aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/jedi/jedi/evaluate/docstrings.py
blob: aaef8ea853831e3cb31906413f187932b0409a18 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
"""
Docstrings are another source of information for functions and classes.
:mod:`jedi.evaluate.dynamic` tries to find all executions of functions, while
the docstring parsing is much easier. There are three different types of
docstrings that |jedi| understands:

- `Sphinx <http://sphinx-doc.org/markup/desc.html#info-field-lists>`_
- `Epydoc <http://epydoc.sourceforge.net/manual-fields.html>`_
- `Numpydoc <https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt>`_

For example, the sphinx annotation ``:type foo: str`` clearly states that the
type of ``foo`` is ``str``.

As an addition to parameter searching, this module also provides return
annotations.
"""

import re
from textwrap import dedent

from parso import parse, ParserSyntaxError

from jedi._compatibility import u
from jedi.evaluate.utils import indent_block
from jedi.evaluate.cache import evaluator_method_cache
from jedi.evaluate.base_context import iterator_to_context_set, ContextSet, \
    NO_CONTEXTS
from jedi.evaluate.lazy_context import LazyKnownContexts


DOCSTRING_PARAM_PATTERNS = [
    r'\s*:type\s+%s:\s*([^\n]+)',  # Sphinx
    r'\s*:param\s+(\w+)\s+%s:[^\n]*',  # Sphinx param with type
    r'\s*@type\s+%s:\s*([^\n]+)',  # Epydoc
]

DOCSTRING_RETURN_PATTERNS = [
    re.compile(r'\s*:rtype:\s*([^\n]+)', re.M),  # Sphinx
    re.compile(r'\s*@rtype:\s*([^\n]+)', re.M),  # Epydoc
]

REST_ROLE_PATTERN = re.compile(r':[^`]+:`([^`]+)`')


_numpy_doc_string_cache = None


def _get_numpy_doc_string_cls():
    global _numpy_doc_string_cache
    if isinstance(_numpy_doc_string_cache, ImportError):
        raise _numpy_doc_string_cache
    try:
        from numpydoc.docscrape import NumpyDocString
        _numpy_doc_string_cache = NumpyDocString
    except ImportError as e:
        _numpy_doc_string_cache = e
        raise
    return _numpy_doc_string_cache


def _search_param_in_numpydocstr(docstr, param_str):
    """Search `docstr` (in numpydoc format) for type(-s) of `param_str`."""
    try:
        # This is a non-public API. If it ever changes we should be
        # prepared and return gracefully.
        params = _get_numpy_doc_string_cls()(docstr)._parsed_data['Parameters']
    except (KeyError, AttributeError, ImportError):
        return []
    for p_name, p_type, p_descr in params:
        if p_name == param_str:
            m = re.match(r'([^,]+(,[^,]+)*?)(,[ ]*optional)?$', p_type)
            if m:
                p_type = m.group(1)
            return list(_expand_typestr(p_type))
    return []


def _search_return_in_numpydocstr(docstr):
    """
    Search `docstr` (in numpydoc format) for type(-s) of function returns.
    """
    try:
        doc = _get_numpy_doc_string_cls()(docstr)
    except ImportError:
        return
    try:
        # This is a non-public API. If it ever changes we should be
        # prepared and return gracefully.
        returns = doc._parsed_data['Returns']
        returns += doc._parsed_data['Yields']
    except (KeyError, AttributeError):
        return
    for r_name, r_type, r_descr in returns:
        # Return names are optional and if so the type is in the name
        if not r_type:
            r_type = r_name
        for type_ in _expand_typestr(r_type):
            yield type_


def _expand_typestr(type_str):
    """
    Attempts to interpret the possible types in `type_str`
    """
    # Check if alternative types are specified with 'or'
    if re.search(r'\bor\b', type_str):
        for t in type_str.split('or'):
            yield t.split('of')[0].strip()
    # Check if like "list of `type`" and set type to list
    elif re.search(r'\bof\b', type_str):
        yield type_str.split('of')[0]
    # Check if type has is a set of valid literal values eg: {'C', 'F', 'A'}
    elif type_str.startswith('{'):
        node = parse(type_str, version='3.6').children[0]
        if node.type == 'atom':
            for leaf in node.children[1].children:
                if leaf.type == 'number':
                    if '.' in leaf.value:
                        yield 'float'
                    else:
                        yield 'int'
                elif leaf.type == 'string':
                    if 'b' in leaf.string_prefix.lower():
                        yield 'bytes'
                    else:
                        yield 'str'
                # Ignore everything else.

    # Otherwise just work with what we have.
    else:
        yield type_str


def _search_param_in_docstr(docstr, param_str):
    """
    Search `docstr` for type(-s) of `param_str`.

    >>> _search_param_in_docstr(':type param: int', 'param')
    ['int']
    >>> _search_param_in_docstr('@type param: int', 'param')
    ['int']
    >>> _search_param_in_docstr(
    ...   ':type param: :class:`threading.Thread`', 'param')
    ['threading.Thread']
    >>> bool(_search_param_in_docstr('no document', 'param'))
    False
    >>> _search_param_in_docstr(':param int param: some description', 'param')
    ['int']

    """
    # look at #40 to see definitions of those params
    patterns = [re.compile(p % re.escape(param_str))
                for p in DOCSTRING_PARAM_PATTERNS]
    for pattern in patterns:
        match = pattern.search(docstr)
        if match:
            return [_strip_rst_role(match.group(1))]

    return _search_param_in_numpydocstr(docstr, param_str)


def _strip_rst_role(type_str):
    """
    Strip off the part looks like a ReST role in `type_str`.

    >>> _strip_rst_role(':class:`ClassName`')  # strip off :class:
    'ClassName'
    >>> _strip_rst_role(':py:obj:`module.Object`')  # works with domain
    'module.Object'
    >>> _strip_rst_role('ClassName')  # do nothing when not ReST role
    'ClassName'

    See also:
    http://sphinx-doc.org/domains.html#cross-referencing-python-objects

    """
    match = REST_ROLE_PATTERN.match(type_str)
    if match:
        return match.group(1)
    else:
        return type_str


def _evaluate_for_statement_string(module_context, string):
    code = dedent(u("""
    def pseudo_docstring_stuff():
        '''
        Create a pseudo function for docstring statements.
        Need this docstring so that if the below part is not valid Python this
        is still a function.
        '''
    {}
    """))
    if string is None:
        return []

    for element in re.findall(r'((?:\w+\.)*\w+)\.', string):
        # Try to import module part in dotted name.
        # (e.g., 'threading' in 'threading.Thread').
        string = 'import %s\n' % element + string

    # Take the default grammar here, if we load the Python 2.7 grammar here, it
    # will be impossible to use `...` (Ellipsis) as a token. Docstring types
    # don't need to conform with the current grammar.
    grammar = module_context.evaluator.latest_grammar
    try:
        module = grammar.parse(code.format(indent_block(string)), error_recovery=False)
    except ParserSyntaxError:
        return []
    try:
        funcdef = next(module.iter_funcdefs())
        # First pick suite, then simple_stmt and then the node,
        # which is also not the last item, because there's a newline.
        stmt = funcdef.children[-1].children[-1].children[-2]
    except (AttributeError, IndexError):
        return []

    if stmt.type not in ('name', 'atom', 'atom_expr'):
        return []

    from jedi.evaluate.context import FunctionContext
    function_context = FunctionContext(
        module_context.evaluator,
        module_context,
        funcdef
    )
    func_execution_context = function_context.get_function_execution()
    # Use the module of the param.
    # TODO this module is not the module of the param in case of a function
    # call. In that case it's the module of the function call.
    # stuffed with content from a function call.
    return list(_execute_types_in_stmt(func_execution_context, stmt))


def _execute_types_in_stmt(module_context, stmt):
    """
    Executing all types or general elements that we find in a statement. This
    doesn't include tuple, list and dict literals, because the stuff they
    contain is executed. (Used as type information).
    """
    definitions = module_context.eval_node(stmt)
    return ContextSet.from_sets(
        _execute_array_values(module_context.evaluator, d)
        for d in definitions
    )


def _execute_array_values(evaluator, array):
    """
    Tuples indicate that there's not just one return value, but the listed
    ones.  `(str, int)` means that it returns a tuple with both types.
    """
    from jedi.evaluate.context.iterable import SequenceLiteralContext, FakeSequence
    if isinstance(array, SequenceLiteralContext):
        values = []
        for lazy_context in array.py__iter__():
            objects = ContextSet.from_sets(
                _execute_array_values(evaluator, typ)
                for typ in lazy_context.infer()
            )
            values.append(LazyKnownContexts(objects))
        return {FakeSequence(evaluator, array.array_type, values)}
    else:
        return array.execute_evaluated()


@evaluator_method_cache()
def infer_param(execution_context, param):
    from jedi.evaluate.context.instance import InstanceArguments
    from jedi.evaluate.context import FunctionExecutionContext

    def eval_docstring(docstring):
        return ContextSet.from_iterable(
            p
            for param_str in _search_param_in_docstr(docstring, param.name.value)
            for p in _evaluate_for_statement_string(module_context, param_str)
        )
    module_context = execution_context.get_root_context()
    func = param.get_parent_function()
    if func.type == 'lambdef':
        return NO_CONTEXTS

    types = eval_docstring(execution_context.py__doc__())
    if isinstance(execution_context, FunctionExecutionContext) \
            and isinstance(execution_context.var_args, InstanceArguments) \
            and execution_context.function_context.py__name__() == '__init__':
        class_context = execution_context.var_args.instance.class_context
        types |= eval_docstring(class_context.py__doc__())

    return types


@evaluator_method_cache()
@iterator_to_context_set
def infer_return_types(function_context):
    def search_return_in_docstr(code):
        for p in DOCSTRING_RETURN_PATTERNS:
            match = p.search(code)
            if match:
                yield _strip_rst_role(match.group(1))
        # Check for numpy style return hint
        for type_ in _search_return_in_numpydocstr(code):
            yield type_

    for type_str in search_return_in_docstr(function_context.py__doc__()):
        for type_eval in _evaluate_for_statement_string(function_context.get_root_context(), type_str):
            yield type_eval