
 public: 
  // Constructs the matcher from a sequence of element values or
  // element matchers.
  template <typename Iter>
  SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
 
  template <typename U>
  operator Matcher<U>() const {  // NOLINT
    using RawU = typename std::decay<U>::type;
    std::vector<Matcher<RawU>> matchers;
    for (const auto& matcher : matchers_) {
      matchers.push_back(MatcherCast<RawU>(matcher));
    }
    return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
  } 
 
 private: 
  const ::std::vector<T> matchers_;
}; 
 
template <typename T>
using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;

template <typename T>
using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;

// Used for implementing Truly(pred), which turns a predicate into a 
// matcher. 
template <typename Predicate> 
class TrulyMatcher { 
 public: 
  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} 
 
  // This method template allows Truly(pred) to be used as a matcher 
  // for type T where T is the argument type of predicate 'pred'.  The 
  // argument is passed by reference as the predicate may be 
  // interested in the address of the argument. 
  template <typename T> 
  bool MatchAndExplain(T& x,  // NOLINT 
                       MatchResultListener* listener) const {
    // Without the if-statement, MSVC sometimes warns about converting 
    // a value to bool (warning 4800). 
    // 
    // We cannot write 'return !!predicate_(x);' as that doesn't work 
    // when predicate_(x) returns a class convertible to bool but 
    // having no operator!(). 
    if (predicate_(x)) 
      return true; 
    *listener << "didn't satisfy the given predicate";
    return false; 
  } 
 
  void DescribeTo(::std::ostream* os) const { 
    *os << "satisfies the given predicate"; 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "doesn't satisfy the given predicate"; 
  } 
 
 private: 
  Predicate predicate_; 
}; 
 
// Used for implementing Matches(matcher), which turns a matcher into 
// a predicate. 
template <typename M> 
class MatcherAsPredicate { 
 public: 
  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} 
 
  // This template operator() allows Matches(m) to be used as a 
  // predicate on type T where m is a matcher on type T. 
  // 
  // The argument x is passed by reference instead of by value, as 
  // some matcher may be interested in its address (e.g. as in 
  // Matches(Ref(n))(x)). 
  template <typename T> 
  bool operator()(const T& x) const { 
    // We let matcher_ commit to a particular type here instead of 
    // when the MatcherAsPredicate object was constructed.  This 
    // allows us to write Matches(m) where m is a polymorphic matcher 
    // (e.g. Eq(5)). 
    // 
    // If we write Matcher<T>(matcher_).Matches(x) here, it won't 
    // compile when matcher_ has type Matcher<const T&>; if we write 
    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile 
    // when matcher_ has type Matcher<T>; if we just write 
    // matcher_.Matches(x), it won't compile when matcher_ is 
    // polymorphic, e.g. Eq(5). 
    // 
    // MatcherCast<const T&>() is necessary for making the code work 
    // in all of the above situations. 
    return MatcherCast<const T&>(matcher_).Matches(x); 
  } 
 
 private: 
  M matcher_; 
}; 
 
// For implementing ASSERT_THAT() and EXPECT_THAT().  The template 
// argument M must be a type that can be converted to a matcher. 
template <typename M> 
class PredicateFormatterFromMatcher { 
 public: 
  explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
 
  // This template () operator allows a PredicateFormatterFromMatcher 
  // object to act as a predicate-formatter suitable for using with 
  // Google Test's EXPECT_PRED_FORMAT1() macro. 
  template <typename T> 
  AssertionResult operator()(const char* value_text, const T& x) const { 
    // We convert matcher_ to a Matcher<const T&> *now* instead of 
    // when the PredicateFormatterFromMatcher object was constructed, 
    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't 
    // know which type to instantiate it to until we actually see the 
    // type of x here. 
    // 
    // We write SafeMatcherCast<const T&>(matcher_) instead of 
    // Matcher<const T&>(matcher_), as the latter won't compile when 
    // matcher_ has type Matcher<T> (e.g. An<int>()). 
    // We don't write MatcherCast<const T&> either, as that allows 
    // potentially unsafe downcasting of the matcher argument. 
    const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); 

    // The expected path here is that the matcher should match (i.e. that most
    // tests pass) so optimize for this case.
    if (matcher.Matches(x)) {
      return AssertionSuccess(); 
    }
 
    ::std::stringstream ss; 
    ss << "Value of: " << value_text << "\n" 
       << "Expected: "; 
    matcher.DescribeTo(&ss); 

    // Rerun the matcher to "PrintAndExplain" the failure.
    StringMatchResultListener listener;
    if (MatchPrintAndExplain(x, matcher, &listener)) {
      ss << "\n  The matcher failed on the initial attempt; but passed when "
            "rerun to generate the explanation.";
    }
    ss << "\n  Actual: " << listener.str(); 
    return AssertionFailure() << ss.str(); 
  } 
 
 private: 
  const M matcher_; 
}; 
 
// A helper function for converting a matcher to a predicate-formatter 
// without the user needing to explicitly write the type.  This is 
// used for implementing ASSERT_THAT() and EXPECT_THAT(). 
// Implementation detail: 'matcher' is received by-value to force decaying. 
template <typename M> 
inline PredicateFormatterFromMatcher<M> 
MakePredicateFormatterFromMatcher(M matcher) { 
  return PredicateFormatterFromMatcher<M>(std::move(matcher));
} 
 
// Implements the polymorphic IsNan() matcher, which matches any floating type
// value that is Nan.
class IsNanMatcher {
 public:
  template <typename FloatType>
  bool MatchAndExplain(const FloatType& f,
                       MatchResultListener* /* listener */) const {
    return (::std::isnan)(f);
  }

  void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
  void DescribeNegationTo(::std::ostream* os) const {
    *os << "isn't NaN";
  }
};

// Implements the polymorphic floating point equality matcher, which matches 
// two float values using ULP-based approximation or, optionally, a 
// user-specified epsilon.  The template is meant to be instantiated with 
// FloatType being either float or double. 
template <typename FloatType> 
class FloatingEqMatcher { 
 public: 
  // Constructor for FloatingEqMatcher. 
  // The matcher's input will be compared with expected.  The matcher treats two 
  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards, 
  // equality comparisons between NANs will always return false.  We specify a 
  // negative max_abs_error_ term to indicate that ULP-based approximation will 
  // be used for comparison. 
  FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : 
    expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { 
  } 
 
  // Constructor that supports a user-specified max_abs_error that will be used 
  // for comparison instead of ULP-based approximation.  The max absolute 
  // should be non-negative. 
  FloatingEqMatcher(FloatType expected, bool nan_eq_nan, 
                    FloatType max_abs_error) 
      : expected_(expected), 
        nan_eq_nan_(nan_eq_nan), 
        max_abs_error_(max_abs_error) { 
    GTEST_CHECK_(max_abs_error >= 0) 
        << ", where max_abs_error is" << max_abs_error; 
  } 
 
  // Implements floating point equality matcher as a Matcher<T>. 
  template <typename T> 
  class Impl : public MatcherInterface<T> { 
   public: 
    Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) 
        : expected_(expected), 
          nan_eq_nan_(nan_eq_nan), 
          max_abs_error_(max_abs_error) {} 
 
    bool MatchAndExplain(T value,
                         MatchResultListener* listener) const override {
      const FloatingPoint<FloatType> actual(value), expected(expected_); 
 
      // Compares NaNs first, if nan_eq_nan_ is true. 
      if (actual.is_nan() || expected.is_nan()) { 
        if (actual.is_nan() && expected.is_nan()) { 
          return nan_eq_nan_; 
        } 
        // One is nan; the other is not nan. 
        return false; 
      } 
      if (HasMaxAbsError()) { 
        // We perform an equality check so that inf will match inf, regardless 
        // of error bounds.  If the result of value - expected_ would result in 
        // overflow or if either value is inf, the default result is infinity, 
        // which should only match if max_abs_error_ is also infinity. 
        if (value == expected_) { 
          return true; 
        } 
 
        const FloatType diff = value - expected_; 
        if (::std::fabs(diff) <= max_abs_error_) {
          return true; 
        } 
 
        if (listener->IsInterested()) { 
          *listener << "which is " << diff << " from " << expected_; 
        } 
        return false; 
      } else { 
        return actual.AlmostEquals(expected); 
      } 
    } 
 
    void DescribeTo(::std::ostream* os) const override {
      // os->precision() returns the previously set precision, which we 
      // store to restore the ostream to its original configuration 
      // after outputting. 
      const ::std::streamsize old_precision = os->precision( 
          ::std::numeric_limits<FloatType>::digits10 + 2); 
      if (FloatingPoint<FloatType>(expected_).is_nan()) { 
        if (nan_eq_nan_) { 
          *os << "is NaN"; 
        } else { 
          *os << "never matches"; 
        } 
      } else { 
        *os << "is approximately " << expected_; 
        if (HasMaxAbsError()) { 
          *os << " (absolute error <= " << max_abs_error_ << ")"; 
        } 
      } 
      os->precision(old_precision); 
    } 
 
    void DescribeNegationTo(::std::ostream* os) const override {
      // As before, get original precision. 
      const ::std::streamsize old_precision = os->precision( 
          ::std::numeric_limits<FloatType>::digits10 + 2); 
      if (FloatingPoint<FloatType>(expected_).is_nan()) { 
        if (nan_eq_nan_) { 
          *os << "isn't NaN"; 
        } else { 
          *os << "is anything"; 
        } 
      } else { 
        *os << "isn't approximately " << expected_; 
        if (HasMaxAbsError()) { 
          *os << " (absolute error > " << max_abs_error_ << ")"; 
        } 
      } 
      // Restore original precision. 
      os->precision(old_precision); 
    } 
 
   private: 
    bool HasMaxAbsError() const { 
      return max_abs_error_ >= 0; 
    } 
 
    const FloatType expected_; 
    const bool nan_eq_nan_; 
    // max_abs_error will be used for value comparison when >= 0. 
    const FloatType max_abs_error_; 
  }; 
 
  // The following 3 type conversion operators allow FloatEq(expected) and 
  // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a 
  // Matcher<const float&>, or a Matcher<float&>, but nothing else. 
  operator Matcher<FloatType>() const { 
    return MakeMatcher( 
        new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); 
  } 
 
  operator Matcher<const FloatType&>() const { 
    return MakeMatcher( 
        new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); 
  } 
 
  operator Matcher<FloatType&>() const { 
    return MakeMatcher( 
        new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); 
  } 
 
 private: 
  const FloatType expected_; 
  const bool nan_eq_nan_; 
  // max_abs_error will be used for value comparison when >= 0. 
  const FloatType max_abs_error_; 
}; 
 
// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
// against y. The former implements "Eq", the latter "Near". At present, there
// is no version that compares NaNs as equal.
template <typename FloatType>
class FloatingEq2Matcher {
 public:
  FloatingEq2Matcher() { Init(-1, false); }

  explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }

  explicit FloatingEq2Matcher(FloatType max_abs_error) {
    Init(max_abs_error, false);
  }

  FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
    Init(max_abs_error, nan_eq_nan);
  }

  template <typename T1, typename T2>
  operator Matcher<::std::tuple<T1, T2>>() const {
    return MakeMatcher(
        new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
  }
  template <typename T1, typename T2>
  operator Matcher<const ::std::tuple<T1, T2>&>() const {
    return MakeMatcher(
        new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
  }

 private:
  static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
    return os << "an almost-equal pair";
  }

  template <typename Tuple>
  class Impl : public MatcherInterface<Tuple> {
   public:
    Impl(FloatType max_abs_error, bool nan_eq_nan) :
        max_abs_error_(max_abs_error),
        nan_eq_nan_(nan_eq_nan) {}

    bool MatchAndExplain(Tuple args,
                         MatchResultListener* listener) const override {
      if (max_abs_error_ == -1) {
        FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
        return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
            ::std::get<1>(args), listener);
      } else {
        FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
                                        max_abs_error_);
        return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
            ::std::get<1>(args), listener);
      }
    }
    void DescribeTo(::std::ostream* os) const override {
      *os << "are " << GetDesc;
    }
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "aren't " << GetDesc;
    }

   private:
    FloatType max_abs_error_;
    const bool nan_eq_nan_;
  };

  void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
    max_abs_error_ = max_abs_error_val;
    nan_eq_nan_ = nan_eq_nan_val;
  }
  FloatType max_abs_error_;
  bool nan_eq_nan_;
};

// Implements the Pointee(m) matcher for matching a pointer whose 
// pointee matches matcher m.  The pointer can be either raw or smart. 
template <typename InnerMatcher> 
class PointeeMatcher { 
 public: 
  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} 
 
  // This type conversion operator template allows Pointee(m) to be 
  // used as a matcher for any pointer type whose pointee type is 
  // compatible with the inner matcher, where type Pointer can be 
  // either a raw pointer or a smart pointer. 
  // 
  // The reason we do this instead of relying on 
  // MakePolymorphicMatcher() is that the latter is not flexible 
  // enough for implementing the DescribeTo() method of Pointee(). 
  template <typename Pointer> 
  operator Matcher<Pointer>() const { 
    return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
  } 
 
 private: 
  // The monomorphic implementation that works for a particular pointer type. 
  template <typename Pointer> 
  class Impl : public MatcherInterface<Pointer> { 
   public: 
    using Pointee =
        typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
            Pointer)>::element_type;
 
    explicit Impl(const InnerMatcher& matcher) 
        : matcher_(MatcherCast<const Pointee&>(matcher)) {} 
 
    void DescribeTo(::std::ostream* os) const override {
      *os << "points to a value that "; 
      matcher_.DescribeTo(os); 
    } 
 
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "does not point to a value that "; 
      matcher_.DescribeTo(os); 
    } 
 
    bool MatchAndExplain(Pointer pointer,
                         MatchResultListener* listener) const override {
      if (GetRawPointer(pointer) == nullptr) return false;
 
      *listener << "which points to "; 
      return MatchPrintAndExplain(*pointer, matcher_, listener); 
    } 
 
   private: 
    const Matcher<const Pointee&> matcher_; 
  }; 
 
  const InnerMatcher matcher_; 
}; 
 
// Implements the Pointer(m) matcher
// Implements the Pointer(m) matcher for matching a pointer that matches matcher
// m.  The pointer can be either raw or smart, and will match `m` against the
// raw pointer.
template <typename InnerMatcher>
class PointerMatcher {
 public:
  explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}

  // This type conversion operator template allows Pointer(m) to be
  // used as a matcher for any pointer type whose pointer type is
  // compatible with the inner matcher, where type PointerType can be
  // either a raw pointer or a smart pointer.
  //
  // The reason we do this instead of relying on
  // MakePolymorphicMatcher() is that the latter is not flexible
  // enough for implementing the DescribeTo() method of Pointer().
  template <typename PointerType>
  operator Matcher<PointerType>() const {  // NOLINT
    return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
  }

 private:
  // The monomorphic implementation that works for a particular pointer type.
  template <typename PointerType>
  class Impl : public MatcherInterface<PointerType> {
   public:
    using Pointer =
        const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
            PointerType)>::element_type*;

    explicit Impl(const InnerMatcher& matcher)
        : matcher_(MatcherCast<Pointer>(matcher)) {}

    void DescribeTo(::std::ostream* os) const override {
      *os << "is a pointer that ";
      matcher_.DescribeTo(os);
    }

    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "is not a pointer that ";
      matcher_.DescribeTo(os);
    }

    bool MatchAndExplain(PointerType pointer,
                         MatchResultListener* listener) const override {
      *listener << "which is a pointer that ";
      Pointer p = GetRawPointer(pointer);
      return MatchPrintAndExplain(p, matcher_, listener);
    }

   private:
    Matcher<Pointer> matcher_;
  };

  const InnerMatcher matcher_;
};

#if GTEST_HAS_RTTI
// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or 
// reference that matches inner_matcher when dynamic_cast<T> is applied. 
// The result of dynamic_cast<To> is forwarded to the inner matcher. 
// If To is a pointer and the cast fails, the inner matcher will receive NULL. 
// If To is a reference and the cast fails, this matcher returns false 
// immediately. 
template <typename To> 
class WhenDynamicCastToMatcherBase { 
 public: 
  explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) 
      : matcher_(matcher) {} 
 
  void DescribeTo(::std::ostream* os) const { 
    GetCastTypeDescription(os); 
    matcher_.DescribeTo(os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const { 
    GetCastTypeDescription(os); 
    matcher_.DescribeNegationTo(os); 
  } 
 
 protected: 
  const Matcher<To> matcher_; 
 
  static std::string GetToName() {
    return GetTypeName<To>(); 
  } 
 
 private: 
  static void GetCastTypeDescription(::std::ostream* os) { 
    *os << "when dynamic_cast to " << GetToName() << ", "; 
  } 
}; 
 
// Primary template. 
// To is a pointer. Cast and forward the result. 
template <typename To> 
class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { 
 public: 
  explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) 
      : WhenDynamicCastToMatcherBase<To>(matcher) {} 
 
  template <typename From> 
  bool MatchAndExplain(From from, MatchResultListener* listener) const { 
    To to = dynamic_cast<To>(from); 
    return MatchPrintAndExplain(to, this->matcher_, listener); 
  } 
}; 
 
// Specialize for references. 
// In this case we return false if the dynamic_cast fails. 
template <typename To> 
class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { 
 public: 
  explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) 
      : WhenDynamicCastToMatcherBase<To&>(matcher) {} 
 
  template <typename From> 
  bool MatchAndExplain(From& from, MatchResultListener* listener) const { 
    // We don't want an std::bad_cast here, so do the cast with pointers. 
    To* to = dynamic_cast<To*>(&from); 
    if (to == nullptr) {
      *listener << "which cannot be dynamic_cast to " << this->GetToName(); 
      return false; 
    } 
    return MatchPrintAndExplain(*to, this->matcher_, listener); 
  } 
}; 
#endif  // GTEST_HAS_RTTI
 
// Implements the Field() matcher for matching a field (i.e. member 
// variable) of an object. 
template <typename Class, typename FieldType> 
class FieldMatcher { 
 public: 
  FieldMatcher(FieldType Class::*field, 
               const Matcher<const FieldType&>& matcher) 
      : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
 
  FieldMatcher(const std::string& field_name, FieldType Class::*field,
               const Matcher<const FieldType&>& matcher)
      : field_(field),
        matcher_(matcher),
        whose_field_("whose field `" + field_name + "` ") {}

  void DescribeTo(::std::ostream* os) const { 
    *os << "is an object " << whose_field_;
    matcher_.DescribeTo(os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "is an object " << whose_field_;
    matcher_.DescribeNegationTo(os); 
  } 
 
  template <typename T> 
  bool MatchAndExplain(const T& value, MatchResultListener* listener) const { 
    // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
    // a compiler bug, and can now be removed.
    return MatchAndExplainImpl( 
        typename std::is_pointer<typename std::remove_const<T>::type>::type(),
        value, listener); 
  } 
 
 private: 
  bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
                           const Class& obj,
                           MatchResultListener* listener) const { 
    *listener << whose_field_ << "is ";
    return MatchPrintAndExplain(obj.*field_, matcher_, listener); 
  } 
 
  bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
                           MatchResultListener* listener) const { 
    if (p == nullptr) return false;
 
    *listener << "which points to an object "; 
    // Since *p has a field, it must be a class/struct/union type and 
    // thus cannot be a pointer.  Therefore we pass false_type() as 
    // the first argument. 
    return MatchAndExplainImpl(std::false_type(), *p, listener);
  } 
 
  const FieldType Class::*field_; 
  const Matcher<const FieldType&> matcher_; 
 
  // Contains either "whose given field " if the name of the field is unknown
  // or "whose field `name_of_field` " if the name is known.
  const std::string whose_field_;
}; 
 
// Implements the Property() matcher for matching a property 
// (i.e. return value of a getter method) of an object. 
//
// Property is a const-qualified member function of Class returning
// PropertyType.
template <typename Class, typename PropertyType, typename Property>
class PropertyMatcher { 
 public: 
  typedef const PropertyType& RefToConstProperty;
 
  PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
      : property_(property),
        matcher_(matcher),
        whose_property_("whose given property ") {}

  PropertyMatcher(const std::string& property_name, Property property,
                  const Matcher<RefToConstProperty>& matcher) 
      : property_(property),
        matcher_(matcher),
        whose_property_("whose property `" + property_name + "` ") {}
 
  void DescribeTo(::std::ostream* os) const { 
    *os << "is an object " << whose_property_;
    matcher_.DescribeTo(os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "is an object " << whose_property_;
    matcher_.DescribeNegationTo(os); 
  } 
 
  template <typename T> 
  bool MatchAndExplain(const T&value, MatchResultListener* listener) const { 
    return MatchAndExplainImpl( 
        typename std::is_pointer<typename std::remove_const<T>::type>::type(),
        value, listener); 
  } 
 
 private: 
  bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
                           const Class& obj,
                           MatchResultListener* listener) const { 
    *listener << whose_property_ << "is ";
    // Cannot pass the return value (for example, int) to MatchPrintAndExplain, 
    // which takes a non-const reference as argument. 
    RefToConstProperty result = (obj.*property_)(); 
    return MatchPrintAndExplain(result, matcher_, listener); 
  } 
 
  bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
                           MatchResultListener* listener) const { 
    if (p == nullptr) return false;
 
    *listener << "which points to an object "; 
    // Since *p has a property method, it must be a class/struct/union 
    // type and thus cannot be a pointer.  Therefore we pass 
    // false_type() as the first argument. 
    return MatchAndExplainImpl(std::false_type(), *p, listener);
  } 
 
  Property property_;
  const Matcher<RefToConstProperty> matcher_; 
 
  // Contains either "whose given property " if the name of the property is
  // unknown or "whose property `name_of_property` " if the name is known.
  const std::string whose_property_;
}; 
 
// Type traits specifying various features of different functors for ResultOf. 
// The default template specifies features for functor objects. 
template <typename Functor> 
struct CallableTraits { 
  typedef Functor StorageType; 
 
  static void CheckIsValid(Functor /* functor */) {} 

  template <typename T> 
  static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
    return f(arg);
  }
}; 
 
// Specialization for function pointers. 
template <typename ArgType, typename ResType> 
struct CallableTraits<ResType(*)(ArgType)> { 
  typedef ResType ResultType; 
  typedef ResType(*StorageType)(ArgType); 
 
  static void CheckIsValid(ResType(*f)(ArgType)) { 
    GTEST_CHECK_(f != nullptr)
        << "NULL function pointer is passed into ResultOf()."; 
  } 
  template <typename T> 
  static ResType Invoke(ResType(*f)(ArgType), T arg) { 
    return (*f)(arg); 
  } 
}; 
 
// Implements the ResultOf() matcher for matching a return value of a 
// unary function of an object. 
template <typename Callable, typename InnerMatcher>
class ResultOfMatcher { 
 public: 
  ResultOfMatcher(Callable callable, InnerMatcher matcher)
      : callable_(std::move(callable)), matcher_(std::move(matcher)) {
    CallableTraits<Callable>::CheckIsValid(callable_); 
  } 
 
  template <typename T> 
  operator Matcher<T>() const { 
    return Matcher<T>(new Impl<const T&>(callable_, matcher_));
  } 
 
 private: 
  typedef typename CallableTraits<Callable>::StorageType CallableStorageType; 
 
  template <typename T> 
  class Impl : public MatcherInterface<T> { 
    using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
        std::declval<CallableStorageType>(), std::declval<T>()));

   public: 
    template <typename M>
    Impl(const CallableStorageType& callable, const M& matcher)
        : callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
 
    void DescribeTo(::std::ostream* os) const override {
      *os << "is mapped by the given callable to a value that "; 
      matcher_.DescribeTo(os); 
    } 
 
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "is mapped by the given callable to a value that "; 
      matcher_.DescribeNegationTo(os); 
    } 
 
    bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
      *listener << "which is mapped by the given callable to "; 
      // Cannot pass the return value directly to MatchPrintAndExplain, which
      // takes a non-const reference as argument.
      // Also, specifying template argument explicitly is needed because T could
      // be a non-const reference (e.g. Matcher<Uncopyable&>).
      ResultType result = 
          CallableTraits<Callable>::template Invoke<T>(callable_, obj); 
      return MatchPrintAndExplain(result, matcher_, listener); 
    } 
 
   private: 
    // Functors often define operator() as non-const method even though 
    // they are actually stateless. But we need to use them even when
    // 'this' is a const pointer. It's the user's responsibility not to 
    // use stateful callables with ResultOf(), which doesn't guarantee
    // how many times the callable will be invoked. 
    mutable CallableStorageType callable_; 
    const Matcher<ResultType> matcher_; 
  };  // class Impl 
 
  const CallableStorageType callable_; 
  const InnerMatcher matcher_;
}; 
 
// Implements a matcher that checks the size of an STL-style container. 
template <typename SizeMatcher> 
class SizeIsMatcher { 
 public: 
  explicit SizeIsMatcher(const SizeMatcher& size_matcher) 
       : size_matcher_(size_matcher) { 
  } 
 
  template <typename Container> 
  operator Matcher<Container>() const { 
    return Matcher<Container>(new Impl<const Container&>(size_matcher_));
  } 
 
  template <typename Container> 
  class Impl : public MatcherInterface<Container> { 
   public: 
    using SizeType = decltype(std::declval<Container>().size());
    explicit Impl(const SizeMatcher& size_matcher) 
        : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} 
 
    void DescribeTo(::std::ostream* os) const override {
      *os << "size "; 
      size_matcher_.DescribeTo(os); 
    } 
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "size "; 
      size_matcher_.DescribeNegationTo(os); 
    } 
 
    bool MatchAndExplain(Container container,
                         MatchResultListener* listener) const override {
      SizeType size = container.size(); 
      StringMatchResultListener size_listener; 
      const bool result = size_matcher_.MatchAndExplain(size, &size_listener); 
      *listener 
          << "whose size " << size << (result ? " matches" : " doesn't match"); 
      PrintIfNotEmpty(size_listener.str(), listener->stream()); 
      return result; 
    } 
 
   private: 
    const Matcher<SizeType> size_matcher_; 
  }; 
 
 private: 
  const SizeMatcher size_matcher_; 
}; 
 
// Implements a matcher that checks the begin()..end() distance of an STL-style 
// container. 
template <typename DistanceMatcher> 
class BeginEndDistanceIsMatcher { 
 public: 
  explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) 
      : distance_matcher_(distance_matcher) {} 
 
  template <typename Container> 
  operator Matcher<Container>() const { 
    return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
  } 
 
  template <typename Container> 
  class Impl : public MatcherInterface<Container> { 
   public: 
    typedef internal::StlContainerView< 
        GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; 
    typedef typename std::iterator_traits< 
        typename ContainerView::type::const_iterator>::difference_type 
        DistanceType; 
    explicit Impl(const DistanceMatcher& distance_matcher) 
        : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} 
 
    void DescribeTo(::std::ostream* os) const override {
      *os << "distance between begin() and end() "; 
      distance_matcher_.DescribeTo(os); 
    } 
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "distance between begin() and end() "; 
      distance_matcher_.DescribeNegationTo(os); 
    } 
 
    bool MatchAndExplain(Container container,
                         MatchResultListener* listener) const override {
      using std::begin; 
      using std::end; 
      DistanceType distance = std::distance(begin(container), end(container)); 
      StringMatchResultListener distance_listener; 
      const bool result = 
          distance_matcher_.MatchAndExplain(distance, &distance_listener); 
      *listener << "whose distance between begin() and end() " << distance 
                << (result ? " matches" : " doesn't match"); 
      PrintIfNotEmpty(distance_listener.str(), listener->stream()); 
      return result; 
    } 
 
   private: 
    const Matcher<DistanceType> distance_matcher_; 
  }; 
 
 private: 
  const DistanceMatcher distance_matcher_; 
}; 
 
// Implements an equality matcher for any STL-style container whose elements 
// support ==. This matcher is like Eq(), but its failure explanations provide 
// more detailed information that is useful when the container is used as a set. 
// The failure message reports elements that are in one of the operands but not 
// the other. The failure messages do not report duplicate or out-of-order 
// elements in the containers (which don't properly matter to sets, but can 
// occur if the containers are vectors or lists, for example). 
// 
// Uses the container's const_iterator, value_type, operator ==, 
// begin(), and end(). 
template <typename Container> 
class ContainerEqMatcher { 
 public: 
  typedef internal::StlContainerView<Container> View; 
  typedef typename View::type StlContainer; 
  typedef typename View::const_reference StlContainerReference; 
 
  static_assert(!std::is_const<Container>::value,
                "Container type must not be const");
  static_assert(!std::is_reference<Container>::value,
                "Container type must not be a reference");

  // We make a copy of expected in case the elements in it are modified 
  // after this matcher is created. 
  explicit ContainerEqMatcher(const Container& expected) 
      : expected_(View::Copy(expected)) {}
 
  void DescribeTo(::std::ostream* os) const { 
    *os << "equals "; 
    UniversalPrint(expected_, os); 
  } 
  void DescribeNegationTo(::std::ostream* os) const { 
    *os << "does not equal "; 
    UniversalPrint(expected_, os); 
  } 
 
  template <typename LhsContainer> 
  bool MatchAndExplain(const LhsContainer& lhs, 
                       MatchResultListener* listener) const { 
    typedef internal::StlContainerView<
        typename std::remove_const<LhsContainer>::type>
        LhsView; 
    typedef typename LhsView::type LhsStlContainer; 
    StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); 
    if (lhs_stl_container == expected_) 
      return true; 
 
    ::std::ostream* const os = listener->stream(); 
    if (os != nullptr) {
      // Something is different. Check for extra values first. 
      bool printed_header = false; 
      for (typename LhsStlContainer::const_iterator it = 
               lhs_stl_container.begin(); 
           it != lhs_stl_container.end(); ++it) { 
        if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == 
            expected_.end()) { 
          if (printed_header) { 
            *os << ", "; 
          } else { 
            *os << "which has these unexpected elements: "; 
            printed_header = true; 
          } 
          UniversalPrint(*it, os); 
        } 
      } 
 
      // Now check for missing values. 
      bool printed_header2 = false; 
      for (typename StlContainer::const_iterator it = expected_.begin(); 
           it != expected_.end(); ++it) { 
        if (internal::ArrayAwareFind( 
                lhs_stl_container.begin(), lhs_stl_container.end(), *it) == 
            lhs_stl_container.end()) { 
          if (printed_header2) { 
            *os << ", "; 
          } else { 
            *os << (printed_header ? ",\nand" : "which") 
                << " doesn't have these expected elements: "; 
            printed_header2 = true; 
          } 
          UniversalPrint(*it, os); 
        } 
      } 
    } 
 
    return false; 
  } 
 
 private: 
  const StlContainer expected_; 
}; 
 
// A comparator functor that uses the < operator to compare two values. 
struct LessComparator { 
  template <typename T, typename U> 
  bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } 
}; 
 
// Implements WhenSortedBy(comparator, container_matcher). 
template <typename Comparator, typename ContainerMatcher> 
class WhenSortedByMatcher { 
 public: 
  WhenSortedByMatcher(const Comparator& comparator, 
                      const ContainerMatcher& matcher) 
      : comparator_(comparator), matcher_(matcher) {} 
 
  template <typename LhsContainer> 
  operator Matcher<LhsContainer>() const { 
    return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); 
  } 
 
  template <typename LhsContainer> 
  class Impl : public MatcherInterface<LhsContainer> { 
   public: 
    typedef internal::StlContainerView< 
         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; 
    typedef typename LhsView::type LhsStlContainer; 
    typedef typename LhsView::const_reference LhsStlContainerReference; 
    // Transforms std::pair<const Key, Value> into std::pair<Key, Value> 
    // so that we can match associative containers. 
    typedef typename RemoveConstFromKey< 
        typename LhsStlContainer::value_type>::type LhsValue; 
 
    Impl(const Comparator& comparator, const ContainerMatcher& matcher) 
        : comparator_(comparator), matcher_(matcher) {} 
 
    void DescribeTo(::std::ostream* os) const override {
      *os << "(when sorted) "; 
      matcher_.DescribeTo(os); 
    } 
 
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "(when sorted) "; 
      matcher_.DescribeNegationTo(os); 
    } 
 
    bool MatchAndExplain(LhsContainer lhs,
                         MatchResultListener* listener) const override {
      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); 
      ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), 
                                               lhs_stl_container.end()); 
      ::std::sort( 
           sorted_container.begin(), sorted_container.end(), comparator_); 
 
      if (!listener->IsInterested()) { 
        // If the listener is not interested, we do not need to 
        // construct the inner explanation. 
        return matcher_.Matches(sorted_container); 
      } 
 
      *listener << "which is "; 
      UniversalPrint(sorted_container, listener->stream()); 
      *listener << " when sorted"; 
 
      StringMatchResultListener inner_listener; 
      const bool match = matcher_.MatchAndExplain(sorted_container, 
                                                  &inner_listener); 
      PrintIfNotEmpty(inner_listener.str(), listener->stream()); 
      return match; 
    } 
 
   private: 
    const Comparator comparator_; 
    const Matcher<const ::std::vector<LhsValue>&> matcher_; 
 
    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); 
  }; 
 
 private: 
  const Comparator comparator_; 
  const ContainerMatcher matcher_; 
}; 
 
// Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher 
// must be able to be safely cast to Matcher<std::tuple<const T1&, const
// T2&> >, where T1 and T2 are the types of elements in the LHS 
// container and the RHS container respectively. 
template <typename TupleMatcher, typename RhsContainer> 
class PointwiseMatcher { 
  GTEST_COMPILE_ASSERT_(
      !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
      use_UnorderedPointwise_with_hash_tables);

 public: 
  typedef internal::StlContainerView<RhsContainer> RhsView; 
  typedef typename RhsView::type RhsStlContainer; 
  typedef typename RhsStlContainer::value_type RhsValue; 
 
  static_assert(!std::is_const<RhsContainer>::value,
                "RhsContainer type must not be const");
  static_assert(!std::is_reference<RhsContainer>::value,
                "RhsContainer type must not be a reference");

  // Like ContainerEq, we make a copy of rhs in case the elements in 
  // it are modified after this matcher is created. 
  PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) 
      : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
 
  template <typename LhsContainer> 
  operator Matcher<LhsContainer>() const { 
    GTEST_COMPILE_ASSERT_(
        !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
        use_UnorderedPointwise_with_hash_tables);

    return Matcher<LhsContainer>(
        new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
  } 
 
  template <typename LhsContainer> 
  class Impl : public MatcherInterface<LhsContainer> { 
   public: 
    typedef internal::StlContainerView< 
         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; 
    typedef typename LhsView::type LhsStlContainer; 
    typedef typename LhsView::const_reference LhsStlContainerReference; 
    typedef typename LhsStlContainer::value_type LhsValue; 
    // We pass the LHS value and the RHS value to the inner matcher by 
    // reference, as they may be expensive to copy.  We must use tuple 
    // instead of pair here, as a pair cannot hold references (C++ 98, 
    // 20.2.2 [lib.pairs]). 
    typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
 
    Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) 
        // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. 
        : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), 
          rhs_(rhs) {} 
 
    void DescribeTo(::std::ostream* os) const override {
      *os << "contains " << rhs_.size() 
          << " values, where each value and its corresponding value in "; 
      UniversalPrinter<RhsStlContainer>::Print(rhs_, os); 
      *os << " "; 
      mono_tuple_matcher_.DescribeTo(os); 
    } 
    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "doesn't contain exactly " << rhs_.size() 
          << " values, or contains a value x at some index i" 
          << " where x and the i-th value of "; 
      UniversalPrint(rhs_, os); 
      *os << " "; 
      mono_tuple_matcher_.DescribeNegationTo(os); 
    } 
 
    bool MatchAndExplain(LhsContainer lhs,
                         MatchResultListener* listener) const override {
      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); 
      const size_t actual_size = lhs_stl_container.size(); 
      if (actual_size != rhs_.size()) { 
        *listener << "which contains " << actual_size << " values"; 
        return false; 
      } 
 
      typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); 
      typename RhsStlContainer::const_iterator right = rhs_.begin(); 
      for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { 
        if (listener->IsInterested()) { 
          StringMatchResultListener inner_listener; 
          // Create InnerMatcherArg as a temporarily object to avoid it outlives
          // *left and *right. Dereference or the conversion to `const T&` may
          // return temp objects, e.g for vector<bool>.
          if (!mono_tuple_matcher_.MatchAndExplain( 
                  InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
                                  ImplicitCast_<const RhsValue&>(*right)),
                  &inner_listener)) {
            *listener << "where the value pair ("; 
            UniversalPrint(*left, listener->stream()); 
            *listener << ", "; 
            UniversalPrint(*right, listener->stream()); 
            *listener << ") at index #" << i << " don't match"; 
            PrintIfNotEmpty(inner_listener.str(), listener->stream()); 
            return false; 
          } 
        } else { 
          if (!mono_tuple_matcher_.Matches(
                  InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
                                  ImplicitCast_<const RhsValue&>(*right))))
            return false; 
        } 
      } 
 
      return true; 
    } 
 
   private: 
    const Matcher<InnerMatcherArg> mono_tuple_matcher_; 
    const RhsStlContainer rhs_; 
  }; 
 
 private: 
  const TupleMatcher tuple_matcher_; 
  const RhsStlContainer rhs_; 
}; 
 
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. 
template <typename Container> 
class QuantifierMatcherImpl : public MatcherInterface<Container> { 
 public: 
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
  typedef StlContainerView<RawContainer> View; 
  typedef typename View::type StlContainer; 
  typedef typename View::const_reference StlContainerReference; 
  typedef typename StlContainer::value_type Element; 
 
  template <typename InnerMatcher> 
  explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) 
      : inner_matcher_( 
           testing::SafeMatcherCast<const Element&>(inner_matcher)) {} 
 
  // Checks whether: 
  // * All elements in the container match, if all_elements_should_match. 
  // * Any element in the container matches, if !all_elements_should_match. 
  bool MatchAndExplainImpl(bool all_elements_should_match, 
                           Container container, 
                           MatchResultListener* listener) const { 
    StlContainerReference stl_container = View::ConstReference(container); 
    size_t i = 0; 
    for (typename StlContainer::const_iterator it = stl_container.begin(); 
         it != stl_container.end(); ++it, ++i) { 
      StringMatchResultListener inner_listener; 
      const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); 
 
      if (matches != all_elements_should_match) { 
        *listener << "whose element #" << i 
                  << (matches ? " matches" : " doesn't match"); 
        PrintIfNotEmpty(inner_listener.str(), listener->stream()); 
        return !all_elements_should_match; 
      } 
    } 
    return all_elements_should_match; 
  } 
 
 protected: 
  const Matcher<const Element&> inner_matcher_; 
}; 
 
// Implements Contains(element_matcher) for the given argument type Container. 
// Symmetric to EachMatcherImpl. 
template <typename Container> 
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { 
 public: 
  template <typename InnerMatcher> 
  explicit ContainsMatcherImpl(InnerMatcher inner_matcher) 
      : QuantifierMatcherImpl<Container>(inner_matcher) {} 
 
  // Describes what this matcher does. 
  void DescribeTo(::std::ostream* os) const override {
    *os << "contains at least one element that "; 
    this->inner_matcher_.DescribeTo(os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const override {
    *os << "doesn't contain any element that "; 
    this->inner_matcher_.DescribeTo(os); 
  } 
 
  bool MatchAndExplain(Container container,
                       MatchResultListener* listener) const override {
    return this->MatchAndExplainImpl(false, container, listener); 
  } 
}; 
 
// Implements Each(element_matcher) for the given argument type Container. 
// Symmetric to ContainsMatcherImpl. 
template <typename Container> 
class EachMatcherImpl : public QuantifierMatcherImpl<Container> { 
 public: 
  template <typename InnerMatcher> 
  explicit EachMatcherImpl(InnerMatcher inner_matcher) 
      : QuantifierMatcherImpl<Container>(inner_matcher) {} 
 
  // Describes what this matcher does. 
  void DescribeTo(::std::ostream* os) const override {
    *os << "only contains elements that "; 
    this->inner_matcher_.DescribeTo(os); 
  } 
 
  void DescribeNegationTo(::std::ostream* os) const override {
    *os << "contains some element that "; 
    this->inner_matcher_.DescribeNegationTo(os); 
  } 
 
  bool MatchAndExplain(Container container,
                       MatchResultListener* listener) const override {
    return this->MatchAndExplainImpl(true, container, listener); 
  } 
}; 
 
// Implements polymorphic Contains(element_matcher). 
template <typename M> 
class ContainsMatcher { 
 public: 
  explicit ContainsMatcher(M m) : inner_matcher_(m) {} 
 
  template <typename Container> 
  operator Matcher<Container>() const { 
    return Matcher<Container>(
        new ContainsMatcherImpl<const Container&>(inner_matcher_));
  } 
 
 private: 
  const M inner_matcher_; 
}; 
 
// Implements polymorphic Each(element_matcher). 
template <typename M> 
class EachMatcher { 
 public: 
  explicit EachMatcher(M m) : inner_matcher_(m) {} 
 
  template <typename Container> 
  operator Matcher<Container>() const { 
    return Matcher<Container>(
        new EachMatcherImpl<const Container&>(inner_matcher_));
  } 
 
 private: 
  const M inner_matcher_; 
}; 
 
struct Rank1 {};
struct Rank0 : Rank1 {};

namespace pair_getters {
using std::get;
template <typename T>
auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT
  return get<0>(x);
}
template <typename T>
auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT
  return x.first;
}

template <typename T>
auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT
  return get<1>(x);
}
template <typename T>
auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT
  return x.second;
}
}  // namespace pair_getters

// Implements Key(inner_matcher) for the given argument pair type. 
// Key(inner_matcher) matches an std::pair whose 'first' field matches 
// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an 
// std::map that contains at least one element whose key is >= 5. 
template <typename PairType> 
class KeyMatcherImpl : public MatcherInterface<PairType> { 
 public: 
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; 
  typedef typename RawPairType::first_type KeyType; 
 
  template <typename InnerMatcher> 
  explicit KeyMatcherImpl(InnerMatcher inner_matcher) 
      : inner_matcher_( 
          testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { 
  } 
 
  // Returns true if and only if 'key_value.first' (the key) matches the inner
  // matcher.
  bool MatchAndExplain(PairType key_value,
                       MatchResultListener* listener) const override {
    StringMatchResultListener inner_listener; 
    const bool match = inner_matcher_.MatchAndExplain(
        pair_getters::First(key_value, Rank0()), &inner_listener);
    const std::string explanation = inner_listener.str();
    if (explanation != "") { 
      *listener << "whose first field is a value " << explanation; 
    } 
    return match; 
  } 
 
  // Describes what this matcher does. 
  void DescribeTo(::std::ostream* os) const override {
    *os << "has a key that "; 
    inner_matcher_.DescribeTo(os); 
  } 
 
  // Describes what the negation of this matcher does. 
  void DescribeNegationTo(::std::ostream* os) const override {
    *os << "doesn't have a key that "; 
    inner_matcher_.DescribeTo(os); 
  } 
 
 private: 
  const Matcher<const KeyType&> inner_matcher_; 
}; 
 
// Implements polymorphic Key(matcher_for_key). 
template <typename M> 
class KeyMatcher { 
 public: 
  explicit KeyMatcher(M m) : matcher_for_key_(m) {} 
 
  template <typename PairType> 
  operator Matcher<PairType>() const { 
    return Matcher<PairType>(
        new KeyMatcherImpl<const PairType&>(matcher_for_key_));
  } 
 
 private: 
  const M matcher_for_key_; 
}; 
 
// Implements polymorphic Address(matcher_for_address).
template <typename InnerMatcher>
class AddressMatcher {
 public:
  explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}

  template <typename Type>
  operator Matcher<Type>() const {  // NOLINT
    return Matcher<Type>(new Impl<const Type&>(matcher_));
  }

 private:
  // The monomorphic implementation that works for a particular object type.
  template <typename Type>
  class Impl : public MatcherInterface<Type> {
   public:
    using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
    explicit Impl(const InnerMatcher& matcher)
        : matcher_(MatcherCast<Address>(matcher)) {}

    void DescribeTo(::std::ostream* os) const override {
      *os << "has address that ";
      matcher_.DescribeTo(os);
    }

    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "does not have address that ";
      matcher_.DescribeTo(os);
    }

    bool MatchAndExplain(Type object,
                         MatchResultListener* listener) const override {
      *listener << "which has address ";
      Address address = std::addressof(object);
      return MatchPrintAndExplain(address, matcher_, listener);
    }

   private:
    const Matcher<Address> matcher_;
  };
  const InnerMatcher matcher_;
};

// Implements Pair(first_matcher, second_matcher) for the given argument pair 
// type with its two matchers. See Pair() function below. 
template <typename PairType> 
class PairMatcherImpl : public MatcherInterface<PairType> { 
 public: 
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; 
  typedef typename RawPairType::first_type FirstType; 
  typedef typename RawPairType::second_type SecondType; 
 
  template <typename FirstMatcher, typename SecondMatcher> 
  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) 
      : first_matcher_( 
            testing::SafeMatcherCast<const FirstType&>(first_matcher)), 
        second_matcher_( 
            testing::SafeMatcherCast<const SecondType&>(second_matcher)) { 
  } 
 
  // Describes what this matcher does. 
  void DescribeTo(::std::ostream* os) const override {
    *os << "has a first field that "; 
    first_matcher_.DescribeTo(os); 
    *os << ", and has a second field that "; 
    second_matcher_.DescribeTo(os); 
  } 
 
  // Describes what the negation of this matcher does. 
  void DescribeNegationTo(::std::ostream* os) const override {
    *os << "has a first field that "; 
    first_matcher_.DescribeNegationTo(os); 
    *os << ", or has a second field that "; 
    second_matcher_.DescribeNegationTo(os); 
  } 
 
  // Returns true if and only if 'a_pair.first' matches first_matcher and
  // 'a_pair.second' matches second_matcher.
  bool MatchAndExplain(PairType a_pair,
                       MatchResultListener* listener) const override {
    if (!listener->IsInterested()) { 
      // If the listener is not interested, we don't need to construct the 
      // explanation. 
      return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
             second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
    } 
    StringMatchResultListener first_inner_listener; 
    if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
                                        &first_inner_listener)) { 
      *listener << "whose first field does not match"; 
      PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); 
      return false; 
    } 
    StringMatchResultListener second_inner_listener; 
    if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
                                         &second_inner_listener)) { 
      *listener << "whose second field does not match"; 
      PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); 
      return false; 
    } 
    ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), 
                   listener); 
    return true; 
  } 
 
 private: 
  void ExplainSuccess(const std::string& first_explanation,
                      const std::string& second_explanation,
                      MatchResultListener* listener) const { 
    *listener << "whose both fields match"; 
    if (first_explanation != "") { 
      *listener << ", where the first field is a value " << first_explanation; 
    } 
    if (second_explanation != "") { 
      *listener << ", "; 
      if (first_explanation != "") { 
        *listener << "and "; 
      } else { 
        *listener << "where "; 
      } 
      *listener << "the second field is a value " << second_explanation; 
    } 
  } 
 
  const Matcher<const FirstType&> first_matcher_; 
  const Matcher<const SecondType&> second_matcher_; 
}; 
 
// Implements polymorphic Pair(first_matcher, second_matcher). 
template <typename FirstMatcher, typename SecondMatcher> 
class PairMatcher { 
 public: 
  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) 
      : first_matcher_(first_matcher), second_matcher_(second_matcher) {} 
 
  template <typename PairType> 
  operator Matcher<PairType> () const { 
    return Matcher<PairType>(
        new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
  } 
 
 private: 
  const FirstMatcher first_matcher_; 
  const SecondMatcher second_matcher_; 
}; 
 
template <typename T, size_t... I>
auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
    -> decltype(std::tie(get<I>(t)...)) {
  static_assert(std::tuple_size<T>::value == sizeof...(I),
                "Number of arguments doesn't match the number of fields.");
  return std::tie(get<I>(t)...);
}

#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
  const auto& [a] = t;
  return std::tie(a);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
  const auto& [a, b] = t;
  return std::tie(a, b);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
  const auto& [a, b, c] = t;
  return std::tie(a, b, c);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
  const auto& [a, b, c, d] = t;
  return std::tie(a, b, c, d);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
  const auto& [a, b, c, d, e] = t;
  return std::tie(a, b, c, d, e);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
  const auto& [a, b, c, d, e, f] = t;
  return std::tie(a, b, c, d, e, f);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
  const auto& [a, b, c, d, e, f, g] = t;
  return std::tie(a, b, c, d, e, f, g);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
  const auto& [a, b, c, d, e, f, g, h] = t;
  return std::tie(a, b, c, d, e, f, g, h);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
  const auto& [a, b, c, d, e, f, g, h, i] = t;
  return std::tie(a, b, c, d, e, f, g, h, i);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
  const auto& [a, b, c, d, e, f, g, h, i, j] = t;
  return std::tie(a, b, c, d, e, f, g, h, i, j);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
  const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
  return std::tie(a, b, c, d, e, f, g, h, i, j, k);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
  const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
}
template <typename T>
auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
  const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
  return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
}
#endif  // defined(__cpp_structured_bindings)

template <size_t I, typename T>
auto UnpackStruct(const T& t)
    -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
  return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
}

// Helper function to do comma folding in C++11.
// The array ensures left-to-right order of evaluation.
// Usage: VariadicExpand({expr...});
template <typename T, size_t N>
void VariadicExpand(const T (&)[N]) {}

template <typename Struct, typename StructSize>
class FieldsAreMatcherImpl;

template <typename Struct, size_t... I>
class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
    : public MatcherInterface<Struct> {
  using UnpackedType =
      decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
  using MatchersType = std::tuple<
      Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;

 public:
  template <typename Inner>
  explicit FieldsAreMatcherImpl(const Inner& matchers)
      : matchers_(testing::SafeMatcherCast<
                  const typename std::tuple_element<I, UnpackedType>::type&>(
            std::get<I>(matchers))...) {}

  void DescribeTo(::std::ostream* os) const override {
    const char* separator = "";
    VariadicExpand(
        {(*os << separator << "has field #" << I << " that ",
          std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
  }

  void DescribeNegationTo(::std::ostream* os) const override {
    const char* separator = "";
    VariadicExpand({(*os << separator << "has field #" << I << " that ",
                     std::get<I>(matchers_).DescribeNegationTo(os),
                     separator = ", or ")...});
  }

  bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
    return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
  }

 private:
  bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
    if (!listener->IsInterested()) {
      // If the listener is not interested, we don't need to construct the
      // explanation.
      bool good = true;
      VariadicExpand({good = good && std::get<I>(matchers_).Matches(
                                         std::get<I>(tuple))...});
      return good;
    }

    size_t failed_pos = ~size_t{};

    std::vector<StringMatchResultListener> inner_listener(sizeof...(I));

    VariadicExpand(
        {failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
                                        std::get<I>(tuple), &inner_listener[I])
             ? failed_pos = I
             : 0 ...});
    if (failed_pos != ~size_t{}) {
      *listener << "whose field #" << failed_pos << " does not match";
      PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
      return false;
    }

    *listener << "whose all elements match";
    const char* separator = ", where";
    for (size_t index = 0; index < sizeof...(I); ++index) {
      const std::string str = inner_listener[index].str();
      if (!str.empty()) {
        *listener << separator << " field #" << index << " is a value " << str;
        separator = ", and";
      }
    }

    return true;
  }

  MatchersType matchers_;
};

template <typename... Inner>
class FieldsAreMatcher {
 public:
  explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}

  template <typename Struct>
  operator Matcher<Struct>() const {  // NOLINT
    return Matcher<Struct>(
        new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
            matchers_));
  }

 private:
  std::tuple<Inner...> matchers_;
};

// Implements ElementsAre() and ElementsAreArray(). 
template <typename Container> 
class ElementsAreMatcherImpl : public MatcherInterface<Container> { 
 public: 
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
  typedef internal::StlContainerView<RawContainer> View; 
  typedef typename View::type StlContainer; 
  typedef typename View::const_reference StlContainerReference; 
  typedef typename StlContainer::value_type Element; 
 
  // Constructs the matcher from a sequence of element values or 
  // element matchers. 
  template <typename InputIter> 
  ElementsAreMatcherImpl(InputIter first, InputIter last) { 
    while (first != last) { 
      matchers_.push_back(MatcherCast<const Element&>(*first++)); 
    } 
  } 
 
  // Describes what this matcher does. 
  void DescribeTo(::std::ostream* os) const override {
    if (count() == 0) { 
      *os << "is empty"; 
    } else if (count() == 1) { 
      *os << "has 1 element that "; 
      matchers_[0].DescribeTo(os); 
    } else { 
      *os << "has " << Elements(count()) << " where\n"; 
      for (size_t i = 0; i != count(); ++i) { 
        *os << "element #" << i << " "; 
        matchers_[i].DescribeTo(os); 
        if (i + 1 < count()) { 
          *os << ",\n"; 
        } 
      } 
    } 
  } 
 
  // Describes what the negation of this matcher does. 
  void DescribeNegationTo(::std::ostream* os) const override {
    if (count() == 0) { 
      *os << "isn't empty"; 
      return; 
    } 
 
    *os << "doesn't have " << Elements(count()) << ", or\n"; 
    for (size_t i = 0; i != count(); ++i) { 
      *os << "element #" << i << " "; 
      matchers_[i].DescribeNegationTo(os); 
      if (i + 1 < count()) { 
        *os << ", or\n"; 
      } 
    } 
  } 
 
  bool MatchAndExplain(Container container,
                       MatchResultListener* listener) const override {
    // To work with stream-like "containers", we must only walk 
    // through the elements in one pass. 
 
    const bool listener_interested = listener->IsInterested(); 
 
    // explanations[i] is the explanation of the element at index i. 
    ::std::vector<std::string> explanations(count());
    StlContainerReference stl_container = View::ConstReference(container); 
    typename StlContainer::const_iterator it = stl_container.begin(); 
    size_t exam_pos = 0; 
    bool mismatch_found = false;  // Have we found a mismatched element yet? 
 
    // Go through the elements and matchers in pairs, until we reach 
    // the end of either the elements or the matchers, or until we find a 
    // mismatch. 
    for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { 
      bool match;  // Does the current element match the current matcher? 
      if (listener_interested) { 
        StringMatchResultListener s; 
        match = matchers_[exam_pos].MatchAndExplain(*it, &s); 
        explanations[exam_pos] = s.str(); 
      } else { 
        match = matchers_[exam_pos].Matches(*it); 
      } 
 
      if (!match) { 
        mismatch_found = true; 
        break; 
      } 
    } 
    // If mismatch_found is true, 'exam_pos' is the index of the mismatch. 
 
    // Find how many elements the actual container has.  We avoid 
    // calling size() s.t. this code works for stream-like "containers" 
    // that don't define size(). 
    size_t actual_count = exam_pos; 
    for (; it != stl_container.end(); ++it) { 
      ++actual_count; 
    } 
 
    if (actual_count != count()) { 
      // The element count doesn't match.  If the container is empty, 
      // there's no need to explain anything as Google Mock already 
      // prints the empty container.  Otherwise we just need to show 
      // how many elements there actually are. 
      if (listener_interested && (actual_count != 0)) { 
        *listener << "which has " << Elements(actual_count); 
      } 
      return false; 
    } 
 
    if (mismatch_found) { 
      // The element count matches, but the exam_pos-th element doesn't match. 
      if (listener_interested) { 
        *listener << "whose element #" << exam_pos << " doesn't match"; 
        PrintIfNotEmpty(explanations[exam_pos], listener->stream()); 
      } 
      return false; 
    } 
 
    // Every element matches its expectation.  We need to explain why 
    // (the obvious ones can be skipped). 
    if (listener_interested) { 
      bool reason_printed = false; 
      for (size_t i = 0; i != count(); ++i) { 
        const std::string& s = explanations[i];
        if (!s.empty()) { 
          if (reason_printed) { 
            *listener << ",\nand "; 
          } 
          *listener << "whose element #" << i << " matches, " << s; 
          reason_printed = true; 
        } 
      } 
    } 
    return true; 
  } 
 
 private: 
  static Message Elements(size_t count) { 
    return Message() << count << (count == 1 ? " element" : " elements"); 
  } 
 
  size_t count() const { return matchers_.size(); } 
 
  ::std::vector<Matcher<const Element&> > matchers_; 
}; 
 
// Connectivity matrix of (elements X matchers), in element-major order. 
// Initially, there are no edges. 
// Use NextGraph() to iterate over all possible edge configurations. 
// Use Randomize() to generate a random edge configuration. 
class GTEST_API_ MatchMatrix { 
 public: 
  MatchMatrix(size_t num_elements, size_t num_matchers) 
      : num_elements_(num_elements), 
        num_matchers_(num_matchers), 
        matched_(num_elements_* num_matchers_, 0) { 
  } 
 
  size_t LhsSize() const { return num_elements_; } 
  size_t RhsSize() const { return num_matchers_; } 
  bool HasEdge(size_t ilhs, size_t irhs) const { 
    return matched_[SpaceIndex(ilhs, irhs)] == 1; 
  } 
  void SetEdge(size_t ilhs, size_t irhs, bool b) { 
    matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; 
  } 
 
  // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, 
  // adds 1 to that number; returns false if incrementing the graph left it 
  // empty. 
  bool NextGraph(); 
 
  void Randomize(); 
 
  std::string DebugString() const;
 
 private: 
  size_t SpaceIndex(size_t ilhs, size_t irhs) const { 
    return ilhs * num_matchers_ + irhs; 
  } 
 
  size_t num_elements_; 
  size_t num_matchers_; 
 
  // Each element is a char interpreted as bool. They are stored as a 
  // flattened array in lhs-major order, use 'SpaceIndex()' to translate 
  // a (ilhs, irhs) matrix coordinate into an offset. 
  ::std::vector<char> matched_; 
}; 
 
typedef ::std::pair<size_t, size_t> ElementMatcherPair; 
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; 
 
// Returns a maximum bipartite matching for the specified graph 'g'. 
// The matching is represented as a vector of {element, matcher} pairs. 
GTEST_API_ ElementMatcherPairs 
FindMaxBipartiteMatching(const MatchMatrix& g); 
 
struct UnorderedMatcherRequire {
  enum Flags {
    Superset = 1 << 0,
    Subset = 1 << 1,
    ExactMatch = Superset | Subset,
  };
};
 
// Untyped base class for implementing UnorderedElementsAre.  By 
// putting logic that's not specific to the element type here, we 
// reduce binary bloat and increase compilation speed. 
class GTEST_API_ UnorderedElementsAreMatcherImplBase { 
 protected: 
  explicit UnorderedElementsAreMatcherImplBase(
      UnorderedMatcherRequire::Flags matcher_flags)
      : match_flags_(matcher_flags) {}

  // A vector of matcher describers, one for each element matcher. 
  // Does not own the describers (and thus can be used only when the 
  // element matchers are alive). 
  typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; 
 
  // Describes this UnorderedElementsAre matcher. 
  void DescribeToImpl(::std::ostream* os) const; 
 
  // Describes the negation of this UnorderedElementsAre matcher. 
  void DescribeNegationToImpl(::std::ostream* os) const; 
 
  bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
                         const MatchMatrix& matrix,
                         MatchResultListener* listener) const;
 
  bool FindPairing(const MatchMatrix& matrix,
                   MatchResultListener* listener) const;

  MatcherDescriberVec& matcher_describers() { 
    return matcher_describers_; 
  } 
 
  static Message Elements(size_t n) { 
    return Message() << n << " element" << (n == 1 ? "" : "s"); 
  } 
 
  UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }

 private: 
  UnorderedMatcherRequire::Flags match_flags_;
  MatcherDescriberVec matcher_describers_; 
}; 
 
// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
// IsSupersetOf.
template <typename Container> 
class UnorderedElementsAreMatcherImpl 
    : public MatcherInterface<Container>, 
      public UnorderedElementsAreMatcherImplBase { 
 public: 
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
  typedef internal::StlContainerView<RawContainer> View; 
  typedef typename View::type StlContainer; 
  typedef typename View::const_reference StlContainerReference; 
  typedef typename StlContainer::const_iterator StlContainerConstIterator; 
  typedef typename StlContainer::value_type Element; 
 
  template <typename InputIter> 
  UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
                                  InputIter first, InputIter last)
      : UnorderedElementsAreMatcherImplBase(matcher_flags) {
    for (; first != last; ++first) { 
      matchers_.push_back(MatcherCast<const Element&>(*first)); 
    } 
    for (const auto& m : matchers_) {
      matcher_describers().push_back(m.GetDescriber());
    }
  } 
 
  // Describes what this matcher does. 
  void DescribeTo(::std::ostream* os) const override {
    return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); 
  } 
 
  // Describes what the negation of this matcher does. 
  void DescribeNegationTo(::std::ostream* os) const override {
    return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); 
  } 
 
  bool MatchAndExplain(Container container,
                       MatchResultListener* listener) const override {
    StlContainerReference stl_container = View::ConstReference(container); 
    ::std::vector<std::string> element_printouts;
    MatchMatrix matrix =
        AnalyzeElements(stl_container.begin(), stl_container.end(),
                        &element_printouts, listener);
 
    if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
      return true; 
    } 

    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
      if (matrix.LhsSize() != matrix.RhsSize()) {
        // The element count doesn't match.  If the container is empty,
        // there's no need to explain anything as Google Mock already
        // prints the empty container. Otherwise we just need to show
        // how many elements there actually are.
        if (matrix.LhsSize() != 0 && listener->IsInterested()) {
          *listener << "which has " << Elements(matrix.LhsSize());
        }
        return false;
      } 
    } 
 
    return VerifyMatchMatrix(element_printouts, matrix, listener) &&
           FindPairing(matrix, listener); 
  } 
 
 private: 
  template <typename ElementIter> 
  MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, 
                              ::std::vector<std::string>* element_printouts,
                              MatchResultListener* listener) const { 
    element_printouts->clear(); 
    ::std::vector<char> did_match; 
    size_t num_elements = 0; 
    DummyMatchResultListener dummy;
    for (; elem_first != elem_last; ++num_elements, ++elem_first) { 
      if (listener->IsInterested()) { 
        element_printouts->push_back(PrintToString(*elem_first)); 
      } 
      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { 
        did_match.push_back(
            matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
      } 
    } 
 
    MatchMatrix matrix(num_elements, matchers_.size()); 
    ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); 
    for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { 
      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { 
        matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); 
      } 
    } 
    return matrix; 
  } 
 
  ::std::vector<Matcher<const Element&> > matchers_;
}; 
 
// Functor for use in TransformTuple. 
// Performs MatcherCast<Target> on an input argument of any type. 
template <typename Target> 
struct CastAndAppendTransform { 
  template <typename Arg> 
  Matcher<Target> operator()(const Arg& a) const { 
    return MatcherCast<Target>(a); 
  } 
}; 
 
// Implements UnorderedElementsAre. 
template <typename MatcherTuple> 
class UnorderedElementsAreMatcher { 
 public: 
  explicit UnorderedElementsAreMatcher(const MatcherTuple& args) 
      : matchers_(args) {} 
 
  template <typename Container> 
  operator Matcher<Container>() const { 
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
    typedef typename internal::StlContainerView<RawContainer>::type View; 
    typedef typename View::value_type Element; 
    typedef ::std::vector<Matcher<const Element&> > MatcherVec; 
    MatcherVec matchers; 
    matchers.reserve(::std::tuple_size<MatcherTuple>::value);
    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, 
                         ::std::back_inserter(matchers)); 
    return Matcher<Container>(
        new UnorderedElementsAreMatcherImpl<const Container&>(
            UnorderedMatcherRequire::ExactMatch, matchers.begin(),
            matchers.end()));
  } 
 
 private: 
  const MatcherTuple matchers_; 
}; 
 
// Implements ElementsAre. 
template <typename MatcherTuple> 
class ElementsAreMatcher { 
 public: 
  explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} 
 
  template <typename Container> 
  operator Matcher<Container>() const { 
    GTEST_COMPILE_ASSERT_(
        !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
            ::std::tuple_size<MatcherTuple>::value < 2,
        use_UnorderedElementsAre_with_hash_tables);

    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; 
    typedef typename internal::StlContainerView<RawContainer>::type View; 
    typedef typename View::value_type Element; 
    typedef ::std::vector<Matcher<const Element&> > MatcherVec; 
    MatcherVec matchers; 
    matchers.reserve(::std::tuple_size<MatcherTuple>::value);
    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, 
                         ::std::back_inserter(matchers)); 
    return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
        matchers.begin(), matchers.end()));
  } 
 
 private: 
  const MatcherTuple matchers_; 
}; 
 
// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
template <typename T> 
class UnorderedElementsAreArrayMatcher { 
 public: 
  template <typename Iter> 
  UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
                                   Iter first, Iter last)
      : match_flags_(match_flags), matchers_(first, last) {}
 
  template <typename Container> 
  operator Matcher<Container>() const { 
    return Matcher<Container>(
        new UnorderedElementsAreMatcherImpl<const Container&>(
            match_flags_, matchers_.begin(), matchers_.end()));
  } 
 
 private: 
  UnorderedMatcherRequire::Flags match_flags_;
  ::std::vector<T> matchers_; 
}; 
 
// Implements ElementsAreArray(). 
template <typename T> 
class ElementsAreArrayMatcher { 
 public: 
  template <typename Iter> 
  ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} 
 
  template <typename Container> 
  operator Matcher<Container>() const { 
    GTEST_COMPILE_ASSERT_(
        !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
        use_UnorderedElementsAreArray_with_hash_tables);

    return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
        matchers_.begin(), matchers_.end())); 
  } 
 
 private: 
  const ::std::vector<T> matchers_; 
}; 
 
// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second 
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, 
// second) is a polymorphic matcher that matches a value x if and only if
// tm matches tuple (x, second).  Useful for implementing
// UnorderedPointwise() in terms of UnorderedElementsAreArray(). 
// 
// BoundSecondMatcher is copyable and assignable, as we need to put 
// instances of this class in a vector when implementing 
// UnorderedPointwise(). 
template <typename Tuple2Matcher, typename Second> 
class BoundSecondMatcher { 
 public: 
  BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) 
      : tuple2_matcher_(tm), second_value_(second) {} 
 
  BoundSecondMatcher(const BoundSecondMatcher& other) = default;

  template <typename T> 
  operator Matcher<T>() const { 
    return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); 
  } 
 
  // We have to define this for UnorderedPointwise() to compile in 
  // C++98 mode, as it puts BoundSecondMatcher instances in a vector, 
  // which requires the elements to be assignable in C++98.  The 
  // compiler cannot generate the operator= for us, as Tuple2Matcher 
  // and Second may not be assignable. 
  // 
  // However, this should never be called, so the implementation just 
  // need to assert. 
  void operator=(const BoundSecondMatcher& /*rhs*/) { 
    GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; 
  } 
 
 private: 
  template <typename T> 
  class Impl : public MatcherInterface<T> { 
   public: 
    typedef ::std::tuple<T, Second> ArgTuple;
 
    Impl(const Tuple2Matcher& tm, const Second& second) 
        : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), 
          second_value_(second) {} 
 
    void DescribeTo(::std::ostream* os) const override {
      *os << "and "; 
      UniversalPrint(second_value_, os); 
      *os << " "; 
      mono_tuple2_matcher_.DescribeTo(os); 
    } 
 
    bool MatchAndExplain(T x, MatchResultListener* listener) const override {
      return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), 
                                                  listener); 
    } 
 
   private: 
    const Matcher<const ArgTuple&> mono_tuple2_matcher_; 
    const Second second_value_; 
  }; 
 
  const Tuple2Matcher tuple2_matcher_; 
  const Second second_value_; 
}; 
 
// Given a 2-tuple matcher tm and a value second, 
// MatcherBindSecond(tm, second) returns a matcher that matches a 
// value x if and only if tm matches tuple (x, second).  Useful for
// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
template <typename Tuple2Matcher, typename Second> 
BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( 
    const Tuple2Matcher& tm, const Second& second) { 
  return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); 
} 
 
// Returns the description for a matcher defined using the MATCHER*() 
// macro where the user-supplied description string is "", if 
// 'negation' is false; otherwise returns the description of the 
// negation of the matcher.  'param_values' contains a list of strings 
// that are the print-out of the matcher's parameters. 
GTEST_API_ std::string FormatMatcherDescription(bool negation,
                                                const char* matcher_name,
                                                const Strings& param_values);
 
// Implements a matcher that checks the value of a optional<> type variable.
template <typename ValueMatcher>
class OptionalMatcher {
 public:
  explicit OptionalMatcher(const ValueMatcher& value_matcher)
      : value_matcher_(value_matcher) {}

  template <typename Optional>
  operator Matcher<Optional>() const {
    return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
  }

  template <typename Optional>
  class Impl : public MatcherInterface<Optional> {
   public:
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
    typedef typename OptionalView::value_type ValueType;
    explicit Impl(const ValueMatcher& value_matcher)
        : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}

    void DescribeTo(::std::ostream* os) const override {
      *os << "value ";
      value_matcher_.DescribeTo(os);
    }

    void DescribeNegationTo(::std::ostream* os) const override {
      *os << "value ";
      value_matcher_.DescribeNegationTo(os);
    }

    bool MatchAndExplain(Optional optional,
                         MatchResultListener* listener) const override {
      if (!optional) {
        *listener << "which is not engaged";
        return false;
      }
      const ValueType& value = *optional;
      StringMatchResultListener value_listener;
      const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
      *listener << "whose value " << PrintToString(value)
                << (match ? " matches" : " doesn't match");
      PrintIfNotEmpty(value_listener.str(), listener->stream());
      return match;
    }

   private:
    const Matcher<ValueType> value_matcher_;
  };

 private:
  const ValueMatcher value_matcher_;
};

namespace variant_matcher {
// Overloads to allow VariantMatcher to do proper ADL lookup.
template <typename T>
void holds_alternative() {}
template <typename T>
void get() {}

// Implements a matcher that checks the value of a variant<> type variable.
template <typename T>
class VariantMatcher {
 public:
  explicit VariantMatcher(::testing::Matcher<const T&> matcher)
      : matcher_(std::move(matcher)) {}

  template <typename Variant>
  bool MatchAndExplain(const Variant& value,
                       ::testing::MatchResultListener* listener) const {
    using std::get;
    if (!listener->IsInterested()) {
      return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
    }

    if (!holds_alternative<T>(value)) {
      *listener << "whose value is not of type '" << GetTypeName() << "'";
      return false;
    }

    const T& elem = get<T>(value);
    StringMatchResultListener elem_listener;
    const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
    *listener << "whose value " << PrintToString(elem)
              << (match ? " matches" : " doesn't match");
    PrintIfNotEmpty(elem_listener.str(), listener->stream());
    return match;
  }

  void DescribeTo(std::ostream* os) const {
    *os << "is a variant<> with value of type '" << GetTypeName()
        << "' and the value ";
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(std::ostream* os) const {
    *os << "is a variant<> with value of type other than '" << GetTypeName()
        << "' or the value ";
    matcher_.DescribeNegationTo(os);
  }

 private:
  static std::string GetTypeName() {
#if GTEST_HAS_RTTI
    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
        return internal::GetTypeName<T>());
#endif
    return "the element type";
  }

  const ::testing::Matcher<const T&> matcher_;
};

}  // namespace variant_matcher

namespace any_cast_matcher {

// Overloads to allow AnyCastMatcher to do proper ADL lookup.
template <typename T>
void any_cast() {}

// Implements a matcher that any_casts the value.
template <typename T>
class AnyCastMatcher {
 public:
  explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
      : matcher_(matcher) {}

  template <typename AnyType>
  bool MatchAndExplain(const AnyType& value,
                       ::testing::MatchResultListener* listener) const {
    if (!listener->IsInterested()) {
      const T* ptr = any_cast<T>(&value);
      return ptr != nullptr && matcher_.Matches(*ptr);
    }

    const T* elem = any_cast<T>(&value);
    if (elem == nullptr) {
      *listener << "whose value is not of type '" << GetTypeName() << "'";
      return false;
    }

    StringMatchResultListener elem_listener;
    const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
    *listener << "whose value " << PrintToString(*elem)
              << (match ? " matches" : " doesn't match");
    PrintIfNotEmpty(elem_listener.str(), listener->stream());
    return match;
  }

  void DescribeTo(std::ostream* os) const {
    *os << "is an 'any' type with value of type '" << GetTypeName()
        << "' and the value ";
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(std::ostream* os) const {
    *os << "is an 'any' type with value of type other than '" << GetTypeName()
        << "' or the value ";
    matcher_.DescribeNegationTo(os);
  }

 private:
  static std::string GetTypeName() {
#if GTEST_HAS_RTTI
    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
        return internal::GetTypeName<T>());
#endif
    return "the element type";
  }

  const ::testing::Matcher<const T&> matcher_;
};

}  // namespace any_cast_matcher

// Implements the Args() matcher.
template <class ArgsTuple, size_t... k>
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
 public:
  using RawArgsTuple = typename std::decay<ArgsTuple>::type;
  using SelectedArgs =
      std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
  using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;

  template <typename InnerMatcher>
  explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
      : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}

  bool MatchAndExplain(ArgsTuple args,
                       MatchResultListener* listener) const override {
    // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
    (void)args;
    const SelectedArgs& selected_args =
        std::forward_as_tuple(std::get<k>(args)...);
    if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);

    PrintIndices(listener->stream());
    *listener << "are " << PrintToString(selected_args);

    StringMatchResultListener inner_listener;
    const bool match =
        inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
    PrintIfNotEmpty(inner_listener.str(), listener->stream());
    return match;
  }

  void DescribeTo(::std::ostream* os) const override {
    *os << "are a tuple ";
    PrintIndices(os);
    inner_matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(::std::ostream* os) const override {
    *os << "are a tuple ";
    PrintIndices(os);
    inner_matcher_.DescribeNegationTo(os);
  }

 private:
  // Prints the indices of the selected fields.
  static void PrintIndices(::std::ostream* os) {
    *os << "whose fields (";
    const char* sep = "";
    // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
    (void)sep;
    const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
    (void)dummy;
    *os << ") ";
  }

  MonomorphicInnerMatcher inner_matcher_;
};

template <class InnerMatcher, size_t... k>
class ArgsMatcher {
 public:
  explicit ArgsMatcher(InnerMatcher inner_matcher)
      : inner_matcher_(std::move(inner_matcher)) {}

  template <typename ArgsTuple>
  operator Matcher<ArgsTuple>() const {  // NOLINT
    return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
  }

 private:
  InnerMatcher inner_matcher_;
};

}  // namespace internal 
 
// ElementsAreArray(iterator_first, iterator_last)
// ElementsAreArray(pointer, count) 
// ElementsAreArray(array) 
// ElementsAreArray(container) 
// ElementsAreArray({ e1, e2, ..., en }) 
// 
// The ElementsAreArray() functions are like ElementsAre(...), except 
// that they are given a homogeneous sequence rather than taking each 
// element as a function argument. The sequence can be specified as an 
// array, a pointer and count, a vector, an initializer list, or an 
// STL iterator range. In each of these cases, the underlying sequence 
// can be either a sequence of values or a sequence of matchers. 
// 
// All forms of ElementsAreArray() make a copy of the input matcher sequence. 
 
template <typename Iter> 
inline internal::ElementsAreArrayMatcher< 
    typename ::std::iterator_traits<Iter>::value_type> 
ElementsAreArray(Iter first, Iter last) { 
  typedef typename ::std::iterator_traits<Iter>::value_type T; 
  return internal::ElementsAreArrayMatcher<T>(first, last); 
} 
 
template <typename T> 
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( 
    const T* pointer, size_t count) { 
  return ElementsAreArray(pointer, pointer + count); 
} 
 
template <typename T, size_t N> 
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( 
    const T (&array)[N]) { 
  return ElementsAreArray(array, N); 
} 
 
template <typename Container> 
inline internal::ElementsAreArrayMatcher<typename Container::value_type> 
ElementsAreArray(const Container& container) { 
  return ElementsAreArray(container.begin(), container.end()); 
} 
 
template <typename T> 
inline internal::ElementsAreArrayMatcher<T> 
ElementsAreArray(::std::initializer_list<T> xs) { 
  return ElementsAreArray(xs.begin(), xs.end()); 
} 
 
// UnorderedElementsAreArray(iterator_first, iterator_last)
// UnorderedElementsAreArray(pointer, count) 
// UnorderedElementsAreArray(array) 
// UnorderedElementsAreArray(container) 
// UnorderedElementsAreArray({ e1, e2, ..., en }) 
// 
// UnorderedElementsAreArray() verifies that a bijective mapping onto a
// collection of matchers exists.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.

template <typename Iter> 
inline internal::UnorderedElementsAreArrayMatcher< 
    typename ::std::iterator_traits<Iter>::value_type> 
UnorderedElementsAreArray(Iter first, Iter last) { 
  typedef typename ::std::iterator_traits<Iter>::value_type T; 
  return internal::UnorderedElementsAreArrayMatcher<T>(
      internal::UnorderedMatcherRequire::ExactMatch, first, last);
} 
 
template <typename T> 
inline internal::UnorderedElementsAreArrayMatcher<T> 
UnorderedElementsAreArray(const T* pointer, size_t count) { 
  return UnorderedElementsAreArray(pointer, pointer + count); 
} 
 
template <typename T, size_t N> 
inline internal::UnorderedElementsAreArrayMatcher<T> 
UnorderedElementsAreArray(const T (&array)[N]) { 
  return UnorderedElementsAreArray(array, N); 
} 
 
template <typename Container> 
inline internal::UnorderedElementsAreArrayMatcher< 
    typename Container::value_type> 
UnorderedElementsAreArray(const Container& container) { 
  return UnorderedElementsAreArray(container.begin(), container.end()); 
} 
 
template <typename T> 
inline internal::UnorderedElementsAreArrayMatcher<T> 
UnorderedElementsAreArray(::std::initializer_list<T> xs) { 
  return UnorderedElementsAreArray(xs.begin(), xs.end()); 
} 
 
// _ is a matcher that matches anything of any type. 
// 
// This definition is fine as: 
// 
//   1. The C++ standard permits using the name _ in a namespace that 
//      is not the global namespace or ::std. 
//   2. The AnythingMatcher class has no data member or constructor, 
//      so it's OK to create global variables of this type. 
//   3. c-style has approved of using _ in this case. 
const internal::AnythingMatcher _ = {}; 
// Creates a matcher that matches any value of the given type T. 
template <typename T> 
inline Matcher<T> A() {
  return _;
}
 
// Creates a matcher that matches any value of the given type T. 
template <typename T> 
inline Matcher<T> An() {
  return _;
}
 
template <typename T, typename M>
Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
    const M& value, std::false_type /* convertible_to_matcher */,
    std::false_type /* convertible_to_T */) {
  return Eq(value);
} 
 
// Creates a polymorphic matcher that matches any NULL pointer. 
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { 
  return MakePolymorphicMatcher(internal::IsNullMatcher()); 
} 
 
// Creates a polymorphic matcher that matches any non-NULL pointer. 
// This is convenient as Not(NULL) doesn't compile (the compiler 
// thinks that that expression is comparing a pointer with an integer). 
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { 
  return MakePolymorphicMatcher(internal::NotNullMatcher()); 
} 
 
// Creates a polymorphic matcher that matches any argument that 
// references variable x. 
template <typename T> 
inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT 
  return internal::RefMatcher<T&>(x); 
} 
 
// Creates a polymorphic matcher that matches any NaN floating point.
inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
  return MakePolymorphicMatcher(internal::IsNanMatcher());
}

// Creates a matcher that matches any double argument approximately 
// equal to rhs, where two NANs are considered unequal. 
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { 
  return internal::FloatingEqMatcher<double>(rhs, false); 
} 
 
// Creates a matcher that matches any double argument approximately 
// equal to rhs, including NaN values when rhs is NaN. 
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { 
  return internal::FloatingEqMatcher<double>(rhs, true); 
} 
 
// Creates a matcher that matches any double argument approximately equal to 
// rhs, up to the specified max absolute error bound, where two NANs are 
// considered unequal.  The max absolute error bound must be non-negative. 
inline internal::FloatingEqMatcher<double> DoubleNear( 
    double rhs, double max_abs_error) { 
  return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); 
} 
 
// Creates a matcher that matches any double argument approximately equal to 
// rhs, up to the specified max absolute error bound, including NaN values when 
// rhs is NaN.  The max absolute error bound must be non-negative. 
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( 
    double rhs, double max_abs_error) { 
  return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); 
} 
 
// Creates a matcher that matches any float argument approximately 
// equal to rhs, where two NANs are considered unequal. 
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { 
  return internal::FloatingEqMatcher<float>(rhs, false); 
} 
 
// Creates a matcher that matches any float argument approximately 
// equal to rhs, including NaN values when rhs is NaN. 
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { 
  return internal::FloatingEqMatcher<float>(rhs, true); 
} 
 
// Creates a matcher that matches any float argument approximately equal to 
// rhs, up to the specified max absolute error bound, where two NANs are 
// considered unequal.  The max absolute error bound must be non-negative. 
inline internal::FloatingEqMatcher<float> FloatNear( 
    float rhs, float max_abs_error) { 
  return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); 
} 
 
// Creates a matcher that matches any float argument approximately equal to 
// rhs, up to the specified max absolute error bound, including NaN values when 
// rhs is NaN.  The max absolute error bound must be non-negative. 
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( 
    float rhs, float max_abs_error) { 
  return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); 
} 
 
// Creates a matcher that matches a pointer (raw or smart) that points 
// to a value that matches inner_matcher. 
template <typename InnerMatcher> 
inline internal::PointeeMatcher<InnerMatcher> Pointee( 
    const InnerMatcher& inner_matcher) { 
  return internal::PointeeMatcher<InnerMatcher>(inner_matcher); 
} 
 
#if GTEST_HAS_RTTI
// Creates a matcher that matches a pointer or reference that matches 
// inner_matcher when dynamic_cast<To> is applied. 
// The result of dynamic_cast<To> is forwarded to the inner matcher. 
// If To is a pointer and the cast fails, the inner matcher will receive NULL. 
// If To is a reference and the cast fails, this matcher returns false 
// immediately. 
template <typename To> 
inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > 
WhenDynamicCastTo(const Matcher<To>& inner_matcher) { 
  return MakePolymorphicMatcher( 
      internal::WhenDynamicCastToMatcher<To>(inner_matcher)); 
} 
#endif  // GTEST_HAS_RTTI
 
// Creates a matcher that matches an object whose given field matches 
// 'matcher'.  For example, 
//   Field(&Foo::number, Ge(5)) 
// matches a Foo object x if and only if x.number >= 5.
template <typename Class, typename FieldType, typename FieldMatcher> 
inline PolymorphicMatcher< 
  internal::FieldMatcher<Class, FieldType> > Field( 
    FieldType Class::*field, const FieldMatcher& matcher) { 
  return MakePolymorphicMatcher( 
      internal::FieldMatcher<Class, FieldType>( 
          field, MatcherCast<const FieldType&>(matcher))); 
  // The call to MatcherCast() is required for supporting inner 
  // matchers of compatible types.  For example, it allows 
  //   Field(&Foo::bar, m) 
  // to compile where bar is an int32 and m is a matcher for int64. 
} 
 
// Same as Field() but also takes the name of the field to provide better error
// messages.
template <typename Class, typename FieldType, typename FieldMatcher>
inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
    const std::string& field_name, FieldType Class::*field,
    const FieldMatcher& matcher) {
  return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
      field_name, field, MatcherCast<const FieldType&>(matcher)));
}

// Creates a matcher that matches an object whose given property 
// matches 'matcher'.  For example, 
//   Property(&Foo::str, StartsWith("hi")) 
// matches a Foo object x if and only if x.str() starts with "hi".
template <typename Class, typename PropertyType, typename PropertyMatcher> 
inline PolymorphicMatcher<internal::PropertyMatcher<
    Class, PropertyType, PropertyType (Class::*)() const> >
Property(PropertyType (Class::*property)() const,
         const PropertyMatcher& matcher) {
  return MakePolymorphicMatcher( 
      internal::PropertyMatcher<Class, PropertyType,
                                PropertyType (Class::*)() const>(
          property, MatcherCast<const PropertyType&>(matcher)));
  // The call to MatcherCast() is required for supporting inner 
  // matchers of compatible types.  For example, it allows 
  //   Property(&Foo::bar, m) 
  // to compile where bar() returns an int32 and m is a matcher for int64. 
} 
 
// Same as Property() above, but also takes the name of the property to provide
// better error messages.
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<internal::PropertyMatcher<
    Class, PropertyType, PropertyType (Class::*)() const> >
Property(const std::string& property_name,
         PropertyType (Class::*property)() const,
         const PropertyMatcher& matcher) {
  return MakePolymorphicMatcher(
      internal::PropertyMatcher<Class, PropertyType,
                                PropertyType (Class::*)() const>(
          property_name, property, MatcherCast<const PropertyType&>(matcher)));
}

// The same as above but for reference-qualified member functions.
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<internal::PropertyMatcher<
    Class, PropertyType, PropertyType (Class::*)() const &> >
Property(PropertyType (Class::*property)() const &,
         const PropertyMatcher& matcher) {
  return MakePolymorphicMatcher(
      internal::PropertyMatcher<Class, PropertyType,
                                PropertyType (Class::*)() const&>(
          property, MatcherCast<const PropertyType&>(matcher)));
}

// Three-argument form for reference-qualified member functions.
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<internal::PropertyMatcher<
    Class, PropertyType, PropertyType (Class::*)() const &> >
Property(const std::string& property_name,
         PropertyType (Class::*property)() const &,
         const PropertyMatcher& matcher) {
  return MakePolymorphicMatcher(
      internal::PropertyMatcher<Class, PropertyType,
                                PropertyType (Class::*)() const&>(
          property_name, property, MatcherCast<const PropertyType&>(matcher)));
}

// Creates a matcher that matches an object if and only if the result of
// applying a callable to x matches 'matcher'. For example,
//   ResultOf(f, StartsWith("hi")) 
// matches a Foo object x if and only if f(x) starts with "hi".
// `callable` parameter can be a function, function pointer, or a functor. It is
// required to keep no state affecting the results of the calls on it and make
// no assumptions about how many calls will be made. Any state it keeps must be
// protected from the concurrent access.
template <typename Callable, typename InnerMatcher>
internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
    Callable callable, InnerMatcher matcher) {
  return internal::ResultOfMatcher<Callable, InnerMatcher>(
      std::move(callable), std::move(matcher));
} 
 
// String matchers. 
 
// Matches a string equal to str. 
template <typename T = std::string>
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
    const internal::StringLike<T>& str) {
  return MakePolymorphicMatcher(
      internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
} 
 
// Matches a string not equal to str. 
template <typename T = std::string>
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
    const internal::StringLike<T>& str) {
  return MakePolymorphicMatcher(
      internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
} 
 
// Matches a string equal to str, ignoring case. 
template <typename T = std::string>
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
    const internal::StringLike<T>& str) {
  return MakePolymorphicMatcher(
      internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
} 
 
// Matches a string not equal to str, ignoring case. 
template <typename T = std::string>
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
    const internal::StringLike<T>& str) {
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
      std::string(str), false, false));
} 
 
// Creates a matcher that matches any string, std::string, or C string 
// that contains the given substring. 
template <typename T = std::string>
PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
    const internal::StringLike<T>& substring) {
  return MakePolymorphicMatcher(
      internal::HasSubstrMatcher<std::string>(std::string(substring)));
} 
 
// Matches a string that starts with 'prefix' (case-sensitive). 
template <typename T = std::string>
PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
    const internal::StringLike<T>& prefix) {
  return MakePolymorphicMatcher(
      internal::StartsWithMatcher<std::string>(std::string(prefix)));
} 
 
// Matches a string that ends with 'suffix' (case-sensitive). 
template <typename T = std::string>
PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
    const internal::StringLike<T>& suffix) {
  return MakePolymorphicMatcher(
      internal::EndsWithMatcher<std::string>(std::string(suffix)));
} 
 
#if GTEST_HAS_STD_WSTRING
// Wide string matchers. 
 
// Matches a string equal to str. 
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
    const std::wstring& str) {
  return MakePolymorphicMatcher(
      internal::StrEqualityMatcher<std::wstring>(str, true, true));
} 
 
// Matches a string not equal to str. 
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
    const std::wstring& str) {
  return MakePolymorphicMatcher(
      internal::StrEqualityMatcher<std::wstring>(str, false, true));
} 
 
// Matches a string equal to str, ignoring case. 
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
StrCaseEq(const std::wstring& str) {
  return MakePolymorphicMatcher(
      internal::StrEqualityMatcher<std::wstring>(str, true, false));
} 
 
// Matches a string not equal to str, ignoring case. 
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
StrCaseNe(const std::wstring& str) {
  return MakePolymorphicMatcher(
      internal::StrEqualityMatcher<std::wstring>(str, false, false));
} 
 
// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
// that contains the given substring. 
inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
    const std::wstring& substring) {
  return MakePolymorphicMatcher(
      internal::HasSubstrMatcher<std::wstring>(substring));
} 
 
// Matches a string that starts with 'prefix' (case-sensitive). 
inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
StartsWith(const std::wstring& prefix) {
  return MakePolymorphicMatcher(
      internal::StartsWithMatcher<std::wstring>(prefix));
} 
 
// Matches a string that ends with 'suffix' (case-sensitive). 
inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
    const std::wstring& suffix) {
  return MakePolymorphicMatcher(
      internal::EndsWithMatcher<std::wstring>(suffix));
} 
 
#endif  // GTEST_HAS_STD_WSTRING
 
// Creates a polymorphic matcher that matches a 2-tuple where the 
// first field == the second field. 
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } 
 
// Creates a polymorphic matcher that matches a 2-tuple where the 
// first field >= the second field. 
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } 
 
// Creates a polymorphic matcher that matches a 2-tuple where the 
// first field > the second field. 
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } 
 
// Creates a polymorphic matcher that matches a 2-tuple where the 
// first field <= the second field. 
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } 
 
// Creates a polymorphic matcher that matches a 2-tuple where the 
// first field < the second field. 
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } 
 
// Creates a polymorphic matcher that matches a 2-tuple where the 
// first field != the second field. 
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } 
 
// Creates a polymorphic matcher that matches a 2-tuple where
// FloatEq(first field) matches the second field.
inline internal::FloatingEq2Matcher<float> FloatEq() {
  return internal::FloatingEq2Matcher<float>();
}

// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleEq(first field) matches the second field.
inline internal::FloatingEq2Matcher<double> DoubleEq() {
  return internal::FloatingEq2Matcher<double>();
}

// Creates a polymorphic matcher that matches a 2-tuple where
// FloatEq(first field) matches the second field with NaN equality.
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
  return internal::FloatingEq2Matcher<float>(true);
}

// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleEq(first field) matches the second field with NaN equality.
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
  return internal::FloatingEq2Matcher<double>(true);
}

// Creates a polymorphic matcher that matches a 2-tuple where
// FloatNear(first field, max_abs_error) matches the second field.
inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
  return internal::FloatingEq2Matcher<float>(max_abs_error);
}

// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleNear(first field, max_abs_error) matches the second field.
inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
  return internal::FloatingEq2Matcher<double>(max_abs_error);
}

// Creates a polymorphic matcher that matches a 2-tuple where
// FloatNear(first field, max_abs_error) matches the second field with NaN
// equality.
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
    float max_abs_error) {
  return internal::FloatingEq2Matcher<float>(max_abs_error, true);
}

// Creates a polymorphic matcher that matches a 2-tuple where
// DoubleNear(first field, max_abs_error) matches the second field with NaN
// equality.
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
    double max_abs_error) {
  return internal::FloatingEq2Matcher<double>(max_abs_error, true);
}

// Creates a matcher that matches any value of type T that m doesn't 
// match. 
template <typename InnerMatcher> 
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { 
  return internal::NotMatcher<InnerMatcher>(m); 
} 
 
// Returns a matcher that matches anything that satisfies the given 
// predicate.  The predicate can be any unary function or functor 
// whose return type can be implicitly converted to bool. 
template <typename Predicate> 
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > 
Truly(Predicate pred) { 
  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); 
} 
 
// Returns a matcher that matches the container size. The container must 
// support both size() and size_type which all STL-like containers provide. 
// Note that the parameter 'size' can be a value of type size_type as well as 
// matcher. For instance: 
//   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements. 
//   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2. 
template <typename SizeMatcher> 
inline internal::SizeIsMatcher<SizeMatcher> 
SizeIs(const SizeMatcher& size_matcher) { 
  return internal::SizeIsMatcher<SizeMatcher>(size_matcher); 
} 
 
// Returns a matcher that matches the distance between the container's begin() 
// iterator and its end() iterator, i.e. the size of the container. This matcher 
// can be used instead of SizeIs with containers such as std::forward_list which 
// do not implement size(). The container must provide const_iterator (with 
// valid iterator_traits), begin() and end(). 
template <typename DistanceMatcher> 
inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> 
BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { 
  return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); 
} 
 
// Returns a matcher that matches an equal container. 
// This matcher behaves like Eq(), but in the event of mismatch lists the 
// values that are included in one container but not the other. (Duplicate 
// values and order differences are not explained.) 
template <typename Container> 
inline PolymorphicMatcher<internal::ContainerEqMatcher<
    typename std::remove_const<Container>::type>>
ContainerEq(const Container& rhs) {
  return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
} 
 
// Returns a matcher that matches a container that, when sorted using 
// the given comparator, matches container_matcher. 
template <typename Comparator, typename ContainerMatcher> 
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> 
WhenSortedBy(const Comparator& comparator, 
             const ContainerMatcher& container_matcher) { 
  return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( 
      comparator, container_matcher); 
} 
 
// Returns a matcher that matches a container that, when sorted using 
// the < operator, matches container_matcher. 
template <typename ContainerMatcher> 
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> 
WhenSorted(const ContainerMatcher& container_matcher) { 
  return 
      internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( 
          internal::LessComparator(), container_matcher); 
} 
 
// Matches an STL-style container or a native array that contains the 
// same number of elements as in rhs, where its i-th element and rhs's 
// i-th element (as a pair) satisfy the given pair matcher, for all i. 
// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
// T1&, const T2&> >, where T1 and T2 are the types of elements in the 
// LHS container and the RHS container respectively. 
template <typename TupleMatcher, typename Container> 
inline internal::PointwiseMatcher<TupleMatcher, 
                                  typename std::remove_const<Container>::type>
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { 
  return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
                                                             rhs);
} 
 
 
// Supports the Pointwise(m, {a, b, c}) syntax. 
template <typename TupleMatcher, typename T> 
inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( 
    const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { 
  return Pointwise(tuple_matcher, std::vector<T>(rhs)); 
} 
 
 
// UnorderedPointwise(pair_matcher, rhs) matches an STL-style 
// container or a native array that contains the same number of 
// elements as in rhs, where in some permutation of the container, its 
// i-th element and rhs's i-th element (as a pair) satisfy the given 
// pair matcher, for all i.  Tuple2Matcher must be able to be safely 
// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
// the types of elements in the LHS container and the RHS container 
// respectively. 
// 
// This is like Pointwise(pair_matcher, rhs), except that the element 
// order doesn't matter. 
template <typename Tuple2Matcher, typename RhsContainer> 
inline internal::UnorderedElementsAreArrayMatcher< 
    typename internal::BoundSecondMatcher< 
        Tuple2Matcher,
        typename internal::StlContainerView<
            typename std::remove_const<RhsContainer>::type>::type::value_type>>
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, 
                   const RhsContainer& rhs_container) { 
  // RhsView allows the same code to handle RhsContainer being a 
  // STL-style container and it being a native C-style array. 
  typedef typename internal::StlContainerView<RhsContainer> RhsView;
  typedef typename RhsView::type RhsStlContainer; 
  typedef typename RhsStlContainer::value_type Second; 
  const RhsStlContainer& rhs_stl_container = 
      RhsView::ConstReference(rhs_container); 
 
  // Create a matcher for each element in rhs_container. 
  ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; 
  for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); 
       it != rhs_stl_container.end(); ++it) { 
    matchers.push_back( 
        internal::MatcherBindSecond(tuple2_matcher, *it)); 
  } 
 
  // Delegate the work to UnorderedElementsAreArray(). 
  return UnorderedElementsAreArray(matchers); 
} 
 
 
// Supports the UnorderedPointwise(m, {a, b, c}) syntax. 
template <typename Tuple2Matcher, typename T> 
inline internal::UnorderedElementsAreArrayMatcher< 
    typename internal::BoundSecondMatcher<Tuple2Matcher, T> > 
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, 
                   std::initializer_list<T> rhs) { 
  return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); 
} 
 
 
// Matches an STL-style container or a native array that contains at 
// least one element matching the given value or matcher. 
// 
// Examples: 
//   ::std::set<int> page_ids; 
//   page_ids.insert(3); 
//   page_ids.insert(1); 
//   EXPECT_THAT(page_ids, Contains(1)); 
//   EXPECT_THAT(page_ids, Contains(Gt(2))); 
//   EXPECT_THAT(page_ids, Not(Contains(4))); 
// 
//   ::std::map<int, size_t> page_lengths; 
//   page_lengths[1] = 100; 
//   EXPECT_THAT(page_lengths, 
//               Contains(::std::pair<const int, size_t>(1, 100))); 
// 
//   const char* user_ids[] = { "joe", "mike", "tom" }; 
//   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); 
template <typename M> 
inline internal::ContainsMatcher<M> Contains(M matcher) { 
  return internal::ContainsMatcher<M>(matcher); 
} 
 
// IsSupersetOf(iterator_first, iterator_last)
// IsSupersetOf(pointer, count)
// IsSupersetOf(array)
// IsSupersetOf(container)
// IsSupersetOf({e1, e2, ..., en})
//
// IsSupersetOf() verifies that a surjective partial mapping onto a collection
// of matchers exists. In other words, a container matches
// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
// {y1, ..., yn} of some of the container's elements where y1 matches e1,
// ..., and yn matches en. Obviously, the size of the container must be >= n
// in order to have a match. Examples:
//
// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
//   1 matches Ne(0).
// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
//   both Eq(1) and Lt(2). The reason is that different matchers must be used
//   for elements in different slots of the container.
// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
//   Eq(1) and (the second) 1 matches Lt(2).
// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
//   Gt(1) and 3 matches (the second) Gt(1).
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.

template <typename Iter>
inline internal::UnorderedElementsAreArrayMatcher<
    typename ::std::iterator_traits<Iter>::value_type>
IsSupersetOf(Iter first, Iter last) {
  typedef typename ::std::iterator_traits<Iter>::value_type T;
  return internal::UnorderedElementsAreArrayMatcher<T>(
      internal::UnorderedMatcherRequire::Superset, first, last);
}

template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
    const T* pointer, size_t count) {
  return IsSupersetOf(pointer, pointer + count);
}

template <typename T, size_t N>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
    const T (&array)[N]) {
  return IsSupersetOf(array, N);
}

template <typename Container>
inline internal::UnorderedElementsAreArrayMatcher<
    typename Container::value_type>
IsSupersetOf(const Container& container) {
  return IsSupersetOf(container.begin(), container.end());
}

template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
    ::std::initializer_list<T> xs) {
  return IsSupersetOf(xs.begin(), xs.end());
}

// IsSubsetOf(iterator_first, iterator_last)
// IsSubsetOf(pointer, count)
// IsSubsetOf(array)
// IsSubsetOf(container)
// IsSubsetOf({e1, e2, ..., en})
//
// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
// exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
// only if there is a subset of matchers {m1, ..., mk} which would match the
// container using UnorderedElementsAre.  Obviously, the size of the container
// must be <= n in order to have a match. Examples:
//
// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
//   matches Lt(0).
// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
//   match Gt(0). The reason is that different matchers must be used for
//   elements in different slots of the container.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.

template <typename Iter>
inline internal::UnorderedElementsAreArrayMatcher<
    typename ::std::iterator_traits<Iter>::value_type>
IsSubsetOf(Iter first, Iter last) {
  typedef typename ::std::iterator_traits<Iter>::value_type T;
  return internal::UnorderedElementsAreArrayMatcher<T>(
      internal::UnorderedMatcherRequire::Subset, first, last);
}

template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
    const T* pointer, size_t count) {
  return IsSubsetOf(pointer, pointer + count);
}

template <typename T, size_t N>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
    const T (&array)[N]) {
  return IsSubsetOf(array, N);
}

template <typename Container>
inline internal::UnorderedElementsAreArrayMatcher<
    typename Container::value_type>
IsSubsetOf(const Container& container) {
  return IsSubsetOf(container.begin(), container.end());
}

template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
    ::std::initializer_list<T> xs) {
  return IsSubsetOf(xs.begin(), xs.end());
}

// Matches an STL-style container or a native array that contains only 
// elements matching the given value or matcher. 
// 
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only 
// the messages are different. 
// 
// Examples: 
//   ::std::set<int> page_ids; 
//   // Each(m) matches an empty container, regardless of what m is. 
//   EXPECT_THAT(page_ids, Each(Eq(1))); 
//   EXPECT_THAT(page_ids, Each(Eq(77))); 
// 
//   page_ids.insert(3); 
//   EXPECT_THAT(page_ids, Each(Gt(0))); 
//   EXPECT_THAT(page_ids, Not(Each(Gt(4)))); 
//   page_ids.insert(1); 
//   EXPECT_THAT(page_ids, Not(Each(Lt(2)))); 
// 
//   ::std::map<int, size_t> page_lengths; 
//   page_lengths[1] = 100; 
//   page_lengths[2] = 200; 
//   page_lengths[3] = 300; 
//   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); 
//   EXPECT_THAT(page_lengths, Each(Key(Le(3)))); 
// 
//   const char* user_ids[] = { "joe", "mike", "tom" }; 
//   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); 
template <typename M> 
inline internal::EachMatcher<M> Each(M matcher) { 
  return internal::EachMatcher<M>(matcher); 
} 
 
// Key(inner_matcher) matches an std::pair whose 'first' field matches 
// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an 
// std::map that contains at least one element whose key is >= 5. 
template <typename M> 
inline internal::KeyMatcher<M> Key(M inner_matcher) { 
  return internal::KeyMatcher<M>(inner_matcher); 
} 
 
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field 
// matches first_matcher and whose 'second' field matches second_matcher.  For 
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used 
// to match a std::map<int, string> that contains exactly one element whose key 
// is >= 5 and whose value equals "foo". 
template <typename FirstMatcher, typename SecondMatcher> 
inline internal::PairMatcher<FirstMatcher, SecondMatcher> 
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { 
  return internal::PairMatcher<FirstMatcher, SecondMatcher>( 
      first_matcher, second_matcher); 
} 
 
namespace no_adl {
// FieldsAre(matchers...) matches piecewise the fields of compatible structs.
// These include those that support `get<I>(obj)`, and when structured bindings
// are enabled any class that supports them.
// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
template <typename... M>
internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
    M&&... matchers) {
  return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
      std::forward<M>(matchers)...);
}

// Creates a matcher that matches a pointer (raw or smart) that matches
// inner_matcher.
template <typename InnerMatcher>
inline internal::PointerMatcher<InnerMatcher> Pointer(
    const InnerMatcher& inner_matcher) {
  return internal::PointerMatcher<InnerMatcher>(inner_matcher);
}

// Creates a matcher that matches an object that has an address that matches
// inner_matcher.
template <typename InnerMatcher>
inline internal::AddressMatcher<InnerMatcher> Address(
    const InnerMatcher& inner_matcher) {
  return internal::AddressMatcher<InnerMatcher>(inner_matcher);
}
}  // namespace no_adl

// Returns a predicate that is satisfied by anything that matches the 
// given matcher. 
template <typename M> 
inline internal::MatcherAsPredicate<M> Matches(M matcher) { 
  return internal::MatcherAsPredicate<M>(matcher); 
} 
 
// Returns true if and only if the value matches the matcher.
template <typename T, typename M> 
inline bool Value(const T& value, M matcher) { 
  return testing::Matches(matcher)(value); 
} 
 
// Matches the value against the given matcher and explains the match 
// result to listener. 
template <typename T, typename M> 
inline bool ExplainMatchResult( 
    M matcher, const T& value, MatchResultListener* listener) { 
  return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); 
} 
 
// Returns a string representation of the given matcher.  Useful for description
// strings of matchers defined using MATCHER_P* macros that accept matchers as
// their arguments.  For example:
//
// MATCHER_P(XAndYThat, matcher,
//           "X that " + DescribeMatcher<int>(matcher, negation) +
//               " and Y that " + DescribeMatcher<double>(matcher, negation)) {
//   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
//          ExplainMatchResult(matcher, arg.y(), result_listener);
// }
template <typename T, typename M>
std::string DescribeMatcher(const M& matcher, bool negation = false) {
  ::std::stringstream ss;
  Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
  if (negation) {
    monomorphic_matcher.DescribeNegationTo(&ss);
  } else {
    monomorphic_matcher.DescribeTo(&ss);
  }
  return ss.str();
}

template <typename... Args> 
internal::ElementsAreMatcher<
    std::tuple<typename std::decay<const Args&>::type...>>
ElementsAre(const Args&... matchers) {
  return internal::ElementsAreMatcher<
      std::tuple<typename std::decay<const Args&>::type...>>(
      std::make_tuple(matchers...));
} 
 
template <typename... Args> 
internal::UnorderedElementsAreMatcher<
    std::tuple<typename std::decay<const Args&>::type...>>
UnorderedElementsAre(const Args&... matchers) {
  return internal::UnorderedElementsAreMatcher<
      std::tuple<typename std::decay<const Args&>::type...>>(
      std::make_tuple(matchers...));
} 
 
// Define variadic matcher versions.
template <typename... Args>
internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
    const Args&... matchers) {
  return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
      matchers...);
}
 
template <typename... Args>
internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
    const Args&... matchers) {
  return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
      matchers...);
}

// AnyOfArray(array)
// AnyOfArray(pointer, count)
// AnyOfArray(container)
// AnyOfArray({ e1, e2, ..., en })
// AnyOfArray(iterator_first, iterator_last)
//
// AnyOfArray() verifies whether a given value matches any member of a
// collection of matchers.
//
// AllOfArray(array)
// AllOfArray(pointer, count)
// AllOfArray(container)
// AllOfArray({ e1, e2, ..., en })
// AllOfArray(iterator_first, iterator_last)
//
// AllOfArray() verifies whether a given value matches all members of a
// collection of matchers.
//
// The matchers can be specified as an array, a pointer and count, a container,
// an initializer list, or an STL iterator range. In each of these cases, the
// underlying matchers can be either values or matchers.

template <typename Iter>
inline internal::AnyOfArrayMatcher<
    typename ::std::iterator_traits<Iter>::value_type>
AnyOfArray(Iter first, Iter last) {
  return internal::AnyOfArrayMatcher<
      typename ::std::iterator_traits<Iter>::value_type>(first, last);
}

template <typename Iter>
inline internal::AllOfArrayMatcher<
    typename ::std::iterator_traits<Iter>::value_type>
AllOfArray(Iter first, Iter last) {
  return internal::AllOfArrayMatcher<
      typename ::std::iterator_traits<Iter>::value_type>(first, last);
}

template <typename T>
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
  return AnyOfArray(ptr, ptr + count);
}

template <typename T>
inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
  return AllOfArray(ptr, ptr + count);
}

template <typename T, size_t N>
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
  return AnyOfArray(array, N);
}

template <typename T, size_t N>
inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
  return AllOfArray(array, N);
}

template <typename Container>
inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
    const Container& container) {
  return AnyOfArray(container.begin(), container.end());
}

template <typename Container>
inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
    const Container& container) {
  return AllOfArray(container.begin(), container.end());
}

template <typename T>
inline internal::AnyOfArrayMatcher<T> AnyOfArray(
    ::std::initializer_list<T> xs) {
  return AnyOfArray(xs.begin(), xs.end());
}

template <typename T>
inline internal::AllOfArrayMatcher<T> AllOfArray(
    ::std::initializer_list<T> xs) {
  return AllOfArray(xs.begin(), xs.end());
}

// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
// fields of it matches a_matcher.  C++ doesn't support default
// arguments for function templates, so we have to overload it.
template <size_t... k, typename InnerMatcher>
internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
    InnerMatcher&& matcher) {
  return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
      std::forward<InnerMatcher>(matcher));
}

// AllArgs(m) is a synonym of m.  This is useful in 
// 
//   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); 
// 
// which is easier to read than 
// 
//   EXPECT_CALL(foo, Bar(_, _)).With(Eq()); 
template <typename InnerMatcher> 
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } 
 
// Returns a matcher that matches the value of an optional<> type variable.
// The matcher implementation only uses '!arg' and requires that the optional<>
// type has a 'value_type' member type and that '*arg' is of type 'value_type'
// and is printable using 'PrintToString'. It is compatible with
// std::optional/std::experimental::optional.
// Note that to compare an optional type variable against nullopt you should
// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
// optional value contains an optional itself.
template <typename ValueMatcher>
inline internal::OptionalMatcher<ValueMatcher> Optional(
    const ValueMatcher& value_matcher) {
  return internal::OptionalMatcher<ValueMatcher>(value_matcher);
}

// Returns a matcher that matches the value of a absl::any type variable.
template <typename T>
PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
    const Matcher<const T&>& matcher) {
  return MakePolymorphicMatcher(
      internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
}

// Returns a matcher that matches the value of a variant<> type variable.
// The matcher implementation uses ADL to find the holds_alternative and get
// functions.
// It is compatible with std::variant.
template <typename T>
PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
    const Matcher<const T&>& matcher) {
  return MakePolymorphicMatcher(
      internal::variant_matcher::VariantMatcher<T>(matcher));
}

#if GTEST_HAS_EXCEPTIONS

// Anything inside the `internal` namespace is internal to the implementation
// and must not be used in user code!
namespace internal {

class WithWhatMatcherImpl {
 public:
  WithWhatMatcherImpl(Matcher<std::string> matcher)
      : matcher_(std::move(matcher)) {}

  void DescribeTo(std::ostream* os) const {
    *os << "contains .what() that ";
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(std::ostream* os) const {
    *os << "contains .what() that does not ";
    matcher_.DescribeTo(os);
  }

  template <typename Err>
  bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
    *listener << "which contains .what() that ";
    return matcher_.MatchAndExplain(err.what(), listener);
  }

 private:
  const Matcher<std::string> matcher_;
};

inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
    Matcher<std::string> m) {
  return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
}

template <typename Err>
class ExceptionMatcherImpl {
  class NeverThrown {
   public:
    const char* what() const noexcept {
      return "this exception should never be thrown";
    }
  };

  // If the matchee raises an exception of a wrong type, we'd like to
  // catch it and print its message and type. To do that, we add an additional
  // catch clause:
  //
  //     try { ... }
  //     catch (const Err&) { /* an expected exception */ }
  //     catch (const std::exception&) { /* exception of a wrong type */ }
  //
  // However, if the `Err` itself is `std::exception`, we'd end up with two
  // identical `catch` clauses:
  //
  //     try { ... }
  //     catch (const std::exception&) { /* an expected exception */ }
  //     catch (const std::exception&) { /* exception of a wrong type */ }
  //
  // This can cause a warning or an error in some compilers. To resolve
  // the issue, we use a fake error type whenever `Err` is `std::exception`:
  //
  //     try { ... }
  //     catch (const std::exception&) { /* an expected exception */ }
  //     catch (const NeverThrown&) { /* exception of a wrong type */ }
  using DefaultExceptionType = typename std::conditional<
      std::is_same<typename std::remove_cv<
                       typename std::remove_reference<Err>::type>::type,
                   std::exception>::value,
      const NeverThrown&, const std::exception&>::type;

 public:
  ExceptionMatcherImpl(Matcher<const Err&> matcher)
      : matcher_(std::move(matcher)) {}

  void DescribeTo(std::ostream* os) const {
    *os << "throws an exception which is a " << GetTypeName<Err>();
    *os << " which ";
    matcher_.DescribeTo(os);
  }

  void DescribeNegationTo(std::ostream* os) const {
    *os << "throws an exception which is not a " << GetTypeName<Err>();
    *os << " which ";
    matcher_.DescribeNegationTo(os);
  }

  template <typename T>
  bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
    try {
      (void)(std::forward<T>(x)());
    } catch (const Err& err) {
      *listener << "throws an exception which is a " << GetTypeName<Err>();
      *listener << " ";
      return matcher_.MatchAndExplain(err, listener);
    } catch (DefaultExceptionType err) {
#if GTEST_HAS_RTTI
      *listener << "throws an exception of type " << GetTypeName(typeid(err));
      *listener << " ";
#else
      *listener << "throws an std::exception-derived type ";
#endif
      *listener << "with description \"" << err.what() << "\"";
      return false;
    } catch (...) {
      *listener << "throws an exception of an unknown type";
      return false;
    }

    *listener << "does not throw any exception";
    return false;
  }

 private:
  const Matcher<const Err&> matcher_;
};

}  // namespace internal

// Throws()
// Throws(exceptionMatcher)
// ThrowsMessage(messageMatcher)
//
// This matcher accepts a callable and verifies that when invoked, it throws
// an exception with the given type and properties.
//
// Examples:
//
//   EXPECT_THAT(
//       []() { throw std::runtime_error("message"); },
//       Throws<std::runtime_error>());
//
//   EXPECT_THAT(
//       []() { throw std::runtime_error("message"); },
//       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
//
//   EXPECT_THAT(
//       []() { throw std::runtime_error("message"); },
//       Throws<std::runtime_error>(
//           Property(&std::runtime_error::what, HasSubstr("message"))));

template <typename Err>
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
  return MakePolymorphicMatcher(
      internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
}

template <typename Err, typename ExceptionMatcher>
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
    const ExceptionMatcher& exception_matcher) {
  // Using matcher cast allows users to pass a matcher of a more broad type.
  // For example user may want to pass Matcher<std::exception>
  // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
  return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
      SafeMatcherCast<const Err&>(exception_matcher)));
}

template <typename Err, typename MessageMatcher>
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
    MessageMatcher&& message_matcher) {
  static_assert(std::is_base_of<std::exception, Err>::value,
                "expected an std::exception-derived type");
  return Throws<Err>(internal::WithWhat(
      MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
}

#endif  // GTEST_HAS_EXCEPTIONS

// These macros allow using matchers to check values in Google Test 
// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) 
// succeed if and only if the value matches the matcher.  If the assertion
// fails, the value and the description of the matcher will be printed.
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ 
    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) 
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ 
    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) 
 
// MATCHER* macroses itself are listed below.
#define MATCHER(name, description)                                             \
  class name##Matcher                                                          \
      : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \
   public:                                                                     \
    template <typename arg_type>                                               \
    class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
     public:                                                                   \
      gmock_Impl() {}                                                          \
      bool MatchAndExplain(                                                    \
          const arg_type& arg,                                                 \
          ::testing::MatchResultListener* result_listener) const override;     \
      void DescribeTo(::std::ostream* gmock_os) const override {               \
        *gmock_os << FormatDescription(false);                                 \
      }                                                                        \
      void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
        *gmock_os << FormatDescription(true);                                  \
      }                                                                        \
                                                                               \
     private:                                                                  \
      ::std::string FormatDescription(bool negation) const {                   \
        ::std::string gmock_description = (description);                       \
        if (!gmock_description.empty()) {                                      \
          return gmock_description;                                            \
        }                                                                      \
        return ::testing::internal::FormatMatcherDescription(negation, #name,  \
                                                             {});              \
      }                                                                        \
    };                                                                         \
  };                                                                           \
  GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; }           \
  template <typename arg_type>                                                 \
  bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \
      const arg_type& arg,                                                     \
      ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
      const

#define MATCHER_P(name, p0, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
#define MATCHER_P2(name, p0, p1, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
#define MATCHER_P3(name, p0, p1, p2, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
#define MATCHER_P4(name, p0, p1, p2, p3, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
#define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
                         (p0, p1, p2, p3, p4))
#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
                         (p0, p1, p2, p3, p4, p5))
#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
                         (p0, p1, p2, p3, p4, p5, p6))
#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
                         (p0, p1, p2, p3, p4, p5, p6, p7))
#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
                         (p0, p1, p2, p3, p4, p5, p6, p7, p8))
#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
  GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
                         (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))

#define GMOCK_INTERNAL_MATCHER(name, full_name, description, args)             \
  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
  class full_name : public ::testing::internal::MatcherBaseImpl<               \
                        full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
   public:                                                                     \
    using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
    template <typename arg_type>                                               \
    class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
     public:                                                                   \
      explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
          : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
      bool MatchAndExplain(                                                    \
          const arg_type& arg,                                                 \
          ::testing::MatchResultListener* result_listener) const override;     \
      void DescribeTo(::std::ostream* gmock_os) const override {               \
        *gmock_os << FormatDescription(false);                                 \
      }                                                                        \
      void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
        *gmock_os << FormatDescription(true);                                  \
      }                                                                        \
      GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
                                                                               \
     private:                                                                  \
      ::std::string FormatDescription(bool negation) const {                   \
        ::std::string gmock_description = (description);                       \
        if (!gmock_description.empty()) {                                      \
          return gmock_description;                                            \
        }                                                                      \
        return ::testing::internal::FormatMatcherDescription(                  \
            negation, #name,                                                   \
            ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
                ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
                    GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
      }                                                                        \
    };                                                                         \
  };                                                                           \
  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
  inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
      GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
    return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
        GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
  }                                                                            \
  template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
  template <typename arg_type>                                                 \
  bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \
      arg_type>::MatchAndExplain(const arg_type& arg,                          \
                                 ::testing::MatchResultListener*               \
                                     result_listener GTEST_ATTRIBUTE_UNUSED_)  \
      const

#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
  GMOCK_PP_TAIL(                                     \
      GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
  , typename arg##_type

#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
  , arg##_type

#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
  GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
      GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
  , arg##_type gmock_p##i

#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
  , arg(::std::forward<arg##_type>(gmock_p##i))

#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
  GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
  const arg##_type arg;

#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg

#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
  GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
  , gmock_p##i

// To prevent ADL on certain functions we put them on a separate namespace.
using namespace no_adl;  // NOLINT

}  // namespace testing 
 
GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046

// Include any custom callback matchers added by the local installation. 
// We must include this header at the end to make sure it can use the 
// declarations from this file. 
#include "gmock/internal/custom/gmock-matchers.h" 

#endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_