1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
#if PY_VERSION_HEX >= 0x03080000
# define HAVE_PYINTERPSTATE_GETDICT
#endif
static PyObject *_current_interp_key(void)
{
PyInterpreterState *interp = PyThreadState_GET()->interp;
#ifdef HAVE_PYINTERPSTATE_GETDICT
return PyInterpreterState_GetDict(interp); /* shared reference */
#else
return interp->modules;
#endif
}
static PyObject *_get_interpstate_dict(void)
{
/* Hack around to return a dict that is subinterpreter-local.
Does not return a new reference. Returns NULL in case of
error, but without setting any exception. (If called late
during shutdown, we *can't* set an exception!)
*/
static PyObject *attr_name = NULL;
PyThreadState *tstate;
PyObject *d, *interpdict;
int err;
PyInterpreterState *interp;
tstate = PyThreadState_GET();
if (tstate == NULL) {
/* no thread state! */
return NULL;
}
interp = tstate->interp;
#ifdef HAVE_PYINTERPSTATE_GETDICT
interpdict = PyInterpreterState_GetDict(interp); /* shared reference */
#else
interpdict = interp->builtins;
#endif
if (interpdict == NULL) {
/* subinterpreter was cleared already, or is being cleared right now,
to a point that is too much for us to continue */
return NULL;
}
/* from there on, we know the (sub-)interpreter is still valid */
if (attr_name == NULL) {
attr_name = PyText_InternFromString("__cffi_backend_extern_py");
if (attr_name == NULL)
goto error;
}
d = PyDict_GetItem(interpdict, attr_name);
if (d == NULL) {
d = PyDict_New();
if (d == NULL)
goto error;
err = PyDict_SetItem(interpdict, attr_name, d);
Py_DECREF(d); /* if successful, there is one ref left in interpdict */
if (err < 0)
goto error;
}
return d;
error:
PyErr_Clear(); /* typically a MemoryError */
return NULL;
}
static PyObject *_ffi_def_extern_decorator(PyObject *outer_args, PyObject *fn)
{
const char *s;
PyObject *error, *onerror, *infotuple, *old1;
int index, err;
const struct _cffi_global_s *g;
struct _cffi_externpy_s *externpy;
CTypeDescrObject *ct;
FFIObject *ffi;
builder_c_t *types_builder;
PyObject *name = NULL;
PyObject *interpstate_dict;
PyObject *interpstate_key;
if (!PyArg_ParseTuple(outer_args, "OzOO", &ffi, &s, &error, &onerror))
return NULL;
if (s == NULL) {
name = PyObject_GetAttrString(fn, "__name__");
if (name == NULL)
return NULL;
s = PyText_AsUTF8(name);
if (s == NULL) {
Py_DECREF(name);
return NULL;
}
}
types_builder = &ffi->types_builder;
index = search_in_globals(&types_builder->ctx, s, strlen(s));
if (index < 0)
goto not_found;
g = &types_builder->ctx.globals[index];
if (_CFFI_GETOP(g->type_op) != _CFFI_OP_EXTERN_PYTHON)
goto not_found;
Py_XDECREF(name);
ct = realize_c_type(types_builder, types_builder->ctx.types,
_CFFI_GETARG(g->type_op));
if (ct == NULL)
return NULL;
infotuple = prepare_callback_info_tuple(ct, fn, error, onerror, 0);
Py_DECREF(ct);
if (infotuple == NULL)
return NULL;
/* don't directly attach infotuple to externpy: in the presence of
subinterpreters, each time we switch to a different
subinterpreter and call the C function, it will notice the
change and look up infotuple from the interpstate_dict.
*/
interpstate_dict = _get_interpstate_dict();
if (interpstate_dict == NULL) {
Py_DECREF(infotuple);
return PyErr_NoMemory();
}
externpy = (struct _cffi_externpy_s *)g->address;
interpstate_key = PyLong_FromVoidPtr((void *)externpy);
if (interpstate_key == NULL) {
Py_DECREF(infotuple);
return NULL;
}
err = PyDict_SetItem(interpstate_dict, interpstate_key, infotuple);
Py_DECREF(interpstate_key);
Py_DECREF(infotuple); /* interpstate_dict owns the last ref */
if (err < 0)
return NULL;
/* force _update_cache_to_call_python() to be called the next time
the C function invokes cffi_call_python, to update the cache */
old1 = externpy->reserved1;
externpy->reserved1 = Py_None; /* a non-NULL value */
Py_INCREF(Py_None);
Py_XDECREF(old1);
/* return the function object unmodified */
Py_INCREF(fn);
return fn;
not_found:
PyErr_Format(FFIError, "ffi.def_extern('%s'): no 'extern \"Python\"' "
"function with this name", s);
Py_XDECREF(name);
return NULL;
}
static int _update_cache_to_call_python(struct _cffi_externpy_s *externpy)
{
PyObject *interpstate_dict, *interpstate_key, *infotuple, *old1, *new1;
PyObject *old2;
interpstate_dict = _get_interpstate_dict();
if (interpstate_dict == NULL)
return 4; /* oops, shutdown issue? */
interpstate_key = PyLong_FromVoidPtr((void *)externpy);
if (interpstate_key == NULL)
goto error;
infotuple = PyDict_GetItem(interpstate_dict, interpstate_key);
Py_DECREF(interpstate_key);
if (infotuple == NULL)
return 3; /* no ffi.def_extern() from this subinterpreter */
new1 = _current_interp_key();
Py_INCREF(new1);
Py_INCREF(infotuple);
old1 = (PyObject *)externpy->reserved1;
old2 = (PyObject *)externpy->reserved2;
externpy->reserved1 = new1; /* holds a reference */
externpy->reserved2 = infotuple; /* holds a reference (issue #246) */
Py_XDECREF(old1);
Py_XDECREF(old2);
return 0; /* no error */
error:
PyErr_Clear();
return 2; /* out of memory? */
}
#if (defined(WITH_THREAD) && !defined(_MSC_VER) && \
!defined(__amd64__) && !defined(__x86_64__) && \
!defined(__i386__) && !defined(__i386))
# if defined(HAVE_SYNC_SYNCHRONIZE)
# define read_barrier() __sync_synchronize()
# elif defined(_AIX)
# define read_barrier() __lwsync()
# elif defined(__SUNPRO_C) || defined(__SUNPRO_CC)
# error include <mbarrier.h>
# define read_barrier() __compiler_barrier()
# elif defined(__hpux)
# define read_barrier() _Asm_mf()
# else
# define read_barrier() /* missing */
# warning "no definition for read_barrier(), missing synchronization for\
multi-thread initialization in embedded mode"
# endif
#else
# define read_barrier() (void)0
#endif
static void cffi_call_python(struct _cffi_externpy_s *externpy, char *args)
{
/* Invoked by the helpers generated from extern "Python" in the cdef.
'externpy' is a static structure that describes which of the
extern "Python" functions is called. It has got fields 'name' and
'type_index' describing the function, and more reserved fields
that are initially zero. These reserved fields are set up by
ffi.def_extern(), which invokes _ffi_def_extern_decorator() above.
'args' is a pointer to an array of 8-byte entries. Each entry
contains an argument. If an argument is less than 8 bytes, only
the part at the beginning of the entry is initialized. If an
argument is 'long double' or a struct/union, then it is passed
by reference.
'args' is also used as the place to write the result to
(directly, even if more than 8 bytes). In all cases, 'args' is
at least 8 bytes in size.
*/
int err = 0;
/* This read barrier is needed for _embedding.h. It is paired
with the write_barrier() there. Without this barrier, we can
in theory see the following situation: the Python
initialization code already ran (in another thread), and the
'_cffi_call_python' function pointer directed execution here;
but any number of other data could still be seen as
uninitialized below. For example, 'externpy' would still
contain NULLs even though it was correctly set up, or
'interpreter_lock' (the GIL inside CPython) would still be seen
as NULL, or 'autoInterpreterState' (used by
PyGILState_Ensure()) would be NULL or contain bogus fields.
*/
read_barrier();
save_errno();
/* We need the infotuple here. We could always go through
_update_cache_to_call_python(), but to avoid the extra dict
lookups, we cache in (reserved1, reserved2) the last seen pair
(interp->modules, infotuple). The first item in this tuple is
a random PyObject that identifies the subinterpreter.
*/
if (externpy->reserved1 == NULL) {
/* Not initialized! We didn't call @ffi.def_extern() on this
externpy object from any subinterpreter at all. */
err = 1;
}
else {
PyGILState_STATE state = gil_ensure();
if (externpy->reserved1 != _current_interp_key()) {
/* Update the (reserved1, reserved2) cache. This will fail
if we didn't call @ffi.def_extern() in this particular
subinterpreter. */
err = _update_cache_to_call_python(externpy);
}
if (!err) {
general_invoke_callback(0, args, args, externpy->reserved2);
}
gil_release(state);
}
if (err) {
static const char *msg[] = {
"no code was attached to it yet with @ffi.def_extern()",
"got internal exception (out of memory?)",
"@ffi.def_extern() was not called in the current subinterpreter",
"got internal exception (shutdown issue?)",
};
fprintf(stderr, "extern \"Python\": function %s() called, "
"but %s. Returning 0.\n", externpy->name, msg[err-1]);
memset(args, 0, externpy->size_of_result);
}
restore_errno();
}
|