aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/s2n/tls/s2n_tls13_handshake.c
blob: b89c6f04fb954f6fc8afb96fd84038933186e6d4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/* 
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://aws.amazon.com/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 */ 
 
#include "tls/s2n_tls13_handshake.h" 
#include "tls/s2n_cipher_suites.h" 
#include "tls/s2n_security_policies.h" 
 
static int s2n_zero_sequence_number(struct s2n_connection *conn, s2n_mode mode) 
{ 
    notnull_check(conn); 
    struct s2n_blob sequence_number; 
    if (mode == S2N_CLIENT) { 
        GUARD(s2n_blob_init(&sequence_number, conn->secure.client_sequence_number, sizeof(conn->secure.client_sequence_number))); 
    } else { 
        GUARD(s2n_blob_init(&sequence_number, conn->secure.server_sequence_number, sizeof(conn->secure.server_sequence_number))); 
    } 
    GUARD(s2n_blob_zero(&sequence_number)); 
    return S2N_SUCCESS; 
} 
 
int s2n_tls13_mac_verify(struct s2n_tls13_keys *keys, struct s2n_blob *finished_verify, struct s2n_blob *wire_verify) 
{ 
    notnull_check(wire_verify->data); 
    eq_check(wire_verify->size, keys->size); 
 
    S2N_ERROR_IF(!s2n_constant_time_equals(finished_verify->data, wire_verify->data, keys->size), S2N_ERR_BAD_MESSAGE); 
 
    return 0; 
} 
 
/* 
 * Initializes the tls13_keys struct 
 */ 
static int s2n_tls13_keys_init_with_ref(struct s2n_tls13_keys *handshake, s2n_hmac_algorithm alg, uint8_t * extract,  uint8_t * derive) 
{ 
    notnull_check(handshake); 
 
    handshake->hmac_algorithm = alg; 
    GUARD(s2n_hmac_hash_alg(alg, &handshake->hash_algorithm)); 
    GUARD(s2n_hash_digest_size(handshake->hash_algorithm, &handshake->size)); 
    GUARD(s2n_blob_init(&handshake->extract_secret, extract, handshake->size)); 
    GUARD(s2n_blob_init(&handshake->derive_secret, derive, handshake->size)); 
    GUARD(s2n_hmac_new(&handshake->hmac)); 
 
    return 0; 
} 
 
int s2n_tls13_keys_from_conn(struct s2n_tls13_keys *keys, struct s2n_connection *conn) 
{ 
    GUARD(s2n_tls13_keys_init_with_ref(keys, conn->secure.cipher_suite->prf_alg, conn->secure.rsa_premaster_secret, conn->secure.master_secret)); 
 
    return 0; 
} 
 
int s2n_tls13_compute_ecc_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret) { 
    notnull_check(conn); 
 
    const struct s2n_ecc_preferences *ecc_preferences = NULL; 
    GUARD(s2n_connection_get_ecc_preferences(conn, &ecc_preferences)); 
    notnull_check(ecc_preferences); 
 
    struct s2n_ecc_evp_params *server_key = &conn->secure.server_ecc_evp_params; 
    notnull_check(server_key); 
    notnull_check(server_key->negotiated_curve); 
    /* for now we do this tedious loop to find the matching client key selection. 
     * this can be simplified if we get an index or a pointer to a specific key */ 
    int selection = -1; 
    for (int i = 0; i < ecc_preferences->count; i++) { 
        if (server_key->negotiated_curve->iana_id == ecc_preferences->ecc_curves[i]->iana_id) { 
            selection = i; 
            break; 
        } 
    } 
 
    S2N_ERROR_IF(selection < 0, S2N_ERR_BAD_KEY_SHARE); 
    struct s2n_ecc_evp_params *client_key = &conn->secure.client_ecc_evp_params[selection]; 
    notnull_check(client_key); 
 
    if (conn->mode == S2N_CLIENT) { 
        GUARD(s2n_ecc_evp_compute_shared_secret_from_params(client_key, server_key, shared_secret)); 
    } else { 
        GUARD(s2n_ecc_evp_compute_shared_secret_from_params(server_key, client_key, shared_secret)); 
    } 
 
    return 0; 
} 
 
/* Computes the ECDHE+PQKEM hybrid shared secret as defined in 
 * https://tools.ietf.org/html/draft-stebila-tls-hybrid-design */ 
int s2n_tls13_compute_pq_hybrid_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret) { 
    notnull_check(conn); 
    notnull_check(shared_secret); 
 
    /* conn->secure.server_ecc_evp_params should be set only during a classic/non-hybrid handshake */ 
    eq_check(NULL, conn->secure.server_ecc_evp_params.negotiated_curve); 
    eq_check(NULL, conn->secure.server_ecc_evp_params.evp_pkey); 
 
    struct s2n_kem_group_params *server_kem_group_params = &conn->secure.server_kem_group_params; 
    notnull_check(server_kem_group_params); 
    struct s2n_ecc_evp_params *server_ecc_params = &server_kem_group_params->ecc_params; 
    notnull_check(server_ecc_params); 
 
    struct s2n_kem_group_params *client_kem_group_params = conn->secure.chosen_client_kem_group_params; 
    notnull_check(client_kem_group_params); 
    struct s2n_ecc_evp_params *client_ecc_params = &client_kem_group_params->ecc_params; 
    notnull_check(client_ecc_params); 
 
    DEFER_CLEANUP(struct s2n_blob ecdhe_shared_secret = { 0 }, s2n_blob_zeroize_free); 
 
    /* Compute the ECDHE shared secret, and retrieve the PQ shared secret. */ 
    if (conn->mode == S2N_CLIENT) { 
        GUARD(s2n_ecc_evp_compute_shared_secret_from_params(client_ecc_params, server_ecc_params, &ecdhe_shared_secret)); 
    } else { 
        GUARD(s2n_ecc_evp_compute_shared_secret_from_params(server_ecc_params, client_ecc_params, &ecdhe_shared_secret)); 
    } 
 
    struct s2n_blob *pq_shared_secret = &client_kem_group_params->kem_params.shared_secret; 
    notnull_check(pq_shared_secret); 
    notnull_check(pq_shared_secret->data); 
 
    const struct s2n_kem_group *negotiated_kem_group = conn->secure.server_kem_group_params.kem_group; 
    notnull_check(negotiated_kem_group); 
    notnull_check(negotiated_kem_group->kem); 
 
    eq_check(pq_shared_secret->size, negotiated_kem_group->kem->shared_secret_key_length); 
 
    /* Construct the concatenated/hybrid shared secret */ 
    uint32_t hybrid_shared_secret_size = ecdhe_shared_secret.size + negotiated_kem_group->kem->shared_secret_key_length; 
    GUARD(s2n_alloc(shared_secret, hybrid_shared_secret_size)); 
    struct s2n_stuffer stuffer_combiner = { 0 }; 
    GUARD(s2n_stuffer_init(&stuffer_combiner, shared_secret)); 
    GUARD(s2n_stuffer_write(&stuffer_combiner, &ecdhe_shared_secret)); 
    GUARD(s2n_stuffer_write(&stuffer_combiner, pq_shared_secret)); 
 
    /* No longer need PQ shared secret or ECC keys */ 
    GUARD(s2n_kem_group_free(server_kem_group_params)); 
    GUARD(s2n_kem_group_free(client_kem_group_params)); 
 
    return S2N_SUCCESS; 
} 
 
static int s2n_tls13_pq_hybrid_supported(struct s2n_connection *conn) { 
    return conn->secure.server_kem_group_params.kem_group != NULL; 
} 
 
int s2n_tls13_compute_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret) 
{ 
    notnull_check(conn); 
 
    if (s2n_tls13_pq_hybrid_supported(conn)) { 
        GUARD(s2n_tls13_compute_pq_hybrid_shared_secret(conn, shared_secret)); 
    } else { 
        GUARD(s2n_tls13_compute_ecc_shared_secret(conn, shared_secret)); 
    } 
 
    return S2N_SUCCESS; 
} 
 
/* 
 * This function executes after Server Hello is processed 
 * and handshake hashes are computed. It produces and configure 
 * the shared secret, handshake secrets, handshake traffic keys, 
 * and finished keys. 
 */ 
int s2n_tls13_handle_handshake_secrets(struct s2n_connection *conn) 
{ 
    notnull_check(conn); 
    const struct s2n_ecc_preferences *ecc_preferences = NULL; 
    GUARD(s2n_connection_get_ecc_preferences(conn, &ecc_preferences)); 
    notnull_check(ecc_preferences); 
     
    /* get tls13 key context */ 
    s2n_tls13_connection_keys(secrets, conn); 
 
    /* get shared secret */ 
    DEFER_CLEANUP(struct s2n_blob shared_secret = { 0 }, s2n_free); 
    GUARD(s2n_tls13_compute_shared_secret(conn, &shared_secret)); 
 
    /* derive early secrets */ 
    GUARD(s2n_tls13_derive_early_secrets(&secrets)); 
 
    /* produce handshake secrets */ 
    s2n_stack_blob(client_hs_secret, secrets.size, S2N_TLS13_SECRET_MAX_LEN); 
    s2n_stack_blob(server_hs_secret, secrets.size, S2N_TLS13_SECRET_MAX_LEN); 
 
    struct s2n_hash_state hash_state = {0}; 
    GUARD(s2n_handshake_get_hash_state(conn, secrets.hash_algorithm, &hash_state)); 
    GUARD(s2n_tls13_derive_handshake_secrets(&secrets, &shared_secret, &hash_state, &client_hs_secret, &server_hs_secret)); 
 
    /* trigger secret callbacks */ 
    if (conn->secret_cb && conn->config->quic_enabled) { 
        GUARD(conn->secret_cb(conn->secret_cb_context, conn, S2N_CLIENT_HANDSHAKE_TRAFFIC_SECRET, 
                client_hs_secret.data, client_hs_secret.size)); 
        GUARD(conn->secret_cb(conn->secret_cb_context, conn, S2N_SERVER_HANDSHAKE_TRAFFIC_SECRET, 
                server_hs_secret.data, server_hs_secret.size)); 
    } 
 
    /* produce handshake traffic keys and configure record algorithm */ 
    s2n_tls13_key_blob(server_hs_key, conn->secure.cipher_suite->record_alg->cipher->key_material_size); 
    struct s2n_blob server_hs_iv = { .data = conn->secure.server_implicit_iv, .size = S2N_TLS13_FIXED_IV_LEN }; 
    GUARD(s2n_tls13_derive_traffic_keys(&secrets, &server_hs_secret, &server_hs_key, &server_hs_iv)); 
 
    s2n_tls13_key_blob(client_hs_key, conn->secure.cipher_suite->record_alg->cipher->key_material_size); 
    struct s2n_blob client_hs_iv = { .data = conn->secure.client_implicit_iv, .size = S2N_TLS13_FIXED_IV_LEN }; 
    GUARD(s2n_tls13_derive_traffic_keys(&secrets, &client_hs_secret, &client_hs_key, &client_hs_iv)); 
 
    GUARD(conn->secure.cipher_suite->record_alg->cipher->init(&conn->secure.server_key)); 
    GUARD(conn->secure.cipher_suite->record_alg->cipher->init(&conn->secure.client_key)); 
 
    if (conn->mode == S2N_CLIENT) { 
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_decryption_key(&conn->secure.server_key, &server_hs_key)); 
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_encryption_key(&conn->secure.client_key, &client_hs_key)); 
    } else { 
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_encryption_key(&conn->secure.server_key, &server_hs_key)); 
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_decryption_key(&conn->secure.client_key, &client_hs_key)); 
    } 
 
    /* calculate server + client finished keys and store them in handshake struct */ 
    struct s2n_blob server_finished_key = { .data = conn->handshake.server_finished, .size = secrets.size }; 
    struct s2n_blob client_finished_key = { .data = conn->handshake.client_finished, .size = secrets.size }; 
    GUARD(s2n_tls13_derive_finished_key(&secrets, &server_hs_secret, &server_finished_key)); 
    GUARD(s2n_tls13_derive_finished_key(&secrets, &client_hs_secret, &client_finished_key)); 
 
    /* since shared secret has been computed, clean up keys */ 
    GUARD(s2n_ecc_evp_params_free(&conn->secure.server_ecc_evp_params)); 
    for (int i = 0; i < ecc_preferences->count; i++) { 
        GUARD(s2n_ecc_evp_params_free(&conn->secure.client_ecc_evp_params[i])); 
    } 
 
    /* According to https://tools.ietf.org/html/rfc8446#section-5.3: 
     * Each sequence number is set to zero at the beginning of a connection and 
     * whenever the key is changed 
     */ 
    GUARD(s2n_zero_sequence_number(conn, S2N_CLIENT)); 
    GUARD(s2n_zero_sequence_number(conn, S2N_SERVER)); 
 
    return 0; 
} 
 
static int s2n_tls13_handle_application_secret(struct s2n_connection *conn, s2n_mode mode) 
{ 
    /* get tls13 key context */ 
    s2n_tls13_connection_keys(keys, conn); 
    bool is_sending_secret = (mode == conn->mode); 
 
    uint8_t *app_secret_data, *implicit_iv_data; 
    struct s2n_session_key *session_key; 
    s2n_secret_type_t secret_type; 
    if (mode == S2N_CLIENT) { 
        app_secret_data = conn->secure.client_app_secret; 
        implicit_iv_data = conn->secure.client_implicit_iv; 
        session_key = &conn->secure.client_key; 
        secret_type = S2N_CLIENT_APPLICATION_TRAFFIC_SECRET; 
    } else { 
        app_secret_data = conn->secure.server_app_secret; 
        implicit_iv_data = conn->secure.server_implicit_iv; 
        session_key = &conn->secure.server_key; 
        secret_type = S2N_SERVER_APPLICATION_TRAFFIC_SECRET; 
    } 
 
    /* use frozen hashes during the server finished state */ 
    struct s2n_hash_state *hash_state; 
    GUARD_NONNULL(hash_state = &conn->handshake.server_finished_copy); 
 
    /* calculate secret */ 
    struct s2n_blob app_secret = { .data = app_secret_data, .size = keys.size }; 
    GUARD(s2n_tls13_derive_application_secret(&keys, hash_state, &app_secret, mode)); 
 
    /* trigger secret callback */ 
    if (conn->secret_cb && conn->config->quic_enabled) { 
        GUARD(conn->secret_cb(conn->secret_cb_context, conn, secret_type, 
                app_secret.data, app_secret.size)); 
    } 
 
    /* derive key from secret */ 
    s2n_tls13_key_blob(app_key, conn->secure.cipher_suite->record_alg->cipher->key_material_size); 
    struct s2n_blob app_iv = { .data = implicit_iv_data, .size = S2N_TLS13_FIXED_IV_LEN }; 
    GUARD(s2n_tls13_derive_traffic_keys(&keys, &app_secret, &app_key, &app_iv)); 
 
    /* update record algorithm secrets */ 
    if (is_sending_secret) { 
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_encryption_key(session_key, &app_key)); 
    } else { 
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_decryption_key(session_key, &app_key)); 
    } 
 
    /* According to https://tools.ietf.org/html/rfc8446#section-5.3: 
     * Each sequence number is set to zero at the beginning of a connection and 
     * whenever the key is changed 
     */ 
    GUARD(s2n_zero_sequence_number(conn, mode)); 
 
    return S2N_SUCCESS; 
} 
 
/* The application secrets are derived from the master secret, so the 
 * master secret must be handled BEFORE the application secrets. 
 */ 
static int s2n_tls13_handle_master_secret(struct s2n_connection *conn) 
{ 
    s2n_tls13_connection_keys(keys, conn); 
    GUARD(s2n_tls13_extract_master_secret(&keys)); 
    return S2N_SUCCESS; 
} 
 
int s2n_tls13_handle_secrets(struct s2n_connection *conn) 
{ 
    notnull_check(conn); 
    if (conn->actual_protocol_version < S2N_TLS13) { 
        return S2N_SUCCESS; 
    } 
 
    switch(s2n_conn_get_current_message_type(conn)) { 
        case SERVER_HELLO: 
            GUARD(s2n_tls13_handle_handshake_secrets(conn)); 
            /* Set negotiated crypto parameters for encryption */ 
            conn->server = &conn->secure; 
            conn->client = &conn->secure; 
            break; 
        case SERVER_FINISHED: 
            if (conn->mode == S2N_SERVER) { 
                GUARD(s2n_tls13_handle_master_secret(conn)); 
                GUARD(s2n_tls13_handle_application_secret(conn, S2N_SERVER)); 
            } 
            break; 
        case CLIENT_FINISHED: 
            if (conn->mode == S2N_CLIENT) { 
                GUARD(s2n_tls13_handle_master_secret(conn)); 
                GUARD(s2n_tls13_handle_application_secret(conn, S2N_SERVER)); 
            } 
            GUARD(s2n_tls13_handle_application_secret(conn, S2N_CLIENT)); 
            break; 
        default: 
            break; 
    } 
    return S2N_SUCCESS; 
} 
 
int s2n_update_application_traffic_keys(struct s2n_connection *conn, s2n_mode mode, keyupdate_status status) 
{ 
    notnull_check(conn); 
     
    /* get tls13 key context */ 
    s2n_tls13_connection_keys(keys, conn); 
 
    struct s2n_session_key *old_key; 
    struct s2n_blob old_app_secret; 
    struct s2n_blob app_iv; 
 
    if (mode == S2N_CLIENT) { 
        old_key = &conn->secure.client_key; 
        GUARD(s2n_blob_init(&old_app_secret, conn->secure.client_app_secret, keys.size)); 
        GUARD(s2n_blob_init(&app_iv, conn->secure.client_implicit_iv, S2N_TLS13_FIXED_IV_LEN)); 
    } else { 
        old_key = &conn->secure.server_key; 
        GUARD(s2n_blob_init(&old_app_secret, conn->secure.server_app_secret, keys.size)); 
        GUARD(s2n_blob_init(&app_iv, conn->secure.server_implicit_iv, S2N_TLS13_FIXED_IV_LEN));   
    } 
 
    /* Produce new application secret */ 
    s2n_stack_blob(app_secret_update, keys.size, S2N_TLS13_SECRET_MAX_LEN); 
 
    /* Derives next generation of traffic secret */ 
    GUARD(s2n_tls13_update_application_traffic_secret(&keys, &old_app_secret, &app_secret_update)); 
 
    s2n_tls13_key_blob(app_key, conn->secure.cipher_suite->record_alg->cipher->key_material_size); 
 
    /* Derives next generation of traffic key */ 
    GUARD(s2n_tls13_derive_traffic_keys(&keys, &app_secret_update, &app_key, &app_iv)); 
    if (status == RECEIVING) { 
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_decryption_key(old_key, &app_key)); 
    } else { 
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_encryption_key(old_key, &app_key)); 
    } 
 
    /* According to https://tools.ietf.org/html/rfc8446#section-5.3: 
     * Each sequence number is set to zero at the beginning of a connection and 
     * whenever the key is changed; the first record transmitted under a particular traffic key 
     * MUST use sequence number 0. 
     */ 
    GUARD(s2n_zero_sequence_number(conn, mode)); 
     
    /* Save updated secret */ 
    struct s2n_stuffer old_secret_stuffer = {0}; 
    GUARD(s2n_stuffer_init(&old_secret_stuffer, &old_app_secret)); 
    GUARD(s2n_stuffer_write_bytes(&old_secret_stuffer, app_secret_update.data, keys.size)); 
 
    return S2N_SUCCESS; 
}