1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
|
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "internal_macros.h"
#ifdef BENCHMARK_OS_WINDOWS
#include <shlwapi.h>
#undef StrCat // Don't let StrCat in string_util.h be renamed to lstrcatA
#include <versionhelpers.h>
#include <windows.h>
#include <codecvt>
#else
#include <fcntl.h>
#if !defined(BENCHMARK_OS_FUCHSIA) && !defined(BENCHMARK_OS_QURT)
#include <sys/resource.h>
#endif
#include <sys/time.h>
#include <sys/types.h> // this header must be included before 'sys/sysctl.h' to avoid compilation error on FreeBSD
#include <unistd.h>
#if defined BENCHMARK_OS_FREEBSD || defined BENCHMARK_OS_MACOSX || \
defined BENCHMARK_OS_NETBSD || defined BENCHMARK_OS_OPENBSD || \
defined BENCHMARK_OS_DRAGONFLY
#define BENCHMARK_HAS_SYSCTL
#include <sys/sysctl.h>
#endif
#endif
#if defined(BENCHMARK_OS_SOLARIS)
#error #include <kstat.h>
#include <netdb.h>
#endif
#if defined(BENCHMARK_OS_QNX)
#include <sys/syspage.h>
#endif
#if defined(BENCHMARK_OS_QURT)
#error #include <qurt.h>
#endif
#if defined(BENCHMARK_HAS_PTHREAD_AFFINITY)
#include <pthread.h>
#endif
#include <algorithm>
#include <array>
#include <bitset>
#include <cerrno>
#include <climits>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iterator>
#include <limits>
#include <locale>
#include <memory>
#include <random>
#include <sstream>
#include <utility>
#include "benchmark/benchmark.h"
#include "check.h"
#include "cycleclock.h"
#include "internal_macros.h"
#include "log.h"
#include "string_util.h"
#include "timers.h"
namespace benchmark {
namespace {
void PrintImp(std::ostream& out) { out << std::endl; }
template <class First, class... Rest>
void PrintImp(std::ostream& out, First&& f, Rest&&... rest) {
out << std::forward<First>(f);
PrintImp(out, std::forward<Rest>(rest)...);
}
template <class... Args>
BENCHMARK_NORETURN void PrintErrorAndDie(Args&&... args) {
PrintImp(std::cerr, std::forward<Args>(args)...);
std::exit(EXIT_FAILURE);
}
#ifdef BENCHMARK_HAS_SYSCTL
/// ValueUnion - A type used to correctly alias the byte-for-byte output of
/// `sysctl` with the result type it's to be interpreted as.
struct ValueUnion {
union DataT {
int32_t int32_value;
int64_t int64_value;
// For correct aliasing of union members from bytes.
char bytes[8];
};
using DataPtr = std::unique_ptr<DataT, decltype(&std::free)>;
// The size of the data union member + its trailing array size.
std::size_t size;
DataPtr buff;
public:
ValueUnion() : size(0), buff(nullptr, &std::free) {}
explicit ValueUnion(std::size_t buff_size)
: size(sizeof(DataT) + buff_size),
buff(::new (std::malloc(size)) DataT(), &std::free) {}
ValueUnion(ValueUnion&& other) = default;
explicit operator bool() const { return bool(buff); }
char* data() const { return buff->bytes; }
std::string GetAsString() const { return std::string(data()); }
int64_t GetAsInteger() const {
if (size == sizeof(buff->int32_value))
return buff->int32_value;
else if (size == sizeof(buff->int64_value))
return buff->int64_value;
BENCHMARK_UNREACHABLE();
}
template <class T, int N>
std::array<T, N> GetAsArray() {
const int arr_size = sizeof(T) * N;
BM_CHECK_LE(arr_size, size);
std::array<T, N> arr;
std::memcpy(arr.data(), data(), arr_size);
return arr;
}
};
ValueUnion GetSysctlImp(std::string const& name) {
#if defined BENCHMARK_OS_OPENBSD
int mib[2];
mib[0] = CTL_HW;
if ((name == "hw.ncpu") || (name == "hw.cpuspeed")) {
ValueUnion buff(sizeof(int));
if (name == "hw.ncpu") {
mib[1] = HW_NCPU;
} else {
mib[1] = HW_CPUSPEED;
}
if (sysctl(mib, 2, buff.data(), &buff.Size, nullptr, 0) == -1) {
return ValueUnion();
}
return buff;
}
return ValueUnion();
#else
std::size_t cur_buff_size = 0;
if (sysctlbyname(name.c_str(), nullptr, &cur_buff_size, nullptr, 0) == -1)
return ValueUnion();
ValueUnion buff(cur_buff_size);
if (sysctlbyname(name.c_str(), buff.data(), &buff.size, nullptr, 0) == 0)
return buff;
return ValueUnion();
#endif
}
BENCHMARK_MAYBE_UNUSED
bool GetSysctl(std::string const& name, std::string* out) {
out->clear();
auto buff = GetSysctlImp(name);
if (!buff) return false;
out->assign(buff.data());
return true;
}
template <class Tp,
class = typename std::enable_if<std::is_integral<Tp>::value>::type>
bool GetSysctl(std::string const& name, Tp* out) {
*out = 0;
auto buff = GetSysctlImp(name);
if (!buff) return false;
*out = static_cast<Tp>(buff.GetAsInteger());
return true;
}
template <class Tp, size_t N>
bool GetSysctl(std::string const& name, std::array<Tp, N>* out) {
auto buff = GetSysctlImp(name);
if (!buff) return false;
*out = buff.GetAsArray<Tp, N>();
return true;
}
#endif
template <class ArgT>
bool ReadFromFile(std::string const& fname, ArgT* arg) {
*arg = ArgT();
std::ifstream f(fname.c_str());
if (!f.is_open()) return false;
f >> *arg;
return f.good();
}
CPUInfo::Scaling CpuScaling(int num_cpus) {
// We don't have a valid CPU count, so don't even bother.
if (num_cpus <= 0) return CPUInfo::Scaling::UNKNOWN;
#if defined(BENCHMARK_OS_QNX)
return CPUInfo::Scaling::UNKNOWN;
#elif !defined(BENCHMARK_OS_WINDOWS)
// On Linux, the CPUfreq subsystem exposes CPU information as files on the
// local file system. If reading the exported files fails, then we may not be
// running on Linux, so we silently ignore all the read errors.
std::string res;
for (int cpu = 0; cpu < num_cpus; ++cpu) {
std::string governor_file =
StrCat("/sys/devices/system/cpu/cpu", cpu, "/cpufreq/scaling_governor");
if (ReadFromFile(governor_file, &res) && res != "performance")
return CPUInfo::Scaling::ENABLED;
}
return CPUInfo::Scaling::DISABLED;
#else
return CPUInfo::Scaling::UNKNOWN;
#endif
}
int CountSetBitsInCPUMap(std::string val) {
auto CountBits = [](std::string part) {
using CPUMask = std::bitset<sizeof(std::uintptr_t) * CHAR_BIT>;
part = "0x" + part;
CPUMask mask(benchmark::stoul(part, nullptr, 16));
return static_cast<int>(mask.count());
};
std::size_t pos;
int total = 0;
while ((pos = val.find(',')) != std::string::npos) {
total += CountBits(val.substr(0, pos));
val = val.substr(pos + 1);
}
if (!val.empty()) {
total += CountBits(val);
}
return total;
}
BENCHMARK_MAYBE_UNUSED
std::vector<CPUInfo::CacheInfo> GetCacheSizesFromKVFS() {
std::vector<CPUInfo::CacheInfo> res;
std::string dir = "/sys/devices/system/cpu/cpu0/cache/";
int idx = 0;
while (true) {
CPUInfo::CacheInfo info;
std::string fpath = StrCat(dir, "index", idx++, "/");
std::ifstream f(StrCat(fpath, "size").c_str());
if (!f.is_open()) break;
std::string suffix;
f >> info.size;
if (f.fail())
PrintErrorAndDie("Failed while reading file '", fpath, "size'");
if (f.good()) {
f >> suffix;
if (f.bad())
PrintErrorAndDie(
"Invalid cache size format: failed to read size suffix");
else if (f && suffix != "K")
PrintErrorAndDie("Invalid cache size format: Expected bytes ", suffix);
else if (suffix == "K")
info.size *= 1024;
}
if (!ReadFromFile(StrCat(fpath, "type"), &info.type))
PrintErrorAndDie("Failed to read from file ", fpath, "type");
if (!ReadFromFile(StrCat(fpath, "level"), &info.level))
PrintErrorAndDie("Failed to read from file ", fpath, "level");
std::string map_str;
if (!ReadFromFile(StrCat(fpath, "shared_cpu_map"), &map_str))
PrintErrorAndDie("Failed to read from file ", fpath, "shared_cpu_map");
info.num_sharing = CountSetBitsInCPUMap(map_str);
res.push_back(info);
}
return res;
}
#ifdef BENCHMARK_OS_MACOSX
std::vector<CPUInfo::CacheInfo> GetCacheSizesMacOSX() {
std::vector<CPUInfo::CacheInfo> res;
std::array<int, 4> cache_counts{{0, 0, 0, 0}};
GetSysctl("hw.cacheconfig", &cache_counts);
struct {
std::string name;
std::string type;
int level;
int num_sharing;
} cases[] = {{"hw.l1dcachesize", "Data", 1, cache_counts[1]},
{"hw.l1icachesize", "Instruction", 1, cache_counts[1]},
{"hw.l2cachesize", "Unified", 2, cache_counts[2]},
{"hw.l3cachesize", "Unified", 3, cache_counts[3]}};
for (auto& c : cases) {
int val;
if (!GetSysctl(c.name, &val)) continue;
CPUInfo::CacheInfo info;
info.type = c.type;
info.level = c.level;
info.size = val;
info.num_sharing = c.num_sharing;
res.push_back(std::move(info));
}
return res;
}
#elif defined(BENCHMARK_OS_WINDOWS)
std::vector<CPUInfo::CacheInfo> GetCacheSizesWindows() {
std::vector<CPUInfo::CacheInfo> res;
DWORD buffer_size = 0;
using PInfo = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;
using CInfo = CACHE_DESCRIPTOR;
using UPtr = std::unique_ptr<PInfo, decltype(&std::free)>;
GetLogicalProcessorInformation(nullptr, &buffer_size);
UPtr buff((PInfo*)malloc(buffer_size), &std::free);
if (!GetLogicalProcessorInformation(buff.get(), &buffer_size))
PrintErrorAndDie("Failed during call to GetLogicalProcessorInformation: ",
GetLastError());
PInfo* it = buff.get();
PInfo* end = buff.get() + (buffer_size / sizeof(PInfo));
for (; it != end; ++it) {
if (it->Relationship != RelationCache) continue;
using BitSet = std::bitset<sizeof(ULONG_PTR) * CHAR_BIT>;
BitSet b(it->ProcessorMask);
// To prevent duplicates, only consider caches where CPU 0 is specified
if (!b.test(0)) continue;
const CInfo& cache = it->Cache;
CPUInfo::CacheInfo C;
C.num_sharing = static_cast<int>(b.count());
C.level = cache.Level;
C.size = cache.Size;
C.type = "Unknown";
switch (cache.Type) {
case CacheUnified:
C.type = "Unified";
break;
case CacheInstruction:
C.type = "Instruction";
break;
case CacheData:
C.type = "Data";
break;
case CacheTrace:
C.type = "Trace";
break;
}
res.push_back(C);
}
return res;
}
#elif BENCHMARK_OS_QNX
std::vector<CPUInfo::CacheInfo> GetCacheSizesQNX() {
std::vector<CPUInfo::CacheInfo> res;
struct cacheattr_entry* cache = SYSPAGE_ENTRY(cacheattr);
uint32_t const elsize = SYSPAGE_ELEMENT_SIZE(cacheattr);
int num = SYSPAGE_ENTRY_SIZE(cacheattr) / elsize;
for (int i = 0; i < num; ++i) {
CPUInfo::CacheInfo info;
switch (cache->flags) {
case CACHE_FLAG_INSTR:
info.type = "Instruction";
info.level = 1;
break;
case CACHE_FLAG_DATA:
info.type = "Data";
info.level = 1;
break;
case CACHE_FLAG_UNIFIED:
info.type = "Unified";
info.level = 2;
break;
case CACHE_FLAG_SHARED:
info.type = "Shared";
info.level = 3;
break;
default:
continue;
break;
}
info.size = cache->line_size * cache->num_lines;
info.num_sharing = 0;
res.push_back(std::move(info));
cache = SYSPAGE_ARRAY_ADJ_OFFSET(cacheattr, cache, elsize);
}
return res;
}
#endif
std::vector<CPUInfo::CacheInfo> GetCacheSizes() {
#ifdef BENCHMARK_OS_MACOSX
return GetCacheSizesMacOSX();
#elif defined(BENCHMARK_OS_WINDOWS)
return GetCacheSizesWindows();
#elif defined(BENCHMARK_OS_QNX)
return GetCacheSizesQNX();
#elif defined(BENCHMARK_OS_QURT)
return std::vector<CPUInfo::CacheInfo>();
#else
return GetCacheSizesFromKVFS();
#endif
}
std::string GetSystemName() {
#if defined(BENCHMARK_OS_WINDOWS)
std::string str;
static constexpr int COUNT = MAX_COMPUTERNAME_LENGTH + 1;
TCHAR hostname[COUNT] = {'\0'};
DWORD DWCOUNT = COUNT;
if (!GetComputerName(hostname, &DWCOUNT)) return std::string("");
#ifndef UNICODE
str = std::string(hostname, DWCOUNT);
#else
// `WideCharToMultiByte` returns `0` when conversion fails.
int len = WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS, hostname,
DWCOUNT, NULL, 0, NULL, NULL);
str.resize(len);
WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS, hostname, DWCOUNT, &str[0],
str.size(), NULL, NULL);
#endif
return str;
#elif defined(BENCHMARK_OS_QURT)
std::string str = "Hexagon DSP";
qurt_arch_version_t arch_version_struct;
if (qurt_sysenv_get_arch_version(&arch_version_struct) == QURT_EOK) {
str += " v";
str += std::to_string(arch_version_struct.arch_version);
}
return str;
#else
#ifndef HOST_NAME_MAX
#ifdef BENCHMARK_HAS_SYSCTL // BSD/Mac doesn't have HOST_NAME_MAX defined
#define HOST_NAME_MAX 64
#elif defined(BENCHMARK_OS_NACL)
#define HOST_NAME_MAX 64
#elif defined(BENCHMARK_OS_QNX)
#define HOST_NAME_MAX 154
#elif defined(BENCHMARK_OS_RTEMS)
#define HOST_NAME_MAX 256
#elif defined(BENCHMARK_OS_SOLARIS)
#define HOST_NAME_MAX MAXHOSTNAMELEN
#else
#pragma message("HOST_NAME_MAX not defined. using 64")
#define HOST_NAME_MAX 64
#endif
#endif // def HOST_NAME_MAX
char hostname[HOST_NAME_MAX];
int retVal = gethostname(hostname, HOST_NAME_MAX);
if (retVal != 0) return std::string("");
return std::string(hostname);
#endif // Catch-all POSIX block.
}
int GetNumCPUs() {
#ifdef BENCHMARK_HAS_SYSCTL
int num_cpu = -1;
if (GetSysctl("hw.ncpu", &num_cpu)) return num_cpu;
fprintf(stderr, "Err: %s\n", strerror(errno));
std::exit(EXIT_FAILURE);
#elif defined(BENCHMARK_OS_WINDOWS)
SYSTEM_INFO sysinfo;
// Use memset as opposed to = {} to avoid GCC missing initializer false
// positives.
std::memset(&sysinfo, 0, sizeof(SYSTEM_INFO));
GetSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors; // number of logical
// processors in the current
// group
#elif defined(BENCHMARK_OS_SOLARIS)
// Returns -1 in case of a failure.
long num_cpu = sysconf(_SC_NPROCESSORS_ONLN);
if (num_cpu < 0) {
fprintf(stderr, "sysconf(_SC_NPROCESSORS_ONLN) failed with error: %s\n",
strerror(errno));
}
return (int)num_cpu;
#elif defined(BENCHMARK_OS_QNX)
return static_cast<int>(_syspage_ptr->num_cpu);
#elif defined(BENCHMARK_OS_QURT)
qurt_sysenv_max_hthreads_t hardware_threads;
if (qurt_sysenv_get_max_hw_threads(&hardware_threads) != QURT_EOK) {
hardware_threads.max_hthreads = 1;
}
return hardware_threads.max_hthreads;
#else
int num_cpus = 0;
int max_id = -1;
std::ifstream f("/proc/cpuinfo");
if (!f.is_open()) {
std::cerr << "failed to open /proc/cpuinfo\n";
return -1;
}
const std::string Key = "processor";
std::string ln;
while (std::getline(f, ln)) {
if (ln.empty()) continue;
std::size_t split_idx = ln.find(':');
std::string value;
#if defined(__s390__)
// s390 has another format in /proc/cpuinfo
// it needs to be parsed differently
if (split_idx != std::string::npos)
value = ln.substr(Key.size() + 1, split_idx - Key.size() - 1);
#else
if (split_idx != std::string::npos) value = ln.substr(split_idx + 1);
#endif
if (ln.size() >= Key.size() && ln.compare(0, Key.size(), Key) == 0) {
num_cpus++;
if (!value.empty()) {
const int cur_id = benchmark::stoi(value);
max_id = std::max(cur_id, max_id);
}
}
}
if (f.bad()) {
std::cerr << "Failure reading /proc/cpuinfo\n";
return -1;
}
if (!f.eof()) {
std::cerr << "Failed to read to end of /proc/cpuinfo\n";
return -1;
}
f.close();
if ((max_id + 1) != num_cpus) {
fprintf(stderr,
"CPU ID assignments in /proc/cpuinfo seem messed up."
" This is usually caused by a bad BIOS.\n");
}
return num_cpus;
#endif
BENCHMARK_UNREACHABLE();
}
class ThreadAffinityGuard final {
public:
ThreadAffinityGuard() : reset_affinity(SetAffinity()) {
if (!reset_affinity)
std::cerr << "***WARNING*** Failed to set thread affinity. Estimated CPU "
"frequency may be incorrect."
<< std::endl;
}
~ThreadAffinityGuard() {
if (!reset_affinity) return;
#if defined(BENCHMARK_HAS_PTHREAD_AFFINITY)
int ret = pthread_setaffinity_np(self, sizeof(previous_affinity),
&previous_affinity);
if (ret == 0) return;
#elif defined(BENCHMARK_OS_WINDOWS_WIN32)
DWORD_PTR ret = SetThreadAffinityMask(self, previous_affinity);
if (ret != 0) return;
#endif // def BENCHMARK_HAS_PTHREAD_AFFINITY
PrintErrorAndDie("Failed to reset thread affinity");
}
ThreadAffinityGuard(ThreadAffinityGuard&&) = delete;
ThreadAffinityGuard(const ThreadAffinityGuard&) = delete;
ThreadAffinityGuard& operator=(ThreadAffinityGuard&&) = delete;
ThreadAffinityGuard& operator=(const ThreadAffinityGuard&) = delete;
private:
bool SetAffinity() {
#if defined(BENCHMARK_HAS_PTHREAD_AFFINITY)
int ret;
self = pthread_self();
ret = pthread_getaffinity_np(self, sizeof(previous_affinity),
&previous_affinity);
if (ret != 0) return false;
cpu_set_t affinity;
memcpy(&affinity, &previous_affinity, sizeof(affinity));
bool is_first_cpu = true;
for (int i = 0; i < CPU_SETSIZE; ++i)
if (CPU_ISSET(i, &affinity)) {
if (is_first_cpu)
is_first_cpu = false;
else
CPU_CLR(i, &affinity);
}
if (is_first_cpu) return false;
ret = pthread_setaffinity_np(self, sizeof(affinity), &affinity);
return ret == 0;
#elif defined(BENCHMARK_OS_WINDOWS_WIN32)
self = GetCurrentThread();
DWORD_PTR mask = static_cast<DWORD_PTR>(1) << GetCurrentProcessorNumber();
previous_affinity = SetThreadAffinityMask(self, mask);
return previous_affinity != 0;
#else
return false;
#endif // def BENCHMARK_HAS_PTHREAD_AFFINITY
}
#if defined(BENCHMARK_HAS_PTHREAD_AFFINITY)
pthread_t self;
cpu_set_t previous_affinity;
#elif defined(BENCHMARK_OS_WINDOWS_WIN32)
HANDLE self;
DWORD_PTR previous_affinity;
#endif // def BENCHMARK_HAS_PTHREAD_AFFINITY
bool reset_affinity;
};
double GetCPUCyclesPerSecond(CPUInfo::Scaling scaling) {
// Currently, scaling is only used on linux path here,
// suppress diagnostics about it being unused on other paths.
(void)scaling;
#if defined BENCHMARK_OS_LINUX || defined BENCHMARK_OS_CYGWIN
long freq;
// If the kernel is exporting the tsc frequency use that. There are issues
// where cpuinfo_max_freq cannot be relied on because the BIOS may be
// exporintg an invalid p-state (on x86) or p-states may be used to put the
// processor in a new mode (turbo mode). Essentially, those frequencies
// cannot always be relied upon. The same reasons apply to /proc/cpuinfo as
// well.
if (ReadFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)
// If CPU scaling is disabled, use the *current* frequency.
// Note that we specifically don't want to read cpuinfo_cur_freq,
// because it is only readable by root.
|| (scaling == CPUInfo::Scaling::DISABLED &&
ReadFromFile("/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq",
&freq))
// Otherwise, if CPU scaling may be in effect, we want to use
// the *maximum* frequency, not whatever CPU speed some random processor
// happens to be using now.
|| ReadFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
&freq)) {
// The value is in kHz (as the file name suggests). For example, on a
// 2GHz warpstation, the file contains the value "2000000".
return freq * 1000.0;
}
const double error_value = -1;
double bogo_clock = error_value;
std::ifstream f("/proc/cpuinfo");
if (!f.is_open()) {
std::cerr << "failed to open /proc/cpuinfo\n";
return error_value;
}
auto StartsWithKey = [](std::string const& Value, std::string const& Key) {
if (Key.size() > Value.size()) return false;
auto Cmp = [&](char X, char Y) {
return std::tolower(X) == std::tolower(Y);
};
return std::equal(Key.begin(), Key.end(), Value.begin(), Cmp);
};
std::string ln;
while (std::getline(f, ln)) {
if (ln.empty()) continue;
std::size_t split_idx = ln.find(':');
std::string value;
if (split_idx != std::string::npos) value = ln.substr(split_idx + 1);
// When parsing the "cpu MHz" and "bogomips" (fallback) entries, we only
// accept positive values. Some environments (virtual machines) report zero,
// which would cause infinite looping in WallTime_Init.
if (StartsWithKey(ln, "cpu MHz")) {
if (!value.empty()) {
double cycles_per_second = benchmark::stod(value) * 1000000.0;
if (cycles_per_second > 0) return cycles_per_second;
}
} else if (StartsWithKey(ln, "bogomips")) {
if (!value.empty()) {
bogo_clock = benchmark::stod(value) * 1000000.0;
if (bogo_clock < 0.0) bogo_clock = error_value;
}
}
}
if (f.bad()) {
std::cerr << "Failure reading /proc/cpuinfo\n";
return error_value;
}
if (!f.eof()) {
std::cerr << "Failed to read to end of /proc/cpuinfo\n";
return error_value;
}
f.close();
// If we found the bogomips clock, but nothing better, we'll use it (but
// we're not happy about it); otherwise, fallback to the rough estimation
// below.
if (bogo_clock >= 0.0) return bogo_clock;
#elif defined BENCHMARK_HAS_SYSCTL
constexpr auto* freqStr =
#if defined(BENCHMARK_OS_FREEBSD) || defined(BENCHMARK_OS_NETBSD)
"machdep.tsc_freq";
#elif defined BENCHMARK_OS_OPENBSD
"hw.cpuspeed";
#elif defined BENCHMARK_OS_DRAGONFLY
"hw.tsc_frequency";
#else
"hw.cpufrequency";
#endif
unsigned long long hz = 0;
#if defined BENCHMARK_OS_OPENBSD
if (GetSysctl(freqStr, &hz)) return hz * 1000000;
#else
if (GetSysctl(freqStr, &hz)) return hz;
#endif
fprintf(stderr, "Unable to determine clock rate from sysctl: %s: %s\n",
freqStr, strerror(errno));
fprintf(stderr,
"This does not affect benchmark measurements, only the "
"metadata output.\n");
#elif defined BENCHMARK_OS_WINDOWS_WIN32
// In NT, read MHz from the registry. If we fail to do so or we're in win9x
// then make a crude estimate.
DWORD data, data_size = sizeof(data);
if (IsWindowsXPOrGreater() &&
SUCCEEDED(
SHGetValueA(HKEY_LOCAL_MACHINE,
"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0",
"~MHz", nullptr, &data, &data_size)))
return static_cast<double>((int64_t)data *
(int64_t)(1000 * 1000)); // was mhz
#elif defined(BENCHMARK_OS_SOLARIS)
kstat_ctl_t* kc = kstat_open();
if (!kc) {
std::cerr << "failed to open /dev/kstat\n";
return -1;
}
kstat_t* ksp = kstat_lookup(kc, const_cast<char*>("cpu_info"), -1,
const_cast<char*>("cpu_info0"));
if (!ksp) {
std::cerr << "failed to lookup in /dev/kstat\n";
return -1;
}
if (kstat_read(kc, ksp, NULL) < 0) {
std::cerr << "failed to read from /dev/kstat\n";
return -1;
}
kstat_named_t* knp = (kstat_named_t*)kstat_data_lookup(
ksp, const_cast<char*>("current_clock_Hz"));
if (!knp) {
std::cerr << "failed to lookup data in /dev/kstat\n";
return -1;
}
if (knp->data_type != KSTAT_DATA_UINT64) {
std::cerr << "current_clock_Hz is of unexpected data type: "
<< knp->data_type << "\n";
return -1;
}
double clock_hz = knp->value.ui64;
kstat_close(kc);
return clock_hz;
#elif defined(BENCHMARK_OS_QNX)
return static_cast<double>((int64_t)(SYSPAGE_ENTRY(cpuinfo)->speed) *
(int64_t)(1000 * 1000));
#elif defined(BENCHMARK_OS_QURT)
// QuRT doesn't provide any API to query Hexagon frequency.
return 1000000000;
#endif
// If we've fallen through, attempt to roughly estimate the CPU clock rate.
// Make sure to use the same cycle counter when starting and stopping the
// cycle timer. We just pin the current thread to a cpu in the previous
// affinity set.
ThreadAffinityGuard affinity_guard;
static constexpr double estimate_time_s = 1.0;
const double start_time = ChronoClockNow();
const auto start_ticks = cycleclock::Now();
// Impose load instead of calling sleep() to make sure the cycle counter
// works.
using PRNG = std::minstd_rand;
using Result = PRNG::result_type;
PRNG rng(static_cast<Result>(start_ticks));
Result state = 0;
do {
static constexpr size_t batch_size = 10000;
rng.discard(batch_size);
state += rng();
} while (ChronoClockNow() - start_time < estimate_time_s);
DoNotOptimize(state);
const auto end_ticks = cycleclock::Now();
const double end_time = ChronoClockNow();
return static_cast<double>(end_ticks - start_ticks) / (end_time - start_time);
// Reset the affinity of current thread when the lifetime of affinity_guard
// ends.
}
std::vector<double> GetLoadAvg() {
#if (defined BENCHMARK_OS_FREEBSD || defined(BENCHMARK_OS_LINUX) || \
defined BENCHMARK_OS_MACOSX || defined BENCHMARK_OS_NETBSD || \
defined BENCHMARK_OS_OPENBSD || defined BENCHMARK_OS_DRAGONFLY) && \
!defined(__ANDROID__)
static constexpr int kMaxSamples = 3;
std::vector<double> res(kMaxSamples, 0.0);
const int nelem = getloadavg(res.data(), kMaxSamples);
if (nelem < 1) {
res.clear();
} else {
res.resize(nelem);
}
return res;
#else
return {};
#endif
}
} // end namespace
const CPUInfo& CPUInfo::Get() {
static const CPUInfo* info = new CPUInfo();
return *info;
}
CPUInfo::CPUInfo()
: num_cpus(GetNumCPUs()),
scaling(CpuScaling(num_cpus)),
cycles_per_second(GetCPUCyclesPerSecond(scaling)),
caches(GetCacheSizes()),
load_avg(GetLoadAvg()) {}
const SystemInfo& SystemInfo::Get() {
static const SystemInfo* info = new SystemInfo();
return *info;
}
SystemInfo::SystemInfo() : name(GetSystemName()) {}
} // end namespace benchmark
|