aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/s2n/tls/s2n_prf.c
blob: fbfffb5fad551a131927c38764bbbf6cc44d79a0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 *  http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

#include <sys/param.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#include <string.h>

#include "error/s2n_errno.h"

#include "tls/s2n_cipher_suites.h"
#include "tls/s2n_connection.h"
#include "tls/s2n_prf.h"

#include "stuffer/s2n_stuffer.h"

#include "crypto/s2n_hmac.h"
#include "crypto/s2n_hash.h"
#include "crypto/s2n_openssl.h"
#include "crypto/s2n_fips.h"

#include "utils/s2n_safety.h"
#include "utils/s2n_blob.h"
#include "utils/s2n_mem.h"

static int s2n_sslv3_prf(struct s2n_prf_working_space *ws, struct s2n_blob *secret, struct s2n_blob *seed_a,
        struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out)
{
    struct s2n_hash_state *md5 = &ws->ssl3.md5;
    struct s2n_hash_state *sha1 = &ws->ssl3.sha1;

    uint32_t outputlen = out->size;
    uint8_t *output = out->data;
    uint8_t iteration = 1;

    uint8_t A = 'A';
    while (outputlen) {
        GUARD(s2n_hash_reset(sha1));

        for (int i = 0; i < iteration; i++) {
            GUARD(s2n_hash_update(sha1, &A, 1));
        }

        GUARD(s2n_hash_update(sha1, secret->data, secret->size));
        GUARD(s2n_hash_update(sha1, seed_a->data, seed_a->size));

        if (seed_b) {
            GUARD(s2n_hash_update(sha1, seed_b->data, seed_b->size));
            if (seed_c) {
                GUARD(s2n_hash_update(sha1, seed_c->data, seed_c->size));
            }
        }

        GUARD(s2n_hash_digest(sha1, ws->ssl3.sha1_digest, sizeof(ws->ssl3.sha1_digest)));

        GUARD(s2n_hash_reset(md5));
        GUARD(s2n_hash_update(md5, secret->data, secret->size));
        GUARD(s2n_hash_update(md5, ws->ssl3.sha1_digest, sizeof(ws->ssl3.sha1_digest)));
        GUARD(s2n_hash_digest(md5, ws->ssl3.md5_digest, sizeof(ws->ssl3.md5_digest)));

        uint32_t bytes_to_copy = MIN(outputlen, sizeof(ws->ssl3.md5_digest));

        memcpy_check(output, ws->ssl3.md5_digest, bytes_to_copy);

        outputlen -= bytes_to_copy;
        output += bytes_to_copy;

        /* Increment the letter */
        A++;
        iteration++;
    }

    GUARD(s2n_hash_reset(md5));
    GUARD(s2n_hash_reset(sha1));

    return 0;
}

#if !defined(OPENSSL_IS_BORINGSSL) && !defined(OPENSSL_IS_AWSLC)
static int s2n_evp_hmac_p_hash_new(struct s2n_prf_working_space *ws)
{
    notnull_check(ws->tls.p_hash.evp_hmac.evp_digest.ctx = S2N_EVP_MD_CTX_NEW());
    return 0;
}

static int s2n_evp_hmac_p_hash_digest_init(struct s2n_prf_working_space *ws)
{
    notnull_check(ws->tls.p_hash.evp_hmac.evp_digest.md);
    notnull_check(ws->tls.p_hash.evp_hmac.evp_digest.ctx);
    notnull_check(ws->tls.p_hash.evp_hmac.mac_key);
 
    /* Ignore the MD5 check when in FIPS mode to comply with the TLS 1.0 RFC */
    if (s2n_is_in_fips_mode()) {
        GUARD(s2n_digest_allow_md5_for_fips(&ws->tls.p_hash.evp_hmac.evp_digest));
    }

    GUARD_OSSL(EVP_DigestSignInit(ws->tls.p_hash.evp_hmac.evp_digest.ctx, NULL, ws->tls.p_hash.evp_hmac.evp_digest.md, NULL, ws->tls.p_hash.evp_hmac.mac_key),
           S2N_ERR_P_HASH_INIT_FAILED);

    return 0;
}

static int s2n_evp_hmac_p_hash_init(struct s2n_prf_working_space *ws, s2n_hmac_algorithm alg, struct s2n_blob *secret)
{
    /* Initialize the message digest */
    switch (alg) {
    case S2N_HMAC_SSLv3_MD5:
    case S2N_HMAC_MD5:
        ws->tls.p_hash.evp_hmac.evp_digest.md = EVP_md5();
        break;
    case S2N_HMAC_SSLv3_SHA1:
    case S2N_HMAC_SHA1:
        ws->tls.p_hash.evp_hmac.evp_digest.md = EVP_sha1();
        break;
    case S2N_HMAC_SHA224:
        ws->tls.p_hash.evp_hmac.evp_digest.md = EVP_sha224();
        break;
    case S2N_HMAC_SHA256:
        ws->tls.p_hash.evp_hmac.evp_digest.md = EVP_sha256();
        break;
    case S2N_HMAC_SHA384:
        ws->tls.p_hash.evp_hmac.evp_digest.md = EVP_sha384();
        break;
    case S2N_HMAC_SHA512:
        ws->tls.p_hash.evp_hmac.evp_digest.md = EVP_sha512();
        break;
    default:
        S2N_ERROR(S2N_ERR_P_HASH_INVALID_ALGORITHM);
    }

    /* Initialize the mac key using the provided secret */
    notnull_check(ws->tls.p_hash.evp_hmac.mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, secret->data, secret->size));

    /* Initialize the message digest context with the above message digest and mac key */
    return s2n_evp_hmac_p_hash_digest_init(ws);
}

static int s2n_evp_hmac_p_hash_update(struct s2n_prf_working_space *ws, const void *data, uint32_t size)
{
    GUARD_OSSL(EVP_DigestSignUpdate(ws->tls.p_hash.evp_hmac.evp_digest.ctx, data, (size_t)size), S2N_ERR_P_HASH_UPDATE_FAILED);

    return 0;
}

static int s2n_evp_hmac_p_hash_digest(struct s2n_prf_working_space *ws, void *digest, uint32_t size)
{
    /* EVP_DigestSign API's require size_t data structures */
    size_t digest_size = size;

    GUARD_OSSL(EVP_DigestSignFinal(ws->tls.p_hash.evp_hmac.evp_digest.ctx, (unsigned char *)digest, &digest_size), S2N_ERR_P_HASH_FINAL_FAILED);

    return 0;
}

static int s2n_evp_hmac_p_hash_wipe(struct s2n_prf_working_space *ws)
{
  GUARD_OSSL(S2N_EVP_MD_CTX_RESET(ws->tls.p_hash.evp_hmac.evp_digest.ctx), S2N_ERR_P_HASH_WIPE_FAILED);

    return 0;
}

static int s2n_evp_hmac_p_hash_reset(struct s2n_prf_working_space *ws)
{
    GUARD(s2n_evp_hmac_p_hash_wipe(ws));

    return s2n_evp_hmac_p_hash_digest_init(ws);
}

static int s2n_evp_hmac_p_hash_cleanup(struct s2n_prf_working_space *ws)
{
    /* Prepare the workspace md_ctx for the next p_hash */
    GUARD(s2n_evp_hmac_p_hash_wipe(ws));

    /* Free mac key - PKEYs cannot be reused */
    notnull_check(ws->tls.p_hash.evp_hmac.mac_key);
    EVP_PKEY_free(ws->tls.p_hash.evp_hmac.mac_key);
    ws->tls.p_hash.evp_hmac.mac_key = NULL;

    return 0;
}

static int s2n_evp_hmac_p_hash_free(struct s2n_prf_working_space *ws)
{
    notnull_check(ws->tls.p_hash.evp_hmac.evp_digest.ctx);
    S2N_EVP_MD_CTX_FREE(ws->tls.p_hash.evp_hmac.evp_digest.ctx);
    ws->tls.p_hash.evp_hmac.evp_digest.ctx = NULL;

    return 0;
}

static const struct s2n_p_hash_hmac s2n_evp_hmac = {
    .alloc = &s2n_evp_hmac_p_hash_new,
    .init = &s2n_evp_hmac_p_hash_init,
    .update = &s2n_evp_hmac_p_hash_update,
    .final = &s2n_evp_hmac_p_hash_digest,
    .reset = &s2n_evp_hmac_p_hash_reset,
    .cleanup = &s2n_evp_hmac_p_hash_cleanup,
    .free = &s2n_evp_hmac_p_hash_free,
};
#endif /* !defined(OPENSSL_IS_BORINGSSL) && !defined(OPENSSL_IS_AWSLC) */

static int s2n_hmac_p_hash_new(struct s2n_prf_working_space *ws)
{
    GUARD(s2n_hmac_new(&ws->tls.p_hash.s2n_hmac));

    return s2n_hmac_init(&ws->tls.p_hash.s2n_hmac, S2N_HMAC_NONE, NULL, 0);
}

static int s2n_hmac_p_hash_init(struct s2n_prf_working_space *ws, s2n_hmac_algorithm alg, struct s2n_blob *secret)
{
    return s2n_hmac_init(&ws->tls.p_hash.s2n_hmac, alg, secret->data, secret->size);
}

static int s2n_hmac_p_hash_update(struct s2n_prf_working_space *ws, const void *data, uint32_t size)
{
    return s2n_hmac_update(&ws->tls.p_hash.s2n_hmac, data, size);
}

static int s2n_hmac_p_hash_digest(struct s2n_prf_working_space *ws, void *digest, uint32_t size)
{
    return s2n_hmac_digest(&ws->tls.p_hash.s2n_hmac, digest, size);
}

static int s2n_hmac_p_hash_reset(struct s2n_prf_working_space *ws)
{
    return s2n_hmac_reset(&ws->tls.p_hash.s2n_hmac);
}

static int s2n_hmac_p_hash_cleanup(struct s2n_prf_working_space *ws)
{
    return s2n_hmac_p_hash_reset(ws);
}

static int s2n_hmac_p_hash_free(struct s2n_prf_working_space *ws)
{
    return s2n_hmac_free(&ws->tls.p_hash.s2n_hmac);
}

static const struct s2n_p_hash_hmac s2n_hmac = {
    .alloc = &s2n_hmac_p_hash_new,
    .init = &s2n_hmac_p_hash_init,
    .update = &s2n_hmac_p_hash_update,
    .final = &s2n_hmac_p_hash_digest,
    .reset = &s2n_hmac_p_hash_reset,
    .cleanup = &s2n_hmac_p_hash_cleanup,
    .free = &s2n_hmac_p_hash_free,
};

static int s2n_p_hash(struct s2n_prf_working_space *ws, s2n_hmac_algorithm alg, struct s2n_blob *secret, struct s2n_blob *label,
                      struct s2n_blob *seed_a, struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out)
{
    uint8_t digest_size;
    GUARD(s2n_hmac_digest_size(alg, &digest_size));

    const struct s2n_p_hash_hmac *hmac = ws->tls.p_hash_hmac_impl;

    /* First compute hmac(secret + A(0)) */
    GUARD(hmac->init(ws, alg, secret));
    GUARD(hmac->update(ws, label->data, label->size));
    GUARD(hmac->update(ws, seed_a->data, seed_a->size));

    if (seed_b) {
        GUARD(hmac->update(ws, seed_b->data, seed_b->size));
        if (seed_c) {
            GUARD(hmac->update(ws, seed_c->data, seed_c->size));
        }
    }
    GUARD(hmac->final(ws, ws->tls.digest0, digest_size));

    uint32_t outputlen = out->size;
    uint8_t *output = out->data;

    while (outputlen) {
        /* Now compute hmac(secret + A(N - 1) + seed) */
        GUARD(hmac->reset(ws));
        GUARD(hmac->update(ws, ws->tls.digest0, digest_size));

        /* Add the label + seed and compute this round's A */
        GUARD(hmac->update(ws, label->data, label->size));
        GUARD(hmac->update(ws, seed_a->data, seed_a->size));
        if (seed_b) {
            GUARD(hmac->update(ws, seed_b->data, seed_b->size));
            if (seed_c) {
                GUARD(hmac->update(ws, seed_c->data, seed_c->size));
            }
        }

        GUARD(hmac->final(ws, ws->tls.digest1, digest_size));

        uint32_t bytes_to_xor = MIN(outputlen, digest_size);

        for (int i = 0; i < bytes_to_xor; i++) {
            *output ^= ws->tls.digest1[i];
            output++;
            outputlen--;
        }

        /* Stash a digest of A(N), in A(N), for the next round */
        GUARD(hmac->reset(ws));
        GUARD(hmac->update(ws, ws->tls.digest0, digest_size));
        GUARD(hmac->final(ws, ws->tls.digest0, digest_size));
    }

    GUARD(hmac->cleanup(ws));

    return 0;
}

const struct s2n_p_hash_hmac *s2n_get_hmac_implementation() {
#if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC)
  return &s2n_hmac;
#else
  return s2n_is_in_fips_mode() ? &s2n_evp_hmac : &s2n_hmac;
#endif
}

int s2n_prf_new(struct s2n_connection *conn)
{
    /* Set p_hash_hmac_impl on initial prf creation. 
     * When in FIPS mode, the EVP API's must be used for the p_hash HMAC.
     */
    conn->prf_space.tls.p_hash_hmac_impl = s2n_get_hmac_implementation();

    return conn->prf_space.tls.p_hash_hmac_impl->alloc(&conn->prf_space);
}

int s2n_prf_free(struct s2n_connection *conn)
{
    /* Ensure that p_hash_hmac_impl is set, as it may have been reset for prf_space on s2n_connection_wipe. 
     * When in FIPS mode, the EVP API's must be used for the p_hash HMAC.
     */
    conn->prf_space.tls.p_hash_hmac_impl = s2n_get_hmac_implementation();

    return conn->prf_space.tls.p_hash_hmac_impl->free(&conn->prf_space);
}

static int s2n_prf(struct s2n_connection *conn, struct s2n_blob *secret, struct s2n_blob *label, struct s2n_blob *seed_a,
                   struct s2n_blob *seed_b, struct s2n_blob *seed_c, struct s2n_blob *out)
{
    /* seed_a is always required, seed_b is optional, if seed_c is provided seed_b must also be provided */
    S2N_ERROR_IF(seed_a == NULL, S2N_ERR_PRF_INVALID_SEED);
    S2N_ERROR_IF(seed_b == NULL && seed_c != NULL, S2N_ERR_PRF_INVALID_SEED);

    if (conn->actual_protocol_version == S2N_SSLv3) {
        return s2n_sslv3_prf(&conn->prf_space, secret, seed_a, seed_b, seed_c, out);
    }

    /* We zero the out blob because p_hash works by XOR'ing with the existing
     * buffer. This is a little convoluted but means we can avoid dynamic memory
     * allocation. When we call p_hash once (in the TLS1.2 case) it will produce
     * the right values. When we call it twice in the regular case, the two
     * outputs will be XORd just ass the TLS 1.0 and 1.1 RFCs require.
     */
    GUARD(s2n_blob_zero(out));

    /* Ensure that p_hash_hmac_impl is set, as it may have been reset for prf_space on s2n_connection_wipe. 
     * When in FIPS mode, the EVP API's must be used for the p_hash HMAC.
     */
    conn->prf_space.tls.p_hash_hmac_impl = s2n_get_hmac_implementation();

    if (conn->actual_protocol_version == S2N_TLS12) {
        return s2n_p_hash(&conn->prf_space, conn->secure.cipher_suite->prf_alg, secret, label, seed_a, seed_b,
                          seed_c, out);
    }

    struct s2n_blob half_secret = {.data = secret->data,.size = (secret->size + 1) / 2 };

    GUARD(s2n_p_hash(&conn->prf_space, S2N_HMAC_MD5, &half_secret, label, seed_a, seed_b, seed_c, out));
    half_secret.data += secret->size - half_secret.size;
    GUARD(s2n_p_hash(&conn->prf_space, S2N_HMAC_SHA1, &half_secret, label, seed_a, seed_b, seed_c, out));

    return 0;
}

int s2n_tls_prf_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret)
{
    struct s2n_blob client_random = {.size = sizeof(conn->secure.client_random), .data = conn->secure.client_random};
    struct s2n_blob server_random = {.size = sizeof(conn->secure.server_random), .data = conn->secure.server_random};
    struct s2n_blob master_secret = {.size = sizeof(conn->secure.master_secret), .data = conn->secure.master_secret};

    uint8_t master_secret_label[] = "master secret";
    struct s2n_blob label = {.size = sizeof(master_secret_label) - 1, .data = master_secret_label};

    return s2n_prf(conn, premaster_secret, &label, &client_random, &server_random, NULL, &master_secret);
}

int s2n_hybrid_prf_master_secret(struct s2n_connection *conn, struct s2n_blob *premaster_secret)
{
    struct s2n_blob client_random = {.size = sizeof(conn->secure.client_random), .data = conn->secure.client_random};
    struct s2n_blob server_random = {.size = sizeof(conn->secure.server_random), .data = conn->secure.server_random};
    struct s2n_blob master_secret = {.size = sizeof(conn->secure.master_secret), .data = conn->secure.master_secret};

    uint8_t master_secret_label[] = "hybrid master secret";
    struct s2n_blob label = {.size = sizeof(master_secret_label) - 1, .data = master_secret_label};

    return s2n_prf(conn, premaster_secret, &label, &client_random, &server_random, &conn->secure.client_key_exchange_message, &master_secret);
}

static int s2n_sslv3_finished(struct s2n_connection *conn, uint8_t prefix[4], struct s2n_hash_state *md5, struct s2n_hash_state *sha1, uint8_t * out)
{
    uint8_t xorpad1[48] =
        { 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
        0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
    };
    uint8_t xorpad2[48] =
        { 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c,
        0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c, 0x5c
    };
    uint8_t *md5_digest = out;
    uint8_t *sha_digest = out + MD5_DIGEST_LENGTH;

    lte_check(MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH, sizeof(conn->handshake.client_finished));

    GUARD(s2n_hash_update(md5, prefix, 4));
    GUARD(s2n_hash_update(md5, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(md5, xorpad1, 48));
    GUARD(s2n_hash_digest(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(md5));
    GUARD(s2n_hash_update(md5, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(md5, xorpad2, 48));
    GUARD(s2n_hash_update(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(md5, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(md5));

    GUARD(s2n_hash_update(sha1, prefix, 4));
    GUARD(s2n_hash_update(sha1, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(sha1, xorpad1, 40));
    GUARD(s2n_hash_digest(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(sha1));
    GUARD(s2n_hash_update(sha1, conn->secure.master_secret, sizeof(conn->secure.master_secret)));
    GUARD(s2n_hash_update(sha1, xorpad2, 40));
    GUARD(s2n_hash_update(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(sha1, sha_digest, SHA_DIGEST_LENGTH));
    GUARD(s2n_hash_reset(sha1));

    return 0;
}

static int s2n_sslv3_client_finished(struct s2n_connection *conn)
{
    uint8_t prefix[4] = { 0x43, 0x4c, 0x4e, 0x54 };

    lte_check(MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH, sizeof(conn->handshake.client_finished));
    GUARD(s2n_hash_copy(&conn->handshake.prf_md5_hash_copy, &conn->handshake.md5));
    GUARD(s2n_hash_copy(&conn->handshake.prf_sha1_hash_copy, &conn->handshake.sha1));
    return s2n_sslv3_finished(conn, prefix, &conn->handshake.prf_md5_hash_copy, &conn->handshake.prf_sha1_hash_copy, conn->handshake.client_finished);
}

static int s2n_sslv3_server_finished(struct s2n_connection *conn)
{
    uint8_t prefix[4] = { 0x53, 0x52, 0x56, 0x52 };

    lte_check(MD5_DIGEST_LENGTH + SHA_DIGEST_LENGTH, sizeof(conn->handshake.server_finished));
    GUARD(s2n_hash_copy(&conn->handshake.prf_md5_hash_copy, &conn->handshake.md5));
    GUARD(s2n_hash_copy(&conn->handshake.prf_sha1_hash_copy, &conn->handshake.sha1));
    return s2n_sslv3_finished(conn, prefix, &conn->handshake.prf_md5_hash_copy, &conn->handshake.prf_sha1_hash_copy, conn->handshake.server_finished);
}

int s2n_prf_client_finished(struct s2n_connection *conn)
{
    struct s2n_blob master_secret, md5, sha;
    uint8_t md5_digest[MD5_DIGEST_LENGTH];
    uint8_t sha_digest[SHA384_DIGEST_LENGTH];
    uint8_t client_finished_label[] = "client finished";
    struct s2n_blob client_finished = {0};
    struct s2n_blob label = {0};

    if (conn->actual_protocol_version == S2N_SSLv3) {
        return s2n_sslv3_client_finished(conn);
    }

    client_finished.data = conn->handshake.client_finished;
    client_finished.size = S2N_TLS_FINISHED_LEN;
    label.data = client_finished_label;
    label.size = sizeof(client_finished_label) - 1;

    master_secret.data = conn->secure.master_secret;
    master_secret.size = sizeof(conn->secure.master_secret);
    if (conn->actual_protocol_version == S2N_TLS12) {
        switch (conn->secure.cipher_suite->prf_alg) {
        case S2N_HMAC_SHA256:
            GUARD(s2n_hash_copy(&conn->handshake.prf_tls12_hash_copy, &conn->handshake.sha256));
            GUARD(s2n_hash_digest(&conn->handshake.prf_tls12_hash_copy, sha_digest, SHA256_DIGEST_LENGTH));
            sha.size = SHA256_DIGEST_LENGTH;
            break;
        case S2N_HMAC_SHA384:
            GUARD(s2n_hash_copy(&conn->handshake.prf_tls12_hash_copy, &conn->handshake.sha384));
            GUARD(s2n_hash_digest(&conn->handshake.prf_tls12_hash_copy, sha_digest, SHA384_DIGEST_LENGTH));
            sha.size = SHA384_DIGEST_LENGTH;
            break;
        default:
            S2N_ERROR(S2N_ERR_PRF_INVALID_ALGORITHM);
        }

        sha.data = sha_digest;
        return s2n_prf(conn, &master_secret, &label, &sha, NULL, NULL, &client_finished);
    }

    GUARD(s2n_hash_copy(&conn->handshake.prf_md5_hash_copy, &conn->handshake.md5));
    GUARD(s2n_hash_copy(&conn->handshake.prf_sha1_hash_copy, &conn->handshake.sha1));

    GUARD(s2n_hash_digest(&conn->handshake.prf_md5_hash_copy, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(&conn->handshake.prf_sha1_hash_copy, sha_digest, SHA_DIGEST_LENGTH));
    md5.data = md5_digest;
    md5.size = MD5_DIGEST_LENGTH;
    sha.data = sha_digest;
    sha.size = SHA_DIGEST_LENGTH;

    return s2n_prf(conn, &master_secret, &label, &md5, &sha, NULL, &client_finished);
}

int s2n_prf_server_finished(struct s2n_connection *conn)
{
    struct s2n_blob master_secret, md5, sha;
    uint8_t md5_digest[MD5_DIGEST_LENGTH];
    uint8_t sha_digest[SHA384_DIGEST_LENGTH];
    uint8_t server_finished_label[] = "server finished";
    struct s2n_blob server_finished = {0};
    struct s2n_blob label = {0};

    if (conn->actual_protocol_version == S2N_SSLv3) {
        return s2n_sslv3_server_finished(conn);
    }

    server_finished.data = conn->handshake.server_finished;
    server_finished.size = S2N_TLS_FINISHED_LEN;
    label.data = server_finished_label;
    label.size = sizeof(server_finished_label) - 1;

    master_secret.data = conn->secure.master_secret;
    master_secret.size = sizeof(conn->secure.master_secret);
    if (conn->actual_protocol_version == S2N_TLS12) {
        switch (conn->secure.cipher_suite->prf_alg) {
        case S2N_HMAC_SHA256:
            GUARD(s2n_hash_copy(&conn->handshake.prf_tls12_hash_copy, &conn->handshake.sha256));
            GUARD(s2n_hash_digest(&conn->handshake.prf_tls12_hash_copy, sha_digest, SHA256_DIGEST_LENGTH));
            sha.size = SHA256_DIGEST_LENGTH;
            break;
        case S2N_HMAC_SHA384:
            GUARD(s2n_hash_copy(&conn->handshake.prf_tls12_hash_copy, &conn->handshake.sha384));
            GUARD(s2n_hash_digest(&conn->handshake.prf_tls12_hash_copy, sha_digest, SHA384_DIGEST_LENGTH));
            sha.size = SHA384_DIGEST_LENGTH;
            break;
        default:
            S2N_ERROR(S2N_ERR_PRF_INVALID_ALGORITHM);
        }

        sha.data = sha_digest;
        return s2n_prf(conn, &master_secret, &label, &sha, NULL, NULL, &server_finished);
    }

    GUARD(s2n_hash_copy(&conn->handshake.prf_md5_hash_copy, &conn->handshake.md5));
    GUARD(s2n_hash_copy(&conn->handshake.prf_sha1_hash_copy, &conn->handshake.sha1));

    GUARD(s2n_hash_digest(&conn->handshake.prf_md5_hash_copy, md5_digest, MD5_DIGEST_LENGTH));
    GUARD(s2n_hash_digest(&conn->handshake.prf_sha1_hash_copy, sha_digest, SHA_DIGEST_LENGTH));
    md5.data = md5_digest;
    md5.size = MD5_DIGEST_LENGTH;
    sha.data = sha_digest;
    sha.size = SHA_DIGEST_LENGTH;

    return s2n_prf(conn, &master_secret, &label, &md5, &sha, NULL, &server_finished);
}

static int s2n_prf_make_client_key(struct s2n_connection *conn, struct s2n_stuffer *key_material)
{
    struct s2n_blob client_key = {0};
    client_key.size = conn->secure.cipher_suite->record_alg->cipher->key_material_size;
    client_key.data = s2n_stuffer_raw_read(key_material, client_key.size);
    notnull_check(client_key.data);

    if (conn->mode == S2N_CLIENT) {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_encryption_key(&conn->secure.client_key, &client_key));
    } else {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_decryption_key(&conn->secure.client_key, &client_key));
    }

    return 0;
}

static int s2n_prf_make_server_key(struct s2n_connection *conn, struct s2n_stuffer *key_material)
{
    struct s2n_blob server_key = {0};
    server_key.size = conn->secure.cipher_suite->record_alg->cipher->key_material_size;
    server_key.data = s2n_stuffer_raw_read(key_material, server_key.size);
    notnull_check(server_key.data);

    if (conn->mode == S2N_SERVER) {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_encryption_key(&conn->secure.server_key, &server_key));
    } else {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->set_decryption_key(&conn->secure.server_key, &server_key));
    }

    return 0;
}

int s2n_prf_key_expansion(struct s2n_connection *conn)
{
    struct s2n_blob client_random = {.data = conn->secure.client_random,.size = sizeof(conn->secure.client_random) };
    struct s2n_blob server_random = {.data = conn->secure.server_random,.size = sizeof(conn->secure.server_random) };
    struct s2n_blob master_secret = {.data = conn->secure.master_secret,.size = sizeof(conn->secure.master_secret) };
    struct s2n_blob label, out;
    uint8_t key_expansion_label[] = "key expansion";
    uint8_t key_block[S2N_MAX_KEY_BLOCK_LEN];

    label.data = key_expansion_label;
    label.size = sizeof(key_expansion_label) - 1;
    GUARD(s2n_blob_init(&out, key_block, sizeof(key_block)));

    struct s2n_stuffer key_material = {0};
    GUARD(s2n_prf(conn, &master_secret, &label, &server_random, &client_random, NULL, &out));
    GUARD(s2n_stuffer_init(&key_material, &out));
    GUARD(s2n_stuffer_write(&key_material, &out));

    ENSURE_POSIX(conn->secure.cipher_suite->available, S2N_ERR_PRF_INVALID_ALGORITHM);
    GUARD(conn->secure.cipher_suite->record_alg->cipher->init(&conn->secure.client_key));
    GUARD(conn->secure.cipher_suite->record_alg->cipher->init(&conn->secure.server_key));

    /* Check that we have a valid MAC and key size */
    uint8_t mac_size;
    if (conn->secure.cipher_suite->record_alg->cipher->type == S2N_COMPOSITE) {
        mac_size = conn->secure.cipher_suite->record_alg->cipher->io.comp.mac_key_size;
    } else {
        GUARD(s2n_hmac_digest_size(conn->secure.cipher_suite->record_alg->hmac_alg, &mac_size));
    }

    /* Seed the client MAC */
    uint8_t *client_mac_write_key = s2n_stuffer_raw_read(&key_material, mac_size);
    notnull_check(client_mac_write_key);
    GUARD(s2n_hmac_reset(&conn->secure.client_record_mac));
    GUARD(s2n_hmac_init(&conn->secure.client_record_mac, conn->secure.cipher_suite->record_alg->hmac_alg, client_mac_write_key, mac_size));

    /* Seed the server MAC */
    uint8_t *server_mac_write_key = s2n_stuffer_raw_read(&key_material, mac_size);
    notnull_check(server_mac_write_key);
    GUARD(s2n_hmac_reset(&conn->secure.server_record_mac));
    GUARD(s2n_hmac_init(&conn->secure.server_record_mac, conn->secure.cipher_suite->record_alg->hmac_alg, server_mac_write_key, mac_size));

    /* Make the client key */
    GUARD(s2n_prf_make_client_key(conn, &key_material));

    /* Make the server key */
    GUARD(s2n_prf_make_server_key(conn, &key_material));

    /* Composite CBC does MAC inside the cipher, pass it the MAC key. 
     * Must happen after setting encryption/decryption keys.
     */
    if (conn->secure.cipher_suite->record_alg->cipher->type == S2N_COMPOSITE) {
        GUARD(conn->secure.cipher_suite->record_alg->cipher->io.comp.set_mac_write_key(&conn->secure.server_key, server_mac_write_key, mac_size));
        GUARD(conn->secure.cipher_suite->record_alg->cipher->io.comp.set_mac_write_key(&conn->secure.client_key, client_mac_write_key, mac_size));
    }

    /* TLS >= 1.1 has no implicit IVs for non AEAD ciphers */
    if (conn->actual_protocol_version > S2N_TLS10 && conn->secure.cipher_suite->record_alg->cipher->type != S2N_AEAD) {
        return 0;
    }

    uint32_t implicit_iv_size = 0;
    switch (conn->secure.cipher_suite->record_alg->cipher->type) {
    case S2N_AEAD:
        implicit_iv_size = conn->secure.cipher_suite->record_alg->cipher->io.aead.fixed_iv_size;
        break;
    case S2N_CBC:
        implicit_iv_size = conn->secure.cipher_suite->record_alg->cipher->io.cbc.block_size;
        break;
    case S2N_COMPOSITE:
        implicit_iv_size = conn->secure.cipher_suite->record_alg->cipher->io.comp.block_size;
        break;
    /* No-op for stream ciphers */
    default:
        break;
    }

    struct s2n_blob client_implicit_iv = {.data = conn->secure.client_implicit_iv,.size = implicit_iv_size };
    struct s2n_blob server_implicit_iv = {.data = conn->secure.server_implicit_iv,.size = implicit_iv_size };
    GUARD(s2n_stuffer_read(&key_material, &client_implicit_iv));
    GUARD(s2n_stuffer_read(&key_material, &server_implicit_iv));

    return 0;
}