aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp-tstring/y_absl/algorithm/container.h
blob: 6591e9599fd4e49fcdc48c5525c70c3a2d7f0924 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: container.h
// -----------------------------------------------------------------------------
//
// This header file provides Container-based versions of algorithmic functions
// within the C++ standard library. The following standard library sets of
// functions are covered within this file:
//
//   * Algorithmic <iterator> functions
//   * Algorithmic <numeric> functions
//   * <algorithm> functions
//
// The standard library functions operate on iterator ranges; the functions
// within this API operate on containers, though many return iterator ranges.
//
// All functions within this API are named with a `c_` prefix. Calls such as
// `y_absl::c_xx(container, ...) are equivalent to std:: functions such as 
// `std::xx(std::begin(cont), std::end(cont), ...)`. Functions that act on
// iterators but not conceptually on iterator ranges (e.g. `std::iter_swap`)
// have no equivalent here.
//
// For template parameter and variable naming, `C` indicates the container type
// to which the function is applied, `Pred` indicates the predicate object type
// to be used by the function and `T` indicates the applicable element type.

#ifndef ABSL_ALGORITHM_CONTAINER_H_
#define ABSL_ALGORITHM_CONTAINER_H_

#include <algorithm>
#include <cassert>
#include <iterator>
#include <numeric>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#include "y_absl/algorithm/algorithm.h" 
#include "y_absl/base/macros.h" 
#include "y_absl/meta/type_traits.h" 

namespace y_absl { 
ABSL_NAMESPACE_BEGIN
namespace container_algorithm_internal {

// NOTE: it is important to defer to ADL lookup for building with C++ modules,
// especially for headers like <valarray> which are not visible from this file
// but specialize std::begin and std::end.
using std::begin;
using std::end;

// The type of the iterator given by begin(c) (possibly std::begin(c)).
// ContainerIter<const vector<T>> gives vector<T>::const_iterator,
// while ContainerIter<vector<T>> gives vector<T>::iterator.
template <typename C>
using ContainerIter = decltype(begin(std::declval<C&>()));

// An MSVC bug involving template parameter substitution requires us to use
// decltype() here instead of just std::pair.
template <typename C1, typename C2>
using ContainerIterPairType =
    decltype(std::make_pair(ContainerIter<C1>(), ContainerIter<C2>()));

template <typename C>
using ContainerDifferenceType =
    decltype(std::distance(std::declval<ContainerIter<C>>(),
                           std::declval<ContainerIter<C>>()));

template <typename C>
using ContainerPointerType =
    typename std::iterator_traits<ContainerIter<C>>::pointer;

// container_algorithm_internal::c_begin and
// container_algorithm_internal::c_end are abbreviations for proper ADL
// lookup of std::begin and std::end, i.e.
//   using std::begin;
//   using std::end;
//   std::foo(begin(c), end(c));
// becomes
//   std::foo(container_algorithm_internal::begin(c),
//            container_algorithm_internal::end(c));
// These are meant for internal use only.

template <typename C>
ContainerIter<C> c_begin(C& c) { return begin(c); }

template <typename C>
ContainerIter<C> c_end(C& c) { return end(c); }

template <typename T>
struct IsUnorderedContainer : std::false_type {};

template <class Key, class T, class Hash, class KeyEqual, class Allocator>
struct IsUnorderedContainer<
    std::unordered_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};

template <class Key, class Hash, class KeyEqual, class Allocator>
struct IsUnorderedContainer<std::unordered_set<Key, Hash, KeyEqual, Allocator>>
    : std::true_type {};

// container_algorithm_internal::c_size. It is meant for internal use only.

template <class C>
auto c_size(C& c) -> decltype(c.size()) {
  return c.size();
}

template <class T, std::size_t N>
constexpr std::size_t c_size(T (&)[N]) {
  return N;
}

}  // namespace container_algorithm_internal

// PUBLIC API

//------------------------------------------------------------------------------
// Abseil algorithm.h functions
//------------------------------------------------------------------------------

// c_linear_search()
//
// Container-based version of y_absl::linear_search() for performing a linear 
// search within a container.
template <typename C, typename EqualityComparable>
bool c_linear_search(const C& c, EqualityComparable&& value) {
  return linear_search(container_algorithm_internal::c_begin(c),
                       container_algorithm_internal::c_end(c),
                       std::forward<EqualityComparable>(value));
}

//------------------------------------------------------------------------------
// <iterator> algorithms
//------------------------------------------------------------------------------

// c_distance()
//
// Container-based version of the <iterator> `std::distance()` function to
// return the number of elements within a container.
template <typename C>
container_algorithm_internal::ContainerDifferenceType<const C> c_distance(
    const C& c) {
  return std::distance(container_algorithm_internal::c_begin(c),
                       container_algorithm_internal::c_end(c));
}

//------------------------------------------------------------------------------
// <algorithm> Non-modifying sequence operations
//------------------------------------------------------------------------------

// c_all_of()
//
// Container-based version of the <algorithm> `std::all_of()` function to
// test a condition on all elements within a container.
template <typename C, typename Pred>
bool c_all_of(const C& c, Pred&& pred) {
  return std::all_of(container_algorithm_internal::c_begin(c),
                     container_algorithm_internal::c_end(c),
                     std::forward<Pred>(pred));
}

// c_any_of()
//
// Container-based version of the <algorithm> `std::any_of()` function to
// test if any element in a container fulfills a condition.
template <typename C, typename Pred>
bool c_any_of(const C& c, Pred&& pred) {
  return std::any_of(container_algorithm_internal::c_begin(c),
                     container_algorithm_internal::c_end(c),
                     std::forward<Pred>(pred));
}

// c_none_of()
//
// Container-based version of the <algorithm> `std::none_of()` function to
// test if no elements in a container fulfill a condition.
template <typename C, typename Pred>
bool c_none_of(const C& c, Pred&& pred) {
  return std::none_of(container_algorithm_internal::c_begin(c),
                      container_algorithm_internal::c_end(c),
                      std::forward<Pred>(pred));
}

// c_for_each()
//
// Container-based version of the <algorithm> `std::for_each()` function to
// apply a function to a container's elements.
template <typename C, typename Function>
decay_t<Function> c_for_each(C&& c, Function&& f) {
  return std::for_each(container_algorithm_internal::c_begin(c),
                       container_algorithm_internal::c_end(c),
                       std::forward<Function>(f));
}

// c_find()
//
// Container-based version of the <algorithm> `std::find()` function to find
// the first element containing the passed value within a container value.
template <typename C, typename T>
container_algorithm_internal::ContainerIter<C> c_find(C& c, T&& value) {
  return std::find(container_algorithm_internal::c_begin(c),
                   container_algorithm_internal::c_end(c),
                   std::forward<T>(value));
}

// c_find_if()
//
// Container-based version of the <algorithm> `std::find_if()` function to find
// the first element in a container matching the given condition.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_find_if(C& c, Pred&& pred) {
  return std::find_if(container_algorithm_internal::c_begin(c),
                      container_algorithm_internal::c_end(c),
                      std::forward<Pred>(pred));
}

// c_find_if_not()
//
// Container-based version of the <algorithm> `std::find_if_not()` function to
// find the first element in a container not matching the given condition.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_find_if_not(C& c,
                                                             Pred&& pred) {
  return std::find_if_not(container_algorithm_internal::c_begin(c),
                          container_algorithm_internal::c_end(c),
                          std::forward<Pred>(pred));
}

// c_find_end()
//
// Container-based version of the <algorithm> `std::find_end()` function to
// find the last subsequence within a container.
template <typename Sequence1, typename Sequence2>
container_algorithm_internal::ContainerIter<Sequence1> c_find_end(
    Sequence1& sequence, Sequence2& subsequence) {
  return std::find_end(container_algorithm_internal::c_begin(sequence),
                       container_algorithm_internal::c_end(sequence),
                       container_algorithm_internal::c_begin(subsequence),
                       container_algorithm_internal::c_end(subsequence));
}

// Overload of c_find_end() for using a predicate evaluation other than `==` as
// the function's test condition.
template <typename Sequence1, typename Sequence2, typename BinaryPredicate>
container_algorithm_internal::ContainerIter<Sequence1> c_find_end(
    Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) {
  return std::find_end(container_algorithm_internal::c_begin(sequence),
                       container_algorithm_internal::c_end(sequence),
                       container_algorithm_internal::c_begin(subsequence),
                       container_algorithm_internal::c_end(subsequence),
                       std::forward<BinaryPredicate>(pred));
}

// c_find_first_of()
//
// Container-based version of the <algorithm> `std::find_first_of()` function to
// find the first element within the container that is also within the options
// container.
template <typename C1, typename C2>
container_algorithm_internal::ContainerIter<C1> c_find_first_of(C1& container,
                                                                C2& options) {
  return std::find_first_of(container_algorithm_internal::c_begin(container),
                            container_algorithm_internal::c_end(container),
                            container_algorithm_internal::c_begin(options),
                            container_algorithm_internal::c_end(options));
}

// Overload of c_find_first_of() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename C1, typename C2, typename BinaryPredicate>
container_algorithm_internal::ContainerIter<C1> c_find_first_of(
    C1& container, C2& options, BinaryPredicate&& pred) {
  return std::find_first_of(container_algorithm_internal::c_begin(container),
                            container_algorithm_internal::c_end(container),
                            container_algorithm_internal::c_begin(options),
                            container_algorithm_internal::c_end(options),
                            std::forward<BinaryPredicate>(pred));
}

// c_adjacent_find()
//
// Container-based version of the <algorithm> `std::adjacent_find()` function to
// find equal adjacent elements within a container.
template <typename Sequence>
container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find(
    Sequence& sequence) {
  return std::adjacent_find(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence));
}

// Overload of c_adjacent_find() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename Sequence, typename BinaryPredicate>
container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find(
    Sequence& sequence, BinaryPredicate&& pred) {
  return std::adjacent_find(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence),
                            std::forward<BinaryPredicate>(pred));
}

// c_count()
//
// Container-based version of the <algorithm> `std::count()` function to count
// values that match within a container.
template <typename C, typename T>
container_algorithm_internal::ContainerDifferenceType<const C> c_count(
    const C& c, T&& value) {
  return std::count(container_algorithm_internal::c_begin(c),
                    container_algorithm_internal::c_end(c),
                    std::forward<T>(value));
}

// c_count_if()
//
// Container-based version of the <algorithm> `std::count_if()` function to
// count values matching a condition within a container.
template <typename C, typename Pred>
container_algorithm_internal::ContainerDifferenceType<const C> c_count_if(
    const C& c, Pred&& pred) {
  return std::count_if(container_algorithm_internal::c_begin(c),
                       container_algorithm_internal::c_end(c),
                       std::forward<Pred>(pred));
}

// c_mismatch()
//
// Container-based version of the <algorithm> `std::mismatch()` function to
// return the first element where two ordered containers differ. Applies `==` to
// the first N elements of `c1` and `c2`, where N = min(size(c1), size(c2)).
template <typename C1, typename C2>
container_algorithm_internal::ContainerIterPairType<C1, C2>
c_mismatch(C1& c1, C2& c2) {
  auto first1 = container_algorithm_internal::c_begin(c1);
  auto last1 = container_algorithm_internal::c_end(c1);
  auto first2 = container_algorithm_internal::c_begin(c2);
  auto last2 = container_algorithm_internal::c_end(c2);

  for (; first1 != last1 && first2 != last2; ++first1, (void)++first2) {
    // Negates equality because Cpp17EqualityComparable doesn't require clients
    // to overload both `operator==` and `operator!=`.
    if (!(*first1 == *first2)) {
      break;
    }
  }

  return std::make_pair(first1, first2);
}

// Overload of c_mismatch() for using a predicate evaluation other than `==` as
// the function's test condition. Applies `pred`to the first N elements of `c1`
// and `c2`, where N = min(size(c1), size(c2)).
template <typename C1, typename C2, typename BinaryPredicate>
container_algorithm_internal::ContainerIterPairType<C1, C2>
c_mismatch(C1& c1, C2& c2, BinaryPredicate pred) {
  auto first1 = container_algorithm_internal::c_begin(c1);
  auto last1 = container_algorithm_internal::c_end(c1);
  auto first2 = container_algorithm_internal::c_begin(c2);
  auto last2 = container_algorithm_internal::c_end(c2);

  for (; first1 != last1 && first2 != last2; ++first1, (void)++first2) {
    if (!pred(*first1, *first2)) {
      break;
    }
  }

  return std::make_pair(first1, first2);
}

// c_equal()
//
// Container-based version of the <algorithm> `std::equal()` function to
// test whether two containers are equal.
//
// NOTE: the semantics of c_equal() are slightly different than those of
// equal(): while the latter iterates over the second container only up to the
// size of the first container, c_equal() also checks whether the container
// sizes are equal.  This better matches expectations about c_equal() based on
// its signature.
//
// Example:
//   vector v1 = <1, 2, 3>;
//   vector v2 = <1, 2, 3, 4>;
//   equal(std::begin(v1), std::end(v1), std::begin(v2)) returns true
//   c_equal(v1, v2) returns false

template <typename C1, typename C2>
bool c_equal(const C1& c1, const C2& c2) {
  return ((container_algorithm_internal::c_size(c1) ==
           container_algorithm_internal::c_size(c2)) &&
          std::equal(container_algorithm_internal::c_begin(c1),
                     container_algorithm_internal::c_end(c1),
                     container_algorithm_internal::c_begin(c2)));
}

// Overload of c_equal() for using a predicate evaluation other than `==` as
// the function's test condition.
template <typename C1, typename C2, typename BinaryPredicate>
bool c_equal(const C1& c1, const C2& c2, BinaryPredicate&& pred) {
  return ((container_algorithm_internal::c_size(c1) ==
           container_algorithm_internal::c_size(c2)) &&
          std::equal(container_algorithm_internal::c_begin(c1),
                     container_algorithm_internal::c_end(c1),
                     container_algorithm_internal::c_begin(c2),
                     std::forward<BinaryPredicate>(pred)));
}

// c_is_permutation()
//
// Container-based version of the <algorithm> `std::is_permutation()` function
// to test whether a container is a permutation of another.
template <typename C1, typename C2>
bool c_is_permutation(const C1& c1, const C2& c2) {
  using std::begin;
  using std::end;
  return c1.size() == c2.size() &&
         std::is_permutation(begin(c1), end(c1), begin(c2));
}

// Overload of c_is_permutation() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename C1, typename C2, typename BinaryPredicate>
bool c_is_permutation(const C1& c1, const C2& c2, BinaryPredicate&& pred) {
  using std::begin;
  using std::end;
  return c1.size() == c2.size() &&
         std::is_permutation(begin(c1), end(c1), begin(c2),
                             std::forward<BinaryPredicate>(pred));
}

// c_search()
//
// Container-based version of the <algorithm> `std::search()` function to search
// a container for a subsequence.
template <typename Sequence1, typename Sequence2>
container_algorithm_internal::ContainerIter<Sequence1> c_search(
    Sequence1& sequence, Sequence2& subsequence) {
  return std::search(container_algorithm_internal::c_begin(sequence),
                     container_algorithm_internal::c_end(sequence),
                     container_algorithm_internal::c_begin(subsequence),
                     container_algorithm_internal::c_end(subsequence));
}

// Overload of c_search() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename Sequence1, typename Sequence2, typename BinaryPredicate>
container_algorithm_internal::ContainerIter<Sequence1> c_search(
    Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) {
  return std::search(container_algorithm_internal::c_begin(sequence),
                     container_algorithm_internal::c_end(sequence),
                     container_algorithm_internal::c_begin(subsequence),
                     container_algorithm_internal::c_end(subsequence),
                     std::forward<BinaryPredicate>(pred));
}

// c_search_n()
//
// Container-based version of the <algorithm> `std::search_n()` function to
// search a container for the first sequence of N elements.
template <typename Sequence, typename Size, typename T>
container_algorithm_internal::ContainerIter<Sequence> c_search_n(
    Sequence& sequence, Size count, T&& value) {
  return std::search_n(container_algorithm_internal::c_begin(sequence),
                       container_algorithm_internal::c_end(sequence), count,
                       std::forward<T>(value));
}

// Overload of c_search_n() for using a predicate evaluation other than
// `==` as the function's test condition.
template <typename Sequence, typename Size, typename T,
          typename BinaryPredicate>
container_algorithm_internal::ContainerIter<Sequence> c_search_n(
    Sequence& sequence, Size count, T&& value, BinaryPredicate&& pred) {
  return std::search_n(container_algorithm_internal::c_begin(sequence),
                       container_algorithm_internal::c_end(sequence), count,
                       std::forward<T>(value),
                       std::forward<BinaryPredicate>(pred));
}

//------------------------------------------------------------------------------
// <algorithm> Modifying sequence operations
//------------------------------------------------------------------------------

// c_copy()
//
// Container-based version of the <algorithm> `std::copy()` function to copy a
// container's elements into an iterator.
template <typename InputSequence, typename OutputIterator>
OutputIterator c_copy(const InputSequence& input, OutputIterator output) {
  return std::copy(container_algorithm_internal::c_begin(input),
                   container_algorithm_internal::c_end(input), output);
}

// c_copy_n()
//
// Container-based version of the <algorithm> `std::copy_n()` function to copy a
// container's first N elements into an iterator.
template <typename C, typename Size, typename OutputIterator>
OutputIterator c_copy_n(const C& input, Size n, OutputIterator output) {
  return std::copy_n(container_algorithm_internal::c_begin(input), n, output);
}

// c_copy_if()
//
// Container-based version of the <algorithm> `std::copy_if()` function to copy
// a container's elements satisfying some condition into an iterator.
template <typename InputSequence, typename OutputIterator, typename Pred>
OutputIterator c_copy_if(const InputSequence& input, OutputIterator output,
                         Pred&& pred) {
  return std::copy_if(container_algorithm_internal::c_begin(input),
                      container_algorithm_internal::c_end(input), output,
                      std::forward<Pred>(pred));
}

// c_copy_backward()
//
// Container-based version of the <algorithm> `std::copy_backward()` function to
// copy a container's elements in reverse order into an iterator.
template <typename C, typename BidirectionalIterator>
BidirectionalIterator c_copy_backward(const C& src,
                                      BidirectionalIterator dest) {
  return std::copy_backward(container_algorithm_internal::c_begin(src),
                            container_algorithm_internal::c_end(src), dest);
}

// c_move()
//
// Container-based version of the <algorithm> `std::move()` function to move
// a container's elements into an iterator.
template <typename C, typename OutputIterator>
OutputIterator c_move(C&& src, OutputIterator dest) {
  return std::move(container_algorithm_internal::c_begin(src),
                   container_algorithm_internal::c_end(src), dest);
}

// c_move_backward()
//
// Container-based version of the <algorithm> `std::move_backward()` function to
// move a container's elements into an iterator in reverse order.
template <typename C, typename BidirectionalIterator>
BidirectionalIterator c_move_backward(C&& src, BidirectionalIterator dest) {
  return std::move_backward(container_algorithm_internal::c_begin(src),
                            container_algorithm_internal::c_end(src), dest);
}

// c_swap_ranges()
//
// Container-based version of the <algorithm> `std::swap_ranges()` function to
// swap a container's elements with another container's elements. Swaps the
// first N elements of `c1` and `c2`, where N = min(size(c1), size(c2)).
template <typename C1, typename C2>
container_algorithm_internal::ContainerIter<C2> c_swap_ranges(C1& c1, C2& c2) {
  auto first1 = container_algorithm_internal::c_begin(c1);
  auto last1 = container_algorithm_internal::c_end(c1);
  auto first2 = container_algorithm_internal::c_begin(c2);
  auto last2 = container_algorithm_internal::c_end(c2);

  using std::swap;
  for (; first1 != last1 && first2 != last2; ++first1, (void)++first2) {
    swap(*first1, *first2);
  }
  return first2;
}

// c_transform()
//
// Container-based version of the <algorithm> `std::transform()` function to
// transform a container's elements using the unary operation, storing the
// result in an iterator pointing to the last transformed element in the output
// range.
template <typename InputSequence, typename OutputIterator, typename UnaryOp>
OutputIterator c_transform(const InputSequence& input, OutputIterator output,
                           UnaryOp&& unary_op) {
  return std::transform(container_algorithm_internal::c_begin(input),
                        container_algorithm_internal::c_end(input), output,
                        std::forward<UnaryOp>(unary_op));
}

// Overload of c_transform() for performing a transformation using a binary
// predicate. Applies `binary_op` to the first N elements of `c1` and `c2`,
// where N = min(size(c1), size(c2)).
template <typename InputSequence1, typename InputSequence2,
          typename OutputIterator, typename BinaryOp>
OutputIterator c_transform(const InputSequence1& input1,
                           const InputSequence2& input2, OutputIterator output,
                           BinaryOp&& binary_op) {
  auto first1 = container_algorithm_internal::c_begin(input1);
  auto last1 = container_algorithm_internal::c_end(input1);
  auto first2 = container_algorithm_internal::c_begin(input2);
  auto last2 = container_algorithm_internal::c_end(input2);
  for (; first1 != last1 && first2 != last2;
       ++first1, (void)++first2, ++output) {
    *output = binary_op(*first1, *first2);
  }

  return output;
}

// c_replace()
//
// Container-based version of the <algorithm> `std::replace()` function to
// replace a container's elements of some value with a new value. The container
// is modified in place.
template <typename Sequence, typename T>
void c_replace(Sequence& sequence, const T& old_value, const T& new_value) {
  std::replace(container_algorithm_internal::c_begin(sequence),
               container_algorithm_internal::c_end(sequence), old_value,
               new_value);
}

// c_replace_if()
//
// Container-based version of the <algorithm> `std::replace_if()` function to
// replace a container's elements of some value with a new value based on some
// condition. The container is modified in place.
template <typename C, typename Pred, typename T>
void c_replace_if(C& c, Pred&& pred, T&& new_value) {
  std::replace_if(container_algorithm_internal::c_begin(c),
                  container_algorithm_internal::c_end(c),
                  std::forward<Pred>(pred), std::forward<T>(new_value));
}

// c_replace_copy()
//
// Container-based version of the <algorithm> `std::replace_copy()` function to
// replace a container's elements of some value with a new value  and return the
// results within an iterator.
template <typename C, typename OutputIterator, typename T>
OutputIterator c_replace_copy(const C& c, OutputIterator result, T&& old_value,
                              T&& new_value) {
  return std::replace_copy(container_algorithm_internal::c_begin(c),
                           container_algorithm_internal::c_end(c), result,
                           std::forward<T>(old_value),
                           std::forward<T>(new_value));
}

// c_replace_copy_if()
//
// Container-based version of the <algorithm> `std::replace_copy_if()` function
// to replace a container's elements of some value with a new value based on
// some condition, and return the results within an iterator.
template <typename C, typename OutputIterator, typename Pred, typename T>
OutputIterator c_replace_copy_if(const C& c, OutputIterator result, Pred&& pred,
                                 T&& new_value) {
  return std::replace_copy_if(container_algorithm_internal::c_begin(c),
                              container_algorithm_internal::c_end(c), result,
                              std::forward<Pred>(pred),
                              std::forward<T>(new_value));
}

// c_fill()
//
// Container-based version of the <algorithm> `std::fill()` function to fill a
// container with some value.
template <typename C, typename T>
void c_fill(C& c, T&& value) {
  std::fill(container_algorithm_internal::c_begin(c),
            container_algorithm_internal::c_end(c), std::forward<T>(value));
}

// c_fill_n()
//
// Container-based version of the <algorithm> `std::fill_n()` function to fill
// the first N elements in a container with some value.
template <typename C, typename Size, typename T>
void c_fill_n(C& c, Size n, T&& value) {
  std::fill_n(container_algorithm_internal::c_begin(c), n,
              std::forward<T>(value));
}

// c_generate()
//
// Container-based version of the <algorithm> `std::generate()` function to
// assign a container's elements to the values provided by the given generator.
template <typename C, typename Generator>
void c_generate(C& c, Generator&& gen) {
  std::generate(container_algorithm_internal::c_begin(c),
                container_algorithm_internal::c_end(c),
                std::forward<Generator>(gen));
}

// c_generate_n()
//
// Container-based version of the <algorithm> `std::generate_n()` function to
// assign a container's first N elements to the values provided by the given
// generator.
template <typename C, typename Size, typename Generator>
container_algorithm_internal::ContainerIter<C> c_generate_n(C& c, Size n,
                                                            Generator&& gen) {
  return std::generate_n(container_algorithm_internal::c_begin(c), n,
                         std::forward<Generator>(gen));
}

// Note: `c_xx()` <algorithm> container versions for `remove()`, `remove_if()`,
// and `unique()` are omitted, because it's not clear whether or not such
// functions should call erase on their supplied sequences afterwards. Either
// behavior would be surprising for a different set of users.

// c_remove_copy()
//
// Container-based version of the <algorithm> `std::remove_copy()` function to
// copy a container's elements while removing any elements matching the given
// `value`.
template <typename C, typename OutputIterator, typename T>
OutputIterator c_remove_copy(const C& c, OutputIterator result, T&& value) {
  return std::remove_copy(container_algorithm_internal::c_begin(c),
                          container_algorithm_internal::c_end(c), result,
                          std::forward<T>(value));
}

// c_remove_copy_if()
//
// Container-based version of the <algorithm> `std::remove_copy_if()` function
// to copy a container's elements while removing any elements matching the given
// condition.
template <typename C, typename OutputIterator, typename Pred>
OutputIterator c_remove_copy_if(const C& c, OutputIterator result,
                                Pred&& pred) {
  return std::remove_copy_if(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c), result,
                             std::forward<Pred>(pred));
}

// c_unique_copy()
//
// Container-based version of the <algorithm> `std::unique_copy()` function to
// copy a container's elements while removing any elements containing duplicate
// values.
template <typename C, typename OutputIterator>
OutputIterator c_unique_copy(const C& c, OutputIterator result) {
  return std::unique_copy(container_algorithm_internal::c_begin(c),
                          container_algorithm_internal::c_end(c), result);
}

// Overload of c_unique_copy() for using a predicate evaluation other than
// `==` for comparing uniqueness of the element values.
template <typename C, typename OutputIterator, typename BinaryPredicate>
OutputIterator c_unique_copy(const C& c, OutputIterator result,
                             BinaryPredicate&& pred) {
  return std::unique_copy(container_algorithm_internal::c_begin(c),
                          container_algorithm_internal::c_end(c), result,
                          std::forward<BinaryPredicate>(pred));
}

// c_reverse()
//
// Container-based version of the <algorithm> `std::reverse()` function to
// reverse a container's elements.
template <typename Sequence>
void c_reverse(Sequence& sequence) {
  std::reverse(container_algorithm_internal::c_begin(sequence),
               container_algorithm_internal::c_end(sequence));
}

// c_reverse_copy()
//
// Container-based version of the <algorithm> `std::reverse()` function to
// reverse a container's elements and write them to an iterator range.
template <typename C, typename OutputIterator>
OutputIterator c_reverse_copy(const C& sequence, OutputIterator result) {
  return std::reverse_copy(container_algorithm_internal::c_begin(sequence),
                           container_algorithm_internal::c_end(sequence),
                           result);
}

// c_rotate()
//
// Container-based version of the <algorithm> `std::rotate()` function to
// shift a container's elements leftward such that the `middle` element becomes
// the first element in the container.
template <typename C,
          typename Iterator = container_algorithm_internal::ContainerIter<C>>
Iterator c_rotate(C& sequence, Iterator middle) {
  return y_absl::rotate(container_algorithm_internal::c_begin(sequence), middle, 
                      container_algorithm_internal::c_end(sequence));
}

// c_rotate_copy()
//
// Container-based version of the <algorithm> `std::rotate_copy()` function to
// shift a container's elements leftward such that the `middle` element becomes
// the first element in a new iterator range.
template <typename C, typename OutputIterator>
OutputIterator c_rotate_copy(
    const C& sequence,
    container_algorithm_internal::ContainerIter<const C> middle,
    OutputIterator result) {
  return std::rotate_copy(container_algorithm_internal::c_begin(sequence),
                          middle, container_algorithm_internal::c_end(sequence),
                          result);
}

// c_shuffle()
//
// Container-based version of the <algorithm> `std::shuffle()` function to
// randomly shuffle elements within the container using a `gen()` uniform random
// number generator.
template <typename RandomAccessContainer, typename UniformRandomBitGenerator>
void c_shuffle(RandomAccessContainer& c, UniformRandomBitGenerator&& gen) {
  std::shuffle(container_algorithm_internal::c_begin(c),
               container_algorithm_internal::c_end(c),
               std::forward<UniformRandomBitGenerator>(gen));
}

//------------------------------------------------------------------------------
// <algorithm> Partition functions
//------------------------------------------------------------------------------

// c_is_partitioned()
//
// Container-based version of the <algorithm> `std::is_partitioned()` function
// to test whether all elements in the container for which `pred` returns `true`
// precede those for which `pred` is `false`.
template <typename C, typename Pred>
bool c_is_partitioned(const C& c, Pred&& pred) {
  return std::is_partitioned(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c),
                             std::forward<Pred>(pred));
}

// c_partition()
//
// Container-based version of the <algorithm> `std::partition()` function
// to rearrange all elements in a container in such a way that all elements for
// which `pred` returns `true` precede all those for which it returns `false`,
// returning an iterator to the first element of the second group.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_partition(C& c, Pred&& pred) {
  return std::partition(container_algorithm_internal::c_begin(c),
                        container_algorithm_internal::c_end(c),
                        std::forward<Pred>(pred));
}

// c_stable_partition()
//
// Container-based version of the <algorithm> `std::stable_partition()` function
// to rearrange all elements in a container in such a way that all elements for
// which `pred` returns `true` precede all those for which it returns `false`,
// preserving the relative ordering between the two groups. The function returns
// an iterator to the first element of the second group.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_stable_partition(C& c,
                                                                  Pred&& pred) {
  return std::stable_partition(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c),
                               std::forward<Pred>(pred));
}

// c_partition_copy()
//
// Container-based version of the <algorithm> `std::partition_copy()` function
// to partition a container's elements and return them into two iterators: one
// for which `pred` returns `true`, and one for which `pred` returns `false.`

template <typename C, typename OutputIterator1, typename OutputIterator2,
          typename Pred>
std::pair<OutputIterator1, OutputIterator2> c_partition_copy(
    const C& c, OutputIterator1 out_true, OutputIterator2 out_false,
    Pred&& pred) {
  return std::partition_copy(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c), out_true,
                             out_false, std::forward<Pred>(pred));
}

// c_partition_point()
//
// Container-based version of the <algorithm> `std::partition_point()` function
// to return the first element of an already partitioned container for which
// the given `pred` is not `true`.
template <typename C, typename Pred>
container_algorithm_internal::ContainerIter<C> c_partition_point(C& c,
                                                                 Pred&& pred) {
  return std::partition_point(container_algorithm_internal::c_begin(c),
                              container_algorithm_internal::c_end(c),
                              std::forward<Pred>(pred));
}

//------------------------------------------------------------------------------
// <algorithm> Sorting functions
//------------------------------------------------------------------------------

// c_sort()
//
// Container-based version of the <algorithm> `std::sort()` function
// to sort elements in ascending order of their values.
template <typename C>
void c_sort(C& c) {
  std::sort(container_algorithm_internal::c_begin(c),
            container_algorithm_internal::c_end(c));
}

// Overload of c_sort() for performing a `comp` comparison other than the
// default `operator<`.
template <typename C, typename LessThan>
void c_sort(C& c, LessThan&& comp) {
  std::sort(container_algorithm_internal::c_begin(c),
            container_algorithm_internal::c_end(c),
            std::forward<LessThan>(comp));
}

// c_stable_sort()
//
// Container-based version of the <algorithm> `std::stable_sort()` function
// to sort elements in ascending order of their values, preserving the order
// of equivalents.
template <typename C>
void c_stable_sort(C& c) {
  std::stable_sort(container_algorithm_internal::c_begin(c),
                   container_algorithm_internal::c_end(c));
}

// Overload of c_stable_sort() for performing a `comp` comparison other than the
// default `operator<`.
template <typename C, typename LessThan>
void c_stable_sort(C& c, LessThan&& comp) {
  std::stable_sort(container_algorithm_internal::c_begin(c),
                   container_algorithm_internal::c_end(c),
                   std::forward<LessThan>(comp));
}

// c_is_sorted()
//
// Container-based version of the <algorithm> `std::is_sorted()` function
// to evaluate whether the given container is sorted in ascending order.
template <typename C>
bool c_is_sorted(const C& c) {
  return std::is_sorted(container_algorithm_internal::c_begin(c),
                        container_algorithm_internal::c_end(c));
}

// c_is_sorted() overload for performing a `comp` comparison other than the
// default `operator<`.
template <typename C, typename LessThan>
bool c_is_sorted(const C& c, LessThan&& comp) {
  return std::is_sorted(container_algorithm_internal::c_begin(c),
                        container_algorithm_internal::c_end(c),
                        std::forward<LessThan>(comp));
}

// c_partial_sort()
//
// Container-based version of the <algorithm> `std::partial_sort()` function
// to rearrange elements within a container such that elements before `middle`
// are sorted in ascending order.
template <typename RandomAccessContainer>
void c_partial_sort(
    RandomAccessContainer& sequence,
    container_algorithm_internal::ContainerIter<RandomAccessContainer> middle) {
  std::partial_sort(container_algorithm_internal::c_begin(sequence), middle,
                    container_algorithm_internal::c_end(sequence));
}

// Overload of c_partial_sort() for performing a `comp` comparison other than
// the default `operator<`.
template <typename RandomAccessContainer, typename LessThan>
void c_partial_sort(
    RandomAccessContainer& sequence,
    container_algorithm_internal::ContainerIter<RandomAccessContainer> middle,
    LessThan&& comp) {
  std::partial_sort(container_algorithm_internal::c_begin(sequence), middle,
                    container_algorithm_internal::c_end(sequence),
                    std::forward<LessThan>(comp));
}

// c_partial_sort_copy()
//
// Container-based version of the <algorithm> `std::partial_sort_copy()`
// function to sort the elements in the given range `result` within the larger
// `sequence` in ascending order (and using `result` as the output parameter).
// At most min(result.last - result.first, sequence.last - sequence.first)
// elements from the sequence will be stored in the result.
template <typename C, typename RandomAccessContainer>
container_algorithm_internal::ContainerIter<RandomAccessContainer>
c_partial_sort_copy(const C& sequence, RandomAccessContainer& result) {
  return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence),
                                container_algorithm_internal::c_end(sequence),
                                container_algorithm_internal::c_begin(result),
                                container_algorithm_internal::c_end(result));
}

// Overload of c_partial_sort_copy() for performing a `comp` comparison other
// than the default `operator<`.
template <typename C, typename RandomAccessContainer, typename LessThan>
container_algorithm_internal::ContainerIter<RandomAccessContainer>
c_partial_sort_copy(const C& sequence, RandomAccessContainer& result,
                    LessThan&& comp) {
  return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence),
                                container_algorithm_internal::c_end(sequence),
                                container_algorithm_internal::c_begin(result),
                                container_algorithm_internal::c_end(result),
                                std::forward<LessThan>(comp));
}

// c_is_sorted_until()
//
// Container-based version of the <algorithm> `std::is_sorted_until()` function
// to return the first element within a container that is not sorted in
// ascending order as an iterator.
template <typename C>
container_algorithm_internal::ContainerIter<C> c_is_sorted_until(C& c) {
  return std::is_sorted_until(container_algorithm_internal::c_begin(c),
                              container_algorithm_internal::c_end(c));
}

// Overload of c_is_sorted_until() for performing a `comp` comparison other than
// the default `operator<`.
template <typename C, typename LessThan>
container_algorithm_internal::ContainerIter<C> c_is_sorted_until(
    C& c, LessThan&& comp) {
  return std::is_sorted_until(container_algorithm_internal::c_begin(c),
                              container_algorithm_internal::c_end(c),
                              std::forward<LessThan>(comp));
}

// c_nth_element()
//
// Container-based version of the <algorithm> `std::nth_element()` function
// to rearrange the elements within a container such that the `nth` element
// would be in that position in an ordered sequence; other elements may be in
// any order, except that all preceding `nth` will be less than that element,
// and all following `nth` will be greater than that element.
template <typename RandomAccessContainer>
void c_nth_element(
    RandomAccessContainer& sequence,
    container_algorithm_internal::ContainerIter<RandomAccessContainer> nth) {
  std::nth_element(container_algorithm_internal::c_begin(sequence), nth,
                   container_algorithm_internal::c_end(sequence));
}

// Overload of c_nth_element() for performing a `comp` comparison other than
// the default `operator<`.
template <typename RandomAccessContainer, typename LessThan>
void c_nth_element(
    RandomAccessContainer& sequence,
    container_algorithm_internal::ContainerIter<RandomAccessContainer> nth,
    LessThan&& comp) {
  std::nth_element(container_algorithm_internal::c_begin(sequence), nth,
                   container_algorithm_internal::c_end(sequence),
                   std::forward<LessThan>(comp));
}

//------------------------------------------------------------------------------
// <algorithm> Binary Search
//------------------------------------------------------------------------------

// c_lower_bound()
//
// Container-based version of the <algorithm> `std::lower_bound()` function
// to return an iterator pointing to the first element in a sorted container
// which does not compare less than `value`.
template <typename Sequence, typename T>
container_algorithm_internal::ContainerIter<Sequence> c_lower_bound(
    Sequence& sequence, T&& value) {
  return std::lower_bound(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value));
}

// Overload of c_lower_bound() for performing a `comp` comparison other than
// the default `operator<`.
template <typename Sequence, typename T, typename LessThan>
container_algorithm_internal::ContainerIter<Sequence> c_lower_bound(
    Sequence& sequence, T&& value, LessThan&& comp) {
  return std::lower_bound(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value), std::forward<LessThan>(comp));
}

// c_upper_bound()
//
// Container-based version of the <algorithm> `std::upper_bound()` function
// to return an iterator pointing to the first element in a sorted container
// which is greater than `value`.
template <typename Sequence, typename T>
container_algorithm_internal::ContainerIter<Sequence> c_upper_bound(
    Sequence& sequence, T&& value) {
  return std::upper_bound(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value));
}

// Overload of c_upper_bound() for performing a `comp` comparison other than
// the default `operator<`.
template <typename Sequence, typename T, typename LessThan>
container_algorithm_internal::ContainerIter<Sequence> c_upper_bound(
    Sequence& sequence, T&& value, LessThan&& comp) {
  return std::upper_bound(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value), std::forward<LessThan>(comp));
}

// c_equal_range()
//
// Container-based version of the <algorithm> `std::equal_range()` function
// to return an iterator pair pointing to the first and last elements in a
// sorted container which compare equal to `value`.
template <typename Sequence, typename T>
container_algorithm_internal::ContainerIterPairType<Sequence, Sequence>
c_equal_range(Sequence& sequence, T&& value) {
  return std::equal_range(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value));
}

// Overload of c_equal_range() for performing a `comp` comparison other than
// the default `operator<`.
template <typename Sequence, typename T, typename LessThan>
container_algorithm_internal::ContainerIterPairType<Sequence, Sequence>
c_equal_range(Sequence& sequence, T&& value, LessThan&& comp) {
  return std::equal_range(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<T>(value), std::forward<LessThan>(comp));
}

// c_binary_search()
//
// Container-based version of the <algorithm> `std::binary_search()` function
// to test if any element in the sorted container contains a value equivalent to
// 'value'.
template <typename Sequence, typename T>
bool c_binary_search(Sequence&& sequence, T&& value) {
  return std::binary_search(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence),
                            std::forward<T>(value));
}

// Overload of c_binary_search() for performing a `comp` comparison other than
// the default `operator<`.
template <typename Sequence, typename T, typename LessThan>
bool c_binary_search(Sequence&& sequence, T&& value, LessThan&& comp) {
  return std::binary_search(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence),
                            std::forward<T>(value),
                            std::forward<LessThan>(comp));
}

//------------------------------------------------------------------------------
// <algorithm> Merge functions
//------------------------------------------------------------------------------

// c_merge()
//
// Container-based version of the <algorithm> `std::merge()` function
// to merge two sorted containers into a single sorted iterator.
template <typename C1, typename C2, typename OutputIterator>
OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result) {
  return std::merge(container_algorithm_internal::c_begin(c1),
                    container_algorithm_internal::c_end(c1),
                    container_algorithm_internal::c_begin(c2),
                    container_algorithm_internal::c_end(c2), result);
}

// Overload of c_merge() for performing a `comp` comparison other than
// the default `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename LessThan>
OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result,
                       LessThan&& comp) {
  return std::merge(container_algorithm_internal::c_begin(c1),
                    container_algorithm_internal::c_end(c1),
                    container_algorithm_internal::c_begin(c2),
                    container_algorithm_internal::c_end(c2), result,
                    std::forward<LessThan>(comp));
}

// c_inplace_merge()
//
// Container-based version of the <algorithm> `std::inplace_merge()` function
// to merge a supplied iterator `middle` into a container.
template <typename C>
void c_inplace_merge(C& c,
                     container_algorithm_internal::ContainerIter<C> middle) {
  std::inplace_merge(container_algorithm_internal::c_begin(c), middle,
                     container_algorithm_internal::c_end(c));
}

// Overload of c_inplace_merge() for performing a merge using a `comp` other
// than `operator<`.
template <typename C, typename LessThan>
void c_inplace_merge(C& c,
                     container_algorithm_internal::ContainerIter<C> middle,
                     LessThan&& comp) {
  std::inplace_merge(container_algorithm_internal::c_begin(c), middle,
                     container_algorithm_internal::c_end(c),
                     std::forward<LessThan>(comp));
}

// c_includes()
//
// Container-based version of the <algorithm> `std::includes()` function
// to test whether a sorted container `c1` entirely contains another sorted
// container `c2`.
template <typename C1, typename C2>
bool c_includes(const C1& c1, const C2& c2) {
  return std::includes(container_algorithm_internal::c_begin(c1),
                       container_algorithm_internal::c_end(c1),
                       container_algorithm_internal::c_begin(c2),
                       container_algorithm_internal::c_end(c2));
}

// Overload of c_includes() for performing a merge using a `comp` other than
// `operator<`.
template <typename C1, typename C2, typename LessThan>
bool c_includes(const C1& c1, const C2& c2, LessThan&& comp) {
  return std::includes(container_algorithm_internal::c_begin(c1),
                       container_algorithm_internal::c_end(c1),
                       container_algorithm_internal::c_begin(c2),
                       container_algorithm_internal::c_end(c2),
                       std::forward<LessThan>(comp));
}

// c_set_union()
//
// Container-based version of the <algorithm> `std::set_union()` function
// to return an iterator containing the union of two containers; duplicate
// values are not copied into the output.
template <typename C1, typename C2, typename OutputIterator,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C1>::value,
              void>::type,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C2>::value,
              void>::type>
OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output) {
  return std::set_union(container_algorithm_internal::c_begin(c1),
                        container_algorithm_internal::c_end(c1),
                        container_algorithm_internal::c_begin(c2),
                        container_algorithm_internal::c_end(c2), output);
}

// Overload of c_set_union() for performing a merge using a `comp` other than
// `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename LessThan,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C1>::value,
              void>::type,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C2>::value,
              void>::type>
OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output,
                           LessThan&& comp) {
  return std::set_union(container_algorithm_internal::c_begin(c1),
                        container_algorithm_internal::c_end(c1),
                        container_algorithm_internal::c_begin(c2),
                        container_algorithm_internal::c_end(c2), output,
                        std::forward<LessThan>(comp));
}

// c_set_intersection()
//
// Container-based version of the <algorithm> `std::set_intersection()` function
// to return an iterator containing the intersection of two sorted containers.
template <typename C1, typename C2, typename OutputIterator,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C1>::value,
              void>::type,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C2>::value,
              void>::type>
OutputIterator c_set_intersection(const C1& c1, const C2& c2,
                                  OutputIterator output) {
  // In debug builds, ensure that both containers are sorted with respect to the
  // default comparator. std::set_intersection requires the containers be sorted
  // using operator<.
  assert(y_absl::c_is_sorted(c1));
  assert(y_absl::c_is_sorted(c2));
  return std::set_intersection(container_algorithm_internal::c_begin(c1),
                               container_algorithm_internal::c_end(c1),
                               container_algorithm_internal::c_begin(c2),
                               container_algorithm_internal::c_end(c2), output);
}

// Overload of c_set_intersection() for performing a merge using a `comp` other
// than `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename LessThan,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C1>::value,
              void>::type,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C2>::value,
              void>::type>
OutputIterator c_set_intersection(const C1& c1, const C2& c2,
                                  OutputIterator output, LessThan&& comp) {
  // In debug builds, ensure that both containers are sorted with respect to the
  // default comparator. std::set_intersection requires the containers be sorted
  // using the same comparator.
  assert(y_absl::c_is_sorted(c1, comp));
  assert(y_absl::c_is_sorted(c2, comp));
  return std::set_intersection(container_algorithm_internal::c_begin(c1),
                               container_algorithm_internal::c_end(c1),
                               container_algorithm_internal::c_begin(c2),
                               container_algorithm_internal::c_end(c2), output,
                               std::forward<LessThan>(comp));
}

// c_set_difference()
//
// Container-based version of the <algorithm> `std::set_difference()` function
// to return an iterator containing elements present in the first container but
// not in the second.
template <typename C1, typename C2, typename OutputIterator,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C1>::value,
              void>::type,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C2>::value,
              void>::type>
OutputIterator c_set_difference(const C1& c1, const C2& c2,
                                OutputIterator output) {
  return std::set_difference(container_algorithm_internal::c_begin(c1),
                             container_algorithm_internal::c_end(c1),
                             container_algorithm_internal::c_begin(c2),
                             container_algorithm_internal::c_end(c2), output);
}

// Overload of c_set_difference() for performing a merge using a `comp` other
// than `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename LessThan,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C1>::value,
              void>::type,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C2>::value,
              void>::type>
OutputIterator c_set_difference(const C1& c1, const C2& c2,
                                OutputIterator output, LessThan&& comp) {
  return std::set_difference(container_algorithm_internal::c_begin(c1),
                             container_algorithm_internal::c_end(c1),
                             container_algorithm_internal::c_begin(c2),
                             container_algorithm_internal::c_end(c2), output,
                             std::forward<LessThan>(comp));
}

// c_set_symmetric_difference()
//
// Container-based version of the <algorithm> `std::set_symmetric_difference()`
// function to return an iterator containing elements present in either one
// container or the other, but not both.
template <typename C1, typename C2, typename OutputIterator,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C1>::value,
              void>::type,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C2>::value,
              void>::type>
OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2,
                                          OutputIterator output) {
  return std::set_symmetric_difference(
      container_algorithm_internal::c_begin(c1),
      container_algorithm_internal::c_end(c1),
      container_algorithm_internal::c_begin(c2),
      container_algorithm_internal::c_end(c2), output);
}

// Overload of c_set_symmetric_difference() for performing a merge using a
// `comp` other than `operator<`.
template <typename C1, typename C2, typename OutputIterator, typename LessThan,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C1>::value,
              void>::type,
          typename = typename std::enable_if<
              !container_algorithm_internal::IsUnorderedContainer<C2>::value,
              void>::type>
OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2,
                                          OutputIterator output,
                                          LessThan&& comp) {
  return std::set_symmetric_difference(
      container_algorithm_internal::c_begin(c1),
      container_algorithm_internal::c_end(c1),
      container_algorithm_internal::c_begin(c2),
      container_algorithm_internal::c_end(c2), output,
      std::forward<LessThan>(comp));
}

//------------------------------------------------------------------------------
// <algorithm> Heap functions
//------------------------------------------------------------------------------

// c_push_heap()
//
// Container-based version of the <algorithm> `std::push_heap()` function
// to push a value onto a container heap.
template <typename RandomAccessContainer>
void c_push_heap(RandomAccessContainer& sequence) {
  std::push_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence));
}

// Overload of c_push_heap() for performing a push operation on a heap using a
// `comp` other than `operator<`.
template <typename RandomAccessContainer, typename LessThan>
void c_push_heap(RandomAccessContainer& sequence, LessThan&& comp) {
  std::push_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence),
                 std::forward<LessThan>(comp));
}

// c_pop_heap()
//
// Container-based version of the <algorithm> `std::pop_heap()` function
// to pop a value from a heap container.
template <typename RandomAccessContainer>
void c_pop_heap(RandomAccessContainer& sequence) {
  std::pop_heap(container_algorithm_internal::c_begin(sequence),
                container_algorithm_internal::c_end(sequence));
}

// Overload of c_pop_heap() for performing a pop operation on a heap using a
// `comp` other than `operator<`.
template <typename RandomAccessContainer, typename LessThan>
void c_pop_heap(RandomAccessContainer& sequence, LessThan&& comp) {
  std::pop_heap(container_algorithm_internal::c_begin(sequence),
                container_algorithm_internal::c_end(sequence),
                std::forward<LessThan>(comp));
}

// c_make_heap()
//
// Container-based version of the <algorithm> `std::make_heap()` function
// to make a container a heap.
template <typename RandomAccessContainer>
void c_make_heap(RandomAccessContainer& sequence) {
  std::make_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence));
}

// Overload of c_make_heap() for performing heap comparisons using a
// `comp` other than `operator<`
template <typename RandomAccessContainer, typename LessThan>
void c_make_heap(RandomAccessContainer& sequence, LessThan&& comp) {
  std::make_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence),
                 std::forward<LessThan>(comp));
}

// c_sort_heap()
//
// Container-based version of the <algorithm> `std::sort_heap()` function
// to sort a heap into ascending order (after which it is no longer a heap).
template <typename RandomAccessContainer>
void c_sort_heap(RandomAccessContainer& sequence) {
  std::sort_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence));
}

// Overload of c_sort_heap() for performing heap comparisons using a
// `comp` other than `operator<`
template <typename RandomAccessContainer, typename LessThan>
void c_sort_heap(RandomAccessContainer& sequence, LessThan&& comp) {
  std::sort_heap(container_algorithm_internal::c_begin(sequence),
                 container_algorithm_internal::c_end(sequence),
                 std::forward<LessThan>(comp));
}

// c_is_heap()
//
// Container-based version of the <algorithm> `std::is_heap()` function
// to check whether the given container is a heap.
template <typename RandomAccessContainer>
bool c_is_heap(const RandomAccessContainer& sequence) {
  return std::is_heap(container_algorithm_internal::c_begin(sequence),
                      container_algorithm_internal::c_end(sequence));
}

// Overload of c_is_heap() for performing heap comparisons using a
// `comp` other than `operator<`
template <typename RandomAccessContainer, typename LessThan>
bool c_is_heap(const RandomAccessContainer& sequence, LessThan&& comp) {
  return std::is_heap(container_algorithm_internal::c_begin(sequence),
                      container_algorithm_internal::c_end(sequence),
                      std::forward<LessThan>(comp));
}

// c_is_heap_until()
//
// Container-based version of the <algorithm> `std::is_heap_until()` function
// to find the first element in a given container which is not in heap order.
template <typename RandomAccessContainer>
container_algorithm_internal::ContainerIter<RandomAccessContainer>
c_is_heap_until(RandomAccessContainer& sequence) {
  return std::is_heap_until(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence));
}

// Overload of c_is_heap_until() for performing heap comparisons using a
// `comp` other than `operator<`
template <typename RandomAccessContainer, typename LessThan>
container_algorithm_internal::ContainerIter<RandomAccessContainer>
c_is_heap_until(RandomAccessContainer& sequence, LessThan&& comp) {
  return std::is_heap_until(container_algorithm_internal::c_begin(sequence),
                            container_algorithm_internal::c_end(sequence),
                            std::forward<LessThan>(comp));
}

//------------------------------------------------------------------------------
//  <algorithm> Min/max
//------------------------------------------------------------------------------

// c_min_element()
//
// Container-based version of the <algorithm> `std::min_element()` function
// to return an iterator pointing to the element with the smallest value, using
// `operator<` to make the comparisons.
template <typename Sequence>
container_algorithm_internal::ContainerIter<Sequence> c_min_element(
    Sequence& sequence) {
  return std::min_element(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence));
}

// Overload of c_min_element() for performing a `comp` comparison other than
// `operator<`.
template <typename Sequence, typename LessThan>
container_algorithm_internal::ContainerIter<Sequence> c_min_element(
    Sequence& sequence, LessThan&& comp) {
  return std::min_element(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<LessThan>(comp));
}

// c_max_element()
//
// Container-based version of the <algorithm> `std::max_element()` function
// to return an iterator pointing to the element with the largest value, using
// `operator<` to make the comparisons.
template <typename Sequence>
container_algorithm_internal::ContainerIter<Sequence> c_max_element(
    Sequence& sequence) {
  return std::max_element(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence));
}

// Overload of c_max_element() for performing a `comp` comparison other than
// `operator<`.
template <typename Sequence, typename LessThan>
container_algorithm_internal::ContainerIter<Sequence> c_max_element(
    Sequence& sequence, LessThan&& comp) {
  return std::max_element(container_algorithm_internal::c_begin(sequence),
                          container_algorithm_internal::c_end(sequence),
                          std::forward<LessThan>(comp));
}

// c_minmax_element()
//
// Container-based version of the <algorithm> `std::minmax_element()` function
// to return a pair of iterators pointing to the elements containing the
// smallest and largest values, respectively, using `operator<` to make the
// comparisons.
template <typename C>
container_algorithm_internal::ContainerIterPairType<C, C>
c_minmax_element(C& c) {
  return std::minmax_element(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c));
}

// Overload of c_minmax_element() for performing `comp` comparisons other than
// `operator<`.
template <typename C, typename LessThan>
container_algorithm_internal::ContainerIterPairType<C, C>
c_minmax_element(C& c, LessThan&& comp) {
  return std::minmax_element(container_algorithm_internal::c_begin(c),
                             container_algorithm_internal::c_end(c),
                             std::forward<LessThan>(comp));
}

//------------------------------------------------------------------------------
//  <algorithm> Lexicographical Comparisons
//------------------------------------------------------------------------------

// c_lexicographical_compare()
//
// Container-based version of the <algorithm> `std::lexicographical_compare()`
// function to lexicographically compare (e.g. sort words alphabetically) two
// container sequences. The comparison is performed using `operator<`. Note
// that capital letters ("A-Z") have ASCII values less than lowercase letters
// ("a-z").
template <typename Sequence1, typename Sequence2>
bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2) {
  return std::lexicographical_compare(
      container_algorithm_internal::c_begin(sequence1),
      container_algorithm_internal::c_end(sequence1),
      container_algorithm_internal::c_begin(sequence2),
      container_algorithm_internal::c_end(sequence2));
}

// Overload of c_lexicographical_compare() for performing a lexicographical
// comparison using a `comp` operator instead of `operator<`.
template <typename Sequence1, typename Sequence2, typename LessThan>
bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2,
                               LessThan&& comp) {
  return std::lexicographical_compare(
      container_algorithm_internal::c_begin(sequence1),
      container_algorithm_internal::c_end(sequence1),
      container_algorithm_internal::c_begin(sequence2),
      container_algorithm_internal::c_end(sequence2),
      std::forward<LessThan>(comp));
}

// c_next_permutation()
//
// Container-based version of the <algorithm> `std::next_permutation()` function
// to rearrange a container's elements into the next lexicographically greater
// permutation.
template <typename C>
bool c_next_permutation(C& c) {
  return std::next_permutation(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c));
}

// Overload of c_next_permutation() for performing a lexicographical
// comparison using a `comp` operator instead of `operator<`.
template <typename C, typename LessThan>
bool c_next_permutation(C& c, LessThan&& comp) {
  return std::next_permutation(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c),
                               std::forward<LessThan>(comp));
}

// c_prev_permutation()
//
// Container-based version of the <algorithm> `std::prev_permutation()` function
// to rearrange a container's elements into the next lexicographically lesser
// permutation.
template <typename C>
bool c_prev_permutation(C& c) {
  return std::prev_permutation(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c));
}

// Overload of c_prev_permutation() for performing a lexicographical
// comparison using a `comp` operator instead of `operator<`.
template <typename C, typename LessThan>
bool c_prev_permutation(C& c, LessThan&& comp) {
  return std::prev_permutation(container_algorithm_internal::c_begin(c),
                               container_algorithm_internal::c_end(c),
                               std::forward<LessThan>(comp));
}

//------------------------------------------------------------------------------
// <numeric> algorithms
//------------------------------------------------------------------------------

// c_iota()
//
// Container-based version of the <algorithm> `std::iota()` function
// to compute successive values of `value`, as if incremented with `++value`
// after each element is written. and write them to the container.
template <typename Sequence, typename T>
void c_iota(Sequence& sequence, T&& value) {
  std::iota(container_algorithm_internal::c_begin(sequence),
            container_algorithm_internal::c_end(sequence),
            std::forward<T>(value));
}
// c_accumulate()
//
// Container-based version of the <algorithm> `std::accumulate()` function
// to accumulate the element values of a container to `init` and return that
// accumulation by value.
//
// Note: Due to a language technicality this function has return type
// y_absl::decay_t<T>. As a user of this function you can casually read 
// this as "returns T by value" and assume it does the right thing.
template <typename Sequence, typename T>
decay_t<T> c_accumulate(const Sequence& sequence, T&& init) {
  return std::accumulate(container_algorithm_internal::c_begin(sequence),
                         container_algorithm_internal::c_end(sequence),
                         std::forward<T>(init));
}

// Overload of c_accumulate() for using a binary operations other than
// addition for computing the accumulation.
template <typename Sequence, typename T, typename BinaryOp>
decay_t<T> c_accumulate(const Sequence& sequence, T&& init,
                        BinaryOp&& binary_op) {
  return std::accumulate(container_algorithm_internal::c_begin(sequence),
                         container_algorithm_internal::c_end(sequence),
                         std::forward<T>(init),
                         std::forward<BinaryOp>(binary_op));
}

// c_inner_product()
//
// Container-based version of the <algorithm> `std::inner_product()` function
// to compute the cumulative inner product of container element pairs.
//
// Note: Due to a language technicality this function has return type
// y_absl::decay_t<T>. As a user of this function you can casually read 
// this as "returns T by value" and assume it does the right thing.
template <typename Sequence1, typename Sequence2, typename T>
decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2,
                           T&& sum) {
  return std::inner_product(container_algorithm_internal::c_begin(factors1),
                            container_algorithm_internal::c_end(factors1),
                            container_algorithm_internal::c_begin(factors2),
                            std::forward<T>(sum));
}

// Overload of c_inner_product() for using binary operations other than
// `operator+` (for computing the accumulation) and `operator*` (for computing
// the product between the two container's element pair).
template <typename Sequence1, typename Sequence2, typename T,
          typename BinaryOp1, typename BinaryOp2>
decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2,
                           T&& sum, BinaryOp1&& op1, BinaryOp2&& op2) {
  return std::inner_product(container_algorithm_internal::c_begin(factors1),
                            container_algorithm_internal::c_end(factors1),
                            container_algorithm_internal::c_begin(factors2),
                            std::forward<T>(sum), std::forward<BinaryOp1>(op1),
                            std::forward<BinaryOp2>(op2));
}

// c_adjacent_difference()
//
// Container-based version of the <algorithm> `std::adjacent_difference()`
// function to compute the difference between each element and the one preceding
// it and write it to an iterator.
template <typename InputSequence, typename OutputIt>
OutputIt c_adjacent_difference(const InputSequence& input,
                               OutputIt output_first) {
  return std::adjacent_difference(container_algorithm_internal::c_begin(input),
                                  container_algorithm_internal::c_end(input),
                                  output_first);
}

// Overload of c_adjacent_difference() for using a binary operation other than
// subtraction to compute the adjacent difference.
template <typename InputSequence, typename OutputIt, typename BinaryOp>
OutputIt c_adjacent_difference(const InputSequence& input,
                               OutputIt output_first, BinaryOp&& op) {
  return std::adjacent_difference(container_algorithm_internal::c_begin(input),
                                  container_algorithm_internal::c_end(input),
                                  output_first, std::forward<BinaryOp>(op));
}

// c_partial_sum()
//
// Container-based version of the <algorithm> `std::partial_sum()` function
// to compute the partial sum of the elements in a sequence and write them
// to an iterator. The partial sum is the sum of all element values so far in
// the sequence.
template <typename InputSequence, typename OutputIt>
OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first) {
  return std::partial_sum(container_algorithm_internal::c_begin(input),
                          container_algorithm_internal::c_end(input),
                          output_first);
}

// Overload of c_partial_sum() for using a binary operation other than addition
// to compute the "partial sum".
template <typename InputSequence, typename OutputIt, typename BinaryOp>
OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first,
                       BinaryOp&& op) {
  return std::partial_sum(container_algorithm_internal::c_begin(input),
                          container_algorithm_internal::c_end(input),
                          output_first, std::forward<BinaryOp>(op));
}

ABSL_NAMESPACE_END
}  // namespace y_absl 

#endif  // ABSL_ALGORITHM_CONTAINER_H_