1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <stdint.h>
#include <stdio.h>
#include "utils/s2n_annotations.h"
#include "utils/s2n_safety.h"
/**
* Given arrays "a" and "b" of length "len", determine whether they
* hold equal contents.
*
* The execution time of this function is independent of the values
* stored in the arrays.
*
* Timing may depend on the length of the arrays, and on the location
* of the arrays in memory (e.g. if a buffer has been paged out, this
* will affect the timing of this function).
*
* Returns:
* Whether all bytes in arrays "a" and "b" are identical
*/
bool s2n_constant_time_equals(const uint8_t *a, const uint8_t *b, const uint32_t len)
{
S2N_PUBLIC_INPUT(a);
S2N_PUBLIC_INPUT(b);
S2N_PUBLIC_INPUT(len);
/* if len is 0, they're always going to be equal */
if (len == 0) {
return true;
}
/* check if a and b are readable - if so, allow them to increment their pointer */
uint8_t a_inc = S2N_MEM_IS_READABLE(a, len) ? 1 : 0;
uint8_t b_inc = S2N_MEM_IS_READABLE(b, len) ? 1 : 0;
/* reserve a stand-in pointer to replace NULL pointers */
static uint8_t standin = 0;
/* if the pointers can increment their values, then use the
* original value; otherwise use the stand-in */
const uint8_t *a_ptr = a_inc ? a : &standin;
const uint8_t *b_ptr = b_inc ? b : &standin;
/* start by assuming they are equal only if both increment their pointer */
uint8_t xor = !((a_inc == 1) & (b_inc == 1));
/* iterate over each byte in the slices */
for (uint32_t i = 0; i < len; i++) {
/* Invariants must hold for each execution of the loop
* and at loop exit, hence the <= */
S2N_INVARIANT(i <= len);
/* mix the current cursor values in to the result */
xor |= *a_ptr ^ *b_ptr;
/* increment the pointers by their "inc" values */
a_ptr += a_inc;
b_ptr += b_inc;
}
/* finally check to make sure xor is still 0 */
return (xor == 0);
}
/**
* Given arrays "dest" and "src" of length "len", conditionally copy "src" to "dest"
* The execution time of this function is independent of the values
* stored in the arrays, and of whether the copy occurs.
*
* Timing may depend on the length of the arrays, and on the location
* of the arrays in memory (e.g. if a buffer has been paged out, this
* will affect the timing of this function).
*
*/
int s2n_constant_time_copy_or_dont(uint8_t * dest, const uint8_t * src, uint32_t len, uint8_t dont)
{
S2N_PUBLIC_INPUT(dest);
S2N_PUBLIC_INPUT(src);
S2N_PUBLIC_INPUT(len);
uint8_t mask = (((0xFFFF & dont) - 1) >> 8) & 0xFF;
/* dont = 0 : mask = 0xff */
/* dont > 0 : mask = 0x00 */
for (uint32_t i = 0; i < len; i++) {
uint8_t old = dest[i];
uint8_t diff = (old ^ src[i]) & mask;
dest[i] = old ^ diff;
}
return 0;
}
/* If src contains valid PKCS#1 v1.5 padding of exactly expectlen bytes, decode
* it into dst, otherwise leave dst alone. Execution time is independent of the
* content of src, but may depend on srclen/expectlen.
*
* Normally, one would fill dst with random bytes before calling this function.
*/
int s2n_constant_time_pkcs1_unpad_or_dont(uint8_t * dst, const uint8_t * src, uint32_t srclen, uint32_t expectlen)
{
S2N_PUBLIC_INPUT(dst);
S2N_PUBLIC_INPUT(src);
S2N_PUBLIC_INPUT(srclen);
S2N_PUBLIC_INPUT(expectlen);
/* Before doing anything else, some basic sanity checks on input lengths */
if (srclen < expectlen + 3) {
/* Not enough room for PKCS#1v1.5 padding, so treat it as bad padding */
return 0;
}
/* First, determine (in constant time) whether the padding is valid.
* If the padding is valid we expect that:
* Bytes 0 and 1 will equal 0x00 and 0x02
* Bytes (srclen-expectlen-1) will be zero
* Bytes 2 through (srclen-expectlen-1) will be nonzero
*/
uint8_t dont_copy = 0;
const uint8_t *start_of_data = src + srclen - expectlen;
dont_copy |= src[0] ^ 0x00;
dont_copy |= src[1] ^ 0x02;
dont_copy |= *(start_of_data-1) ^ 0x00;
for (uint32_t i = 2; i < srclen - expectlen - 1; i++) {
/* Note! We avoid using logical NOT (!) here; while in practice
* many compilers will use constant-time sequences for this operator,
* at least on x86 (e.g. cmp -> setcc, or vectorized pcmpeq), this is
* not guaranteed to hold, and some architectures might not have a
* convenient mechanism for generating a branchless logical not. */
uint8_t mask = (((0xFFFF & src[i]) - 1) >> 8) & 0xFF;
/* src[i] = 0 : mask = 0xff */
/* src[i] > 0 : mask = 0x00 */
dont_copy |= mask;
}
s2n_constant_time_copy_or_dont(dst, start_of_data, expectlen, dont_copy);
return 0;
}
static bool s_s2n_in_unit_test = false;
bool s2n_in_unit_test()
{
return s_s2n_in_unit_test;
}
int s2n_in_unit_test_set(bool newval)
{
s_s2n_in_unit_test = newval;
return S2N_SUCCESS;
}
int s2n_align_to(uint32_t initial, uint32_t alignment, uint32_t* out)
{
POSIX_ENSURE_REF(out);
POSIX_ENSURE(alignment != 0, S2N_ERR_SAFETY);
if (initial == 0) {
*out = 0;
return S2N_SUCCESS;
}
const uint64_t i = initial;
const uint64_t a = alignment;
const uint64_t result = a * (((i - 1) / a) + 1);
POSIX_ENSURE(result <= UINT32_MAX, S2N_ERR_INTEGER_OVERFLOW);
*out = (uint32_t) result;
return S2N_SUCCESS;
}
int s2n_mul_overflow(uint32_t a, uint32_t b, uint32_t* out)
{
POSIX_ENSURE_REF(out);
const uint64_t result = ((uint64_t) a) * ((uint64_t) b);
POSIX_ENSURE(result <= UINT32_MAX, S2N_ERR_INTEGER_OVERFLOW);
*out = (uint32_t) result;
return S2N_SUCCESS;
}
int s2n_add_overflow(uint32_t a, uint32_t b, uint32_t* out)
{
POSIX_ENSURE_REF(out);
uint64_t result = ((uint64_t) a) + ((uint64_t) b);
POSIX_ENSURE(result <= UINT32_MAX, S2N_ERR_INTEGER_OVERFLOW);
*out = (uint32_t) result;
return S2N_SUCCESS;
}
int s2n_sub_overflow(uint32_t a, uint32_t b, uint32_t* out)
{
POSIX_ENSURE_REF(out);
POSIX_ENSURE(a >= b, S2N_ERR_INTEGER_OVERFLOW);
*out = a - b;
return S2N_SUCCESS;
}
|