aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/s2n/tls/s2n_kem.c
blob: e1b413cfe295e45b154b09c7ed41b88df189d117 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
/* 
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"). 
 * You may not use this file except in compliance with the License. 
 * A copy of the License is located at 
 * 
 *  http://aws.amazon.com/apache2.0 
 * 
 * or in the "license" file accompanying this file. This file is distributed 
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
 * express or implied. See the License for the specific language governing 
 * permissions and limitations under the License. 
 */ 
 
#include "stuffer/s2n_stuffer.h" 
#include "tls/s2n_tls_parameters.h" 
#include "tls/s2n_kem.h" 
#include "tls/extensions/s2n_key_share.h" 
#include "utils/s2n_mem.h" 
#include "utils/s2n_safety.h" 
#include "pq-crypto/s2n_pq.h" 
 
/* The KEM IDs and names come from https://tools.ietf.org/html/draft-campagna-tls-bike-sike-hybrid */ 
const struct s2n_kem s2n_bike1_l1_r1 = { 
        .name = "BIKE1r1-Level1", 
        .kem_extension_id = TLS_PQ_KEM_EXTENSION_ID_BIKE1_L1_R1, 
        .public_key_length = BIKE1_L1_R1_PUBLIC_KEY_BYTES, 
        .private_key_length = BIKE1_L1_R1_SECRET_KEY_BYTES, 
        .shared_secret_key_length = BIKE1_L1_R1_SHARED_SECRET_BYTES, 
        .ciphertext_length = BIKE1_L1_R1_CIPHERTEXT_BYTES, 
        .generate_keypair = &BIKE1_L1_R1_crypto_kem_keypair, 
        .encapsulate = &BIKE1_L1_R1_crypto_kem_enc, 
        .decapsulate = &BIKE1_L1_R1_crypto_kem_dec, 
}; 
 
const struct s2n_kem s2n_bike1_l1_r2 = { 
        .name = "BIKE1r2-Level1", 
        .kem_extension_id = TLS_PQ_KEM_EXTENSION_ID_BIKE1_L1_R2, 
        .public_key_length = BIKE1_L1_R2_PUBLIC_KEY_BYTES, 
        .private_key_length = BIKE1_L1_R2_SECRET_KEY_BYTES, 
        .shared_secret_key_length = BIKE1_L1_R2_SHARED_SECRET_BYTES, 
        .ciphertext_length = BIKE1_L1_R2_CIPHERTEXT_BYTES, 
        .generate_keypair = &BIKE1_L1_R2_crypto_kem_keypair, 
        .encapsulate = &BIKE1_L1_R2_crypto_kem_enc, 
        .decapsulate = &BIKE1_L1_R2_crypto_kem_dec, 
}; 
 
const struct s2n_kem s2n_sike_p503_r1 = { 
        .name = "SIKEp503r1-KEM", 
        .kem_extension_id = TLS_PQ_KEM_EXTENSION_ID_SIKE_P503_R1, 
        .public_key_length = SIKE_P503_R1_PUBLIC_KEY_BYTES, 
        .private_key_length = SIKE_P503_R1_SECRET_KEY_BYTES, 
        .shared_secret_key_length = SIKE_P503_R1_SHARED_SECRET_BYTES, 
        .ciphertext_length = SIKE_P503_R1_CIPHERTEXT_BYTES, 
        .generate_keypair = &SIKE_P503_r1_crypto_kem_keypair, 
        .encapsulate = &SIKE_P503_r1_crypto_kem_enc, 
        .decapsulate = &SIKE_P503_r1_crypto_kem_dec, 
}; 
 
const struct s2n_kem s2n_sike_p434_r2 = { 
        .name = "SIKEp434r2-KEM", 
        .kem_extension_id = TLS_PQ_KEM_EXTENSION_ID_SIKE_P434_R2, 
        .public_key_length = SIKE_P434_R2_PUBLIC_KEY_BYTES, 
        .private_key_length = SIKE_P434_R2_SECRET_KEY_BYTES, 
        .shared_secret_key_length = SIKE_P434_R2_SHARED_SECRET_BYTES, 
        .ciphertext_length = SIKE_P434_R2_CIPHERTEXT_BYTES, 
        .generate_keypair = &SIKE_P434_r2_crypto_kem_keypair, 
        .encapsulate = &SIKE_P434_r2_crypto_kem_enc, 
        .decapsulate = &SIKE_P434_r2_crypto_kem_dec, 
}; 
 
const struct s2n_kem s2n_kyber_512_r2 = { 
        .name = "kyber512r2", 
        .kem_extension_id = TLS_PQ_KEM_EXTENSION_ID_KYBER_512_R2, 
        .public_key_length = KYBER_512_R2_PUBLIC_KEY_BYTES, 
        .private_key_length = KYBER_512_R2_SECRET_KEY_BYTES, 
        .shared_secret_key_length = KYBER_512_R2_SHARED_SECRET_BYTES, 
        .ciphertext_length = KYBER_512_R2_CIPHERTEXT_BYTES, 
        .generate_keypair = &kyber_512_r2_crypto_kem_keypair, 
        .encapsulate = &kyber_512_r2_crypto_kem_enc, 
        .decapsulate = &kyber_512_r2_crypto_kem_dec, 
}; 
 
const struct s2n_kem s2n_kyber_512_90s_r2 = { 
        .name = "kyber51290sr2", 
        .kem_extension_id = TLS_PQ_KEM_EXTENSION_ID_KYBER_512_90S_R2, 
        .public_key_length = KYBER_512_R2_PUBLIC_KEY_BYTES, 
        .private_key_length = KYBER_512_R2_SECRET_KEY_BYTES, 
        .shared_secret_key_length = KYBER_512_R2_SHARED_SECRET_BYTES, 
        .ciphertext_length = KYBER_512_R2_CIPHERTEXT_BYTES, 
        .generate_keypair = &kyber_512_90s_r2_crypto_kem_keypair, 
        .encapsulate = &kyber_512_90s_r2_crypto_kem_enc, 
        .decapsulate = &kyber_512_90s_r2_crypto_kem_dec, 
}; 
 
/* These lists should be kept up to date with the above KEMs. Order in the lists 
 * does not matter. Adding a KEM to these lists will not automatically enable 
 * support for the KEM extension - that must be added via the KEM preferences & 
 * security policies. These lists are applicable only to PQ-TLS 1.2. */ 
const struct s2n_kem *bike_kems[] = { 
        &s2n_bike1_l1_r1, 
        &s2n_bike1_l1_r2 
}; 
 
const struct s2n_kem *sike_kems[] = { 
        &s2n_sike_p503_r1, 
        &s2n_sike_p434_r2, 
}; 
 
const struct s2n_kem *kyber_kems[] = { 
        &s2n_kyber_512_r2, 
        &s2n_kyber_512_90s_r2, 
}; 
 
const struct s2n_iana_to_kem kem_mapping[3] = { 
        { 
            .iana_value = { TLS_ECDHE_BIKE_RSA_WITH_AES_256_GCM_SHA384 }, 
            .kems = bike_kems, 
            .kem_count = s2n_array_len(bike_kems), 
        }, 
        { 
            .iana_value = { TLS_ECDHE_SIKE_RSA_WITH_AES_256_GCM_SHA384 }, 
            .kems = sike_kems, 
            .kem_count = s2n_array_len(sike_kems), 
        }, 
        { 
            .iana_value = { TLS_ECDHE_KYBER_RSA_WITH_AES_256_GCM_SHA384 }, 
            .kems = kyber_kems, 
            .kem_count = s2n_array_len(kyber_kems), 
        } 
}; 
 
/* Specific assignments of KEM group IDs and names have not yet been 
 * published in an RFC (or draft). There is consensus in the 
 * community to use values in the proposed reserved range defined in 
 * https://tools.ietf.org/html/draft-stebila-tls-hybrid-design. 
 * Values for interoperability are defined in 
 * https://docs.google.com/spreadsheets/d/12YarzaNv3XQNLnvDsWLlRKwtZFhRrDdWf36YlzwrPeg/edit#gid=0. 
 * 
 * The structure of the hybrid share is: 
 *    size of ECC key share (2 bytes) 
 * || ECC key share (variable bytes) 
 * || size of PQ key share (2 bytes) 
 * || PQ key share (variable bytes) */ 
const struct s2n_kem_group s2n_secp256r1_sike_p434_r2 = { 
        .name = "secp256r1_sike-p434-r2", 
        .iana_id = TLS_PQ_KEM_GROUP_ID_SECP256R1_SIKE_P434_R2, 
        .client_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + SECP256R1_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + SIKE_P434_R2_PUBLIC_KEY_BYTES), 
        .server_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + SECP256R1_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + SIKE_P434_R2_CIPHERTEXT_BYTES), 
        .curve = &s2n_ecc_curve_secp256r1, 
        .kem = &s2n_sike_p434_r2, 
}; 
 
const struct s2n_kem_group s2n_secp256r1_bike1_l1_r2 = { 
        /* The name string follows the convention in the above google doc */ 
        .name = "secp256r1_bike-1l1fo-r2", 
        .iana_id = TLS_PQ_KEM_GROUP_ID_SECP256R1_BIKE1_L1_R2, 
        .client_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + SECP256R1_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + BIKE1_L1_R2_PUBLIC_KEY_BYTES), 
        .server_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + SECP256R1_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + BIKE1_L1_R2_CIPHERTEXT_BYTES), 
        .curve = &s2n_ecc_curve_secp256r1, 
        .kem = &s2n_bike1_l1_r2, 
}; 
 
const struct s2n_kem_group s2n_secp256r1_kyber_512_r2 = { 
        .name = "secp256r1_kyber-512-r2", 
        .iana_id = TLS_PQ_KEM_GROUP_ID_SECP256R1_KYBER_512_R2, 
        .client_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + SECP256R1_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + KYBER_512_R2_PUBLIC_KEY_BYTES), 
        .server_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + SECP256R1_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + KYBER_512_R2_CIPHERTEXT_BYTES), 
        .curve = &s2n_ecc_curve_secp256r1, 
        .kem = &s2n_kyber_512_r2, 
}; 
 
#if EVP_APIS_SUPPORTED 
const struct s2n_kem_group s2n_x25519_sike_p434_r2 = { 
        .name = "x25519_sike-p434-r2", 
        .iana_id = TLS_PQ_KEM_GROUP_ID_X25519_SIKE_P434_R2, 
        .client_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + X25519_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + SIKE_P434_R2_PUBLIC_KEY_BYTES), 
        .server_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + X25519_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + SIKE_P434_R2_CIPHERTEXT_BYTES), 
        .curve = &s2n_ecc_curve_x25519, 
        .kem = &s2n_sike_p434_r2, 
}; 
 
const struct s2n_kem_group s2n_x25519_bike1_l1_r2 = { 
        /* The name string follows the convention in the above google doc */ 
        .name = "x25519_bike-1l1fo-r2", 
        .iana_id = TLS_PQ_KEM_GROUP_ID_X25519_BIKE1_L1_R2, 
        .client_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + X25519_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + BIKE1_L1_R2_PUBLIC_KEY_BYTES), 
        .server_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + X25519_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + BIKE1_L1_R2_CIPHERTEXT_BYTES), 
        .curve = &s2n_ecc_curve_x25519, 
        .kem = &s2n_bike1_l1_r2, 
}; 
 
const struct s2n_kem_group s2n_x25519_kyber_512_r2 = { 
        .name = "x25519_kyber-512-r2", 
        .iana_id = TLS_PQ_KEM_GROUP_ID_X25519_KYBER_512_R2, 
        .client_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + X25519_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + KYBER_512_R2_PUBLIC_KEY_BYTES), 
        .server_share_size = (S2N_SIZE_OF_KEY_SHARE_SIZE + X25519_SHARE_SIZE) + 
                (S2N_SIZE_OF_KEY_SHARE_SIZE + KYBER_512_R2_CIPHERTEXT_BYTES), 
        .curve = &s2n_ecc_curve_x25519, 
        .kem = &s2n_kyber_512_r2, 
}; 
#else 
const struct s2n_kem_group s2n_x25519_sike_p434_r2 = { 0 }; 
const struct s2n_kem_group s2n_x25519_bike1_l1_r2 = { 0 }; 
const struct s2n_kem_group s2n_x25519_kyber_512_r2 = { 0 }; 
#endif 
 
/* Helper safety macro to call the NIST PQ KEM functions. The NIST 
 * functions may return any non-zero value to indicate failure. */ 
#define GUARD_PQ_AS_RESULT(x)        ENSURE((x) == 0, S2N_ERR_PQ_CRYPTO) 
 
S2N_RESULT s2n_kem_generate_keypair(struct s2n_kem_params *kem_params) 
{ 
    ENSURE_REF(kem_params); 
    ENSURE_REF(kem_params->kem); 
    const struct s2n_kem *kem = kem_params->kem; 
    ENSURE_REF(kem->generate_keypair); 
 
    ENSURE_REF(kem_params->public_key.data); 
    ENSURE(kem_params->public_key.size == kem->public_key_length, S2N_ERR_SAFETY); 
 
    /* Need to save the private key for decapsulation */ 
    GUARD_AS_RESULT(s2n_alloc(&kem_params->private_key, kem->private_key_length)); 
 
    GUARD_PQ_AS_RESULT(kem->generate_keypair(kem_params->public_key.data, kem_params->private_key.data)); 
    return S2N_RESULT_OK; 
} 
 
S2N_RESULT s2n_kem_encapsulate(struct s2n_kem_params *kem_params, struct s2n_blob *ciphertext) 
{ 
    ENSURE_REF(kem_params); 
    ENSURE_REF(kem_params->kem); 
    const struct s2n_kem *kem = kem_params->kem; 
    ENSURE_REF(kem->encapsulate); 
 
    ENSURE(kem_params->public_key.size == kem->public_key_length, S2N_ERR_SAFETY); 
    ENSURE_REF(kem_params->public_key.data); 
 
    ENSURE_REF(ciphertext); 
    ENSURE_REF(ciphertext->data); 
    ENSURE(ciphertext->size == kem->ciphertext_length, S2N_ERR_SAFETY); 
 
    /* Need to save the shared secret for key derivation */ 
    GUARD_AS_RESULT(s2n_alloc(&(kem_params->shared_secret), kem->shared_secret_key_length)); 
 
    GUARD_PQ_AS_RESULT(kem->encapsulate(ciphertext->data, kem_params->shared_secret.data, kem_params->public_key.data)); 
    return S2N_RESULT_OK; 
} 
 
S2N_RESULT s2n_kem_decapsulate(struct s2n_kem_params *kem_params, const struct s2n_blob *ciphertext) 
{ 
    ENSURE_REF(kem_params); 
    ENSURE_REF(kem_params->kem); 
    const struct s2n_kem *kem = kem_params->kem; 
    ENSURE_REF(kem->decapsulate); 
 
    ENSURE(kem_params->private_key.size == kem->private_key_length, S2N_ERR_SAFETY); 
    ENSURE_REF(kem_params->private_key.data); 
 
    ENSURE_REF(ciphertext); 
    ENSURE_REF(ciphertext->data); 
    ENSURE(ciphertext->size == kem->ciphertext_length, S2N_ERR_SAFETY); 
 
    /* Need to save the shared secret for key derivation */ 
    GUARD_AS_RESULT(s2n_alloc(&(kem_params->shared_secret), kem->shared_secret_key_length)); 
 
    GUARD_PQ_AS_RESULT(kem->decapsulate(kem_params->shared_secret.data, ciphertext->data, kem_params->private_key.data)); 
    return S2N_RESULT_OK; 
} 
 
static int s2n_kem_check_kem_compatibility(const uint8_t iana_value[S2N_TLS_CIPHER_SUITE_LEN], const struct s2n_kem *candidate_kem, 
        uint8_t *kem_is_compatible) { 
    const struct s2n_iana_to_kem *compatible_kems = NULL; 
    GUARD(s2n_cipher_suite_to_kem(iana_value, &compatible_kems)); 
 
    for (uint8_t i = 0; i < compatible_kems->kem_count; i++) { 
        if (candidate_kem->kem_extension_id == compatible_kems->kems[i]->kem_extension_id) { 
            *kem_is_compatible = 1; 
            return S2N_SUCCESS; 
        } 
    } 
 
    *kem_is_compatible = 0; 
    return S2N_SUCCESS; 
} 
 
int s2n_choose_kem_with_peer_pref_list(const uint8_t iana_value[S2N_TLS_CIPHER_SUITE_LEN], struct s2n_blob *client_kem_ids, 
        const struct s2n_kem *server_kem_pref_list[], const uint8_t num_server_supported_kems, const struct s2n_kem **chosen_kem) { 
    struct s2n_stuffer client_kem_ids_stuffer = {0}; 
    GUARD(s2n_stuffer_init(&client_kem_ids_stuffer, client_kem_ids)); 
    GUARD(s2n_stuffer_write(&client_kem_ids_stuffer, client_kem_ids)); 
 
    /* Each KEM ID is 2 bytes */ 
    uint8_t num_client_candidate_kems = client_kem_ids->size / 2; 
 
    for (uint8_t i = 0; i < num_server_supported_kems; i++) { 
        const struct s2n_kem *candidate_server_kem = (server_kem_pref_list[i]); 
 
        uint8_t server_kem_is_compatible = 0; 
        GUARD(s2n_kem_check_kem_compatibility(iana_value, candidate_server_kem, &server_kem_is_compatible)); 
 
        if (!server_kem_is_compatible) { 
            continue; 
        } 
 
        for (uint8_t j = 0; j < num_client_candidate_kems; j++) { 
            kem_extension_size candidate_client_kem_id; 
            GUARD(s2n_stuffer_read_uint16(&client_kem_ids_stuffer, &candidate_client_kem_id)); 
 
            if (candidate_server_kem->kem_extension_id == candidate_client_kem_id) { 
                *chosen_kem = candidate_server_kem; 
                return S2N_SUCCESS; 
            } 
        } 
        GUARD(s2n_stuffer_reread(&client_kem_ids_stuffer)); 
    } 
 
    /* Client and server did not propose any mutually supported KEMs compatible with the ciphersuite */ 
    S2N_ERROR(S2N_ERR_KEM_UNSUPPORTED_PARAMS); 
} 
 
int s2n_choose_kem_without_peer_pref_list(const uint8_t iana_value[S2N_TLS_CIPHER_SUITE_LEN], const struct s2n_kem *server_kem_pref_list[], 
        const uint8_t num_server_supported_kems, const struct s2n_kem **chosen_kem) { 
    for (uint8_t i = 0; i < num_server_supported_kems; i++) { 
        uint8_t kem_is_compatible = 0; 
        GUARD(s2n_kem_check_kem_compatibility(iana_value, server_kem_pref_list[i], &kem_is_compatible)); 
        if (kem_is_compatible) { 
            *chosen_kem = server_kem_pref_list[i]; 
            return S2N_SUCCESS; 
        } 
    } 
 
    /* The server preference list did not contain any KEM extensions compatible with the ciphersuite */ 
    S2N_ERROR(S2N_ERR_KEM_UNSUPPORTED_PARAMS); 
} 
 
int s2n_kem_free(struct s2n_kem_params *kem_params) 
{ 
    if (kem_params != NULL) { 
        GUARD(s2n_blob_zeroize_free(&kem_params->private_key)); 
        GUARD(s2n_blob_zeroize_free(&kem_params->public_key)); 
        GUARD(s2n_blob_zeroize_free(&kem_params->shared_secret)); 
    } 
    return S2N_SUCCESS; 
} 
 
int s2n_kem_group_free(struct s2n_kem_group_params *kem_group_params) { 
    if (kem_group_params != NULL) { 
        GUARD(s2n_kem_free(&kem_group_params->kem_params)); 
        GUARD(s2n_ecc_evp_params_free(&kem_group_params->ecc_params)); 
    } 
    return S2N_SUCCESS; 
} 
 
int s2n_cipher_suite_to_kem(const uint8_t iana_value[S2N_TLS_CIPHER_SUITE_LEN], const struct s2n_iana_to_kem **compatible_params) { 
    for (int i = 0; i < s2n_array_len(kem_mapping); i++) { 
        const struct s2n_iana_to_kem *candidate = &kem_mapping[i]; 
        if (memcmp(iana_value, candidate->iana_value, S2N_TLS_CIPHER_SUITE_LEN) == 0) { 
            *compatible_params = candidate; 
            return S2N_SUCCESS; 
        } 
    } 
    S2N_ERROR(S2N_ERR_KEM_UNSUPPORTED_PARAMS); 
} 
 
int s2n_get_kem_from_extension_id(kem_extension_size kem_id, const struct s2n_kem **kem) { 
    for (int i = 0; i < s2n_array_len(kem_mapping); i++) { 
        const struct s2n_iana_to_kem *iana_to_kem = &kem_mapping[i]; 
 
        for (int j = 0; j < iana_to_kem->kem_count; j++) { 
            const struct s2n_kem *candidate_kem = iana_to_kem->kems[j]; 
            if (candidate_kem->kem_extension_id == kem_id) { 
                *kem = candidate_kem; 
                return S2N_SUCCESS; 
            } 
        } 
    } 
 
    S2N_ERROR(S2N_ERR_KEM_UNSUPPORTED_PARAMS); 
} 
 
int s2n_kem_send_public_key(struct s2n_stuffer *out, struct s2n_kem_params *kem_params) { 
    notnull_check(out); 
    notnull_check(kem_params); 
    notnull_check(kem_params->kem); 
 
    const struct s2n_kem *kem = kem_params->kem; 
 
    GUARD(s2n_stuffer_write_uint16(out, kem->public_key_length)); 
 
    /* We don't need to store the public key after sending it. 
     * We write it directly to *out. */ 
    kem_params->public_key.data = s2n_stuffer_raw_write(out, kem->public_key_length); 
    notnull_check(kem_params->public_key.data); 
    kem_params->public_key.size = kem->public_key_length; 
 
    /* Saves the private key in kem_params */ 
    GUARD_AS_POSIX(s2n_kem_generate_keypair(kem_params)); 
 
    /* After using s2n_stuffer_raw_write() above to write the public 
     * key to the stuffer, we want to ensure that kem_params->public_key.data 
     * does not continue to point at *out, else we may unexpectedly 
     * overwrite part of the stuffer when s2n_kem_free() is called. */ 
    kem_params->public_key.data = NULL; 
    kem_params->public_key.size = 0; 
 
    return S2N_SUCCESS; 
} 
 
int s2n_kem_recv_public_key(struct s2n_stuffer *in, struct s2n_kem_params *kem_params) { 
    notnull_check(in); 
    notnull_check(kem_params); 
    notnull_check(kem_params->kem); 
 
    const struct s2n_kem *kem = kem_params->kem; 
    kem_public_key_size public_key_length; 
 
    GUARD(s2n_stuffer_read_uint16(in, &public_key_length)); 
    S2N_ERROR_IF(public_key_length != kem->public_key_length, S2N_ERR_BAD_MESSAGE); 
 
    /* Alloc memory for the public key; the peer receiving it will need it 
     * later during the handshake to encapsulate the shared secret. */ 
    GUARD(s2n_alloc(&(kem_params->public_key), public_key_length)); 
    GUARD(s2n_stuffer_read_bytes(in, kem_params->public_key.data, public_key_length)); 
 
    return S2N_SUCCESS; 
} 
 
int s2n_kem_send_ciphertext(struct s2n_stuffer *out, struct s2n_kem_params *kem_params) { 
    notnull_check(out); 
    notnull_check(kem_params); 
    notnull_check(kem_params->kem); 
    notnull_check(kem_params->public_key.data); 
 
    const struct s2n_kem *kem = kem_params->kem; 
 
    GUARD(s2n_stuffer_write_uint16(out, kem->ciphertext_length)); 
 
    /* Ciphertext will get written to *out */ 
    struct s2n_blob ciphertext = {.data = s2n_stuffer_raw_write(out, kem->ciphertext_length), .size = kem->ciphertext_length}; 
    notnull_check(ciphertext.data); 
 
    /* Saves the shared secret in kem_params */ 
    GUARD_AS_POSIX(s2n_kem_encapsulate(kem_params, &ciphertext)); 
 
    return S2N_SUCCESS; 
} 
 
int s2n_kem_recv_ciphertext(struct s2n_stuffer *in, struct s2n_kem_params *kem_params) { 
    notnull_check(in); 
    notnull_check(kem_params); 
    notnull_check(kem_params->kem); 
    notnull_check(kem_params->private_key.data); 
 
    const struct s2n_kem *kem = kem_params->kem; 
    kem_ciphertext_key_size ciphertext_length; 
 
    GUARD(s2n_stuffer_read_uint16(in, &ciphertext_length)); 
    S2N_ERROR_IF(ciphertext_length != kem->ciphertext_length, S2N_ERR_BAD_MESSAGE); 
 
    const struct s2n_blob ciphertext = {.data = s2n_stuffer_raw_read(in, ciphertext_length), .size = ciphertext_length}; 
    notnull_check(ciphertext.data); 
 
    /* Saves the shared secret in kem_params */ 
    GUARD_AS_POSIX(s2n_kem_decapsulate(kem_params, &ciphertext)); 
 
    return S2N_SUCCESS; 
} 
 
#if defined(S2N_NO_PQ) 
/* IF S2N_NO_PQ was defined at compile time, the PQ KEM code will have been entirely excluded 
 * from compilation. We define stubs of these functions here to error if they are called. */ 
/* sikep503r1 */ 
int SIKE_P503_r1_crypto_kem_keypair(OUT unsigned char *pk, OUT unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int SIKE_P503_r1_crypto_kem_enc(OUT unsigned char *ct, OUT unsigned char *ss, IN  const unsigned char *pk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int SIKE_P503_r1_crypto_kem_dec(OUT unsigned char *ss, IN const unsigned char *ct, IN const unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
/* sikep434r2 */ 
int SIKE_P434_r2_crypto_kem_keypair(OUT unsigned char *pk, OUT unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int SIKE_P434_r2_crypto_kem_enc(OUT unsigned char *ct, OUT unsigned char *ss, IN const unsigned char *pk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int SIKE_P434_r2_crypto_kem_dec(OUT unsigned char *ss, IN const unsigned char *ct, IN const unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
/* bike1l1r1 */ 
int BIKE1_L1_R1_crypto_kem_keypair(OUT unsigned char *pk, OUT unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int BIKE1_L1_R1_crypto_kem_enc(OUT unsigned char *ct, OUT unsigned char *ss, IN const unsigned char *pk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int BIKE1_L1_R1_crypto_kem_dec(OUT unsigned char *ss, IN const unsigned char *ct, IN const unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
/* bike1l1r2*/ 
int BIKE1_L1_R2_crypto_kem_keypair(OUT unsigned char *pk, OUT unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int BIKE1_L1_R2_crypto_kem_enc(OUT unsigned char *ct, OUT unsigned char *ss, IN const unsigned char *pk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int BIKE1_L1_R2_crypto_kem_dec(OUT unsigned char * ss, IN const unsigned char *ct, IN const unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
/* kyber512r2 */ 
int kyber_512_r2_crypto_kem_keypair(OUT unsigned char *pk, OUT unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int kyber_512_r2_crypto_kem_enc(OUT unsigned char *ct, OUT unsigned char *ss, IN const unsigned char *pk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int kyber_512_r2_crypto_kem_dec(OUT unsigned char *ss, IN const unsigned char *ct, IN const unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
/* kyber512r2 90's version*/ 
int kyber_512_90s_r2_crypto_kem_keypair(OUT unsigned char *pk, OUT unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int kyber_512_90s_r2_crypto_kem_enc(OUT unsigned char *ct, OUT unsigned char *ss, IN const unsigned char *pk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
int kyber_512_90s_r2_crypto_kem_dec(OUT unsigned char *ss, IN const unsigned char *ct, IN const unsigned char *sk) { BAIL_POSIX(S2N_ERR_UNIMPLEMENTED); } 
#endif