aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp/absl/random/discrete_distribution.cc
blob: 03ca2a2b0bf0f4c06cae2f21ec0a3444cc2514b6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
// Copyright 2017 The Abseil Authors. 
// 
// Licensed under the Apache License, Version 2.0 (the "License"); 
// you may not use this file except in compliance with the License. 
// You may obtain a copy of the License at 
// 
//      https://www.apache.org/licenses/LICENSE-2.0 
// 
// Unless required by applicable law or agreed to in writing, software 
// distributed under the License is distributed on an "AS IS" BASIS, 
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
// See the License for the specific language governing permissions and 
// limitations under the License. 
 
#include "absl/random/discrete_distribution.h" 
 
namespace absl { 
ABSL_NAMESPACE_BEGIN
namespace random_internal { 
 
// Initializes the distribution table for Walker's Aliasing algorithm, described 
// in Knuth, Vol 2. as well as in https://en.wikipedia.org/wiki/Alias_method 
std::vector<std::pair<double, size_t>> InitDiscreteDistribution( 
    std::vector<double>* probabilities) { 
  // The empty-case should already be handled by the constructor. 
  assert(probabilities); 
  assert(!probabilities->empty()); 
 
  // Step 1. Normalize the input probabilities to 1.0. 
  double sum = std::accumulate(std::begin(*probabilities), 
                               std::end(*probabilities), 0.0); 
  if (std::fabs(sum - 1.0) > 1e-6) { 
    // Scale `probabilities` only when the sum is too far from 1.0.  Scaling 
    // unconditionally will alter the probabilities slightly. 
    for (double& item : *probabilities) { 
      item = item / sum; 
    } 
  } 
 
  // Step 2. At this point `probabilities` is set to the conditional 
  // probabilities of each element which sum to 1.0, to within reasonable error. 
  // These values are used to construct the proportional probability tables for 
  // the selection phases of Walker's Aliasing algorithm. 
  // 
  // To construct the table, pick an element which is under-full (i.e., an 
  // element for which `(*probabilities)[i] < 1.0/n`), and pair it with an 
  // element which is over-full (i.e., an element for which 
  // `(*probabilities)[i] > 1.0/n`). The smaller value can always be retired. 
  // The larger may still be greater than 1.0/n, or may now be less than 1.0/n, 
  // and put back onto the appropriate collection. 
  const size_t n = probabilities->size(); 
  std::vector<std::pair<double, size_t>> q; 
  q.reserve(n); 
 
  std::vector<size_t> over; 
  std::vector<size_t> under; 
  size_t idx = 0; 
  for (const double item : *probabilities) { 
    assert(item >= 0); 
    const double v = item * n; 
    q.emplace_back(v, 0); 
    if (v < 1.0) { 
      under.push_back(idx++); 
    } else { 
      over.push_back(idx++); 
    } 
  } 
  while (!over.empty() && !under.empty()) { 
    auto lo = under.back(); 
    under.pop_back(); 
    auto hi = over.back(); 
    over.pop_back(); 
 
    q[lo].second = hi; 
    const double r = q[hi].first - (1.0 - q[lo].first); 
    q[hi].first = r; 
    if (r < 1.0) { 
      under.push_back(hi); 
    } else { 
      over.push_back(hi); 
    } 
  } 
 
  // Due to rounding errors, there may be un-paired elements in either 
  // collection; these should all be values near 1.0.  For these values, set `q` 
  // to 1.0 and set the alternate to the identity. 
  for (auto i : over) { 
    q[i] = {1.0, i}; 
  } 
  for (auto i : under) { 
    q[i] = {1.0, i}; 
  } 
  return q; 
} 
 
}  // namespace random_internal 
ABSL_NAMESPACE_END
}  // namespace absl