aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/snappy/snappy.cc
blob: 27e491c04367588303434554db389444c7692162 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
// Copyright 2005 Google Inc. All Rights Reserved. 
// 
// Redistribution and use in source and binary forms, with or without 
// modification, are permitted provided that the following conditions are 
// met: 
// 
//     * Redistributions of source code must retain the above copyright 
// notice, this list of conditions and the following disclaimer. 
//     * Redistributions in binary form must reproduce the above 
// copyright notice, this list of conditions and the following disclaimer 
// in the documentation and/or other materials provided with the 
// distribution. 
//     * Neither the name of Google Inc. nor the names of its 
// contributors may be used to endorse or promote products derived from 
// this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 
#include "snappy.h" 
#include "snappy-internal.h" 
#include "snappy-sinksource.h" 
 
#if !defined(SNAPPY_HAVE_SSSE3)
// __SSSE3__ is defined by GCC and Clang. Visual Studio doesn't target SIMD
// support between SSE2 and AVX (so SSSE3 instructions require AVX support), and
// defines __AVX__ when AVX support is available.
#if defined(__SSSE3__) || defined(__AVX__)
#define SNAPPY_HAVE_SSSE3 1
#else
#define SNAPPY_HAVE_SSSE3 0
#endif
#endif  // !defined(SNAPPY_HAVE_SSSE3)

#if !defined(SNAPPY_HAVE_BMI2)
// __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2
// specifically, but it does define __AVX2__ when AVX2 support is available.
// Fortunately, AVX2 was introduced in Haswell, just like BMI2.
//
// BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So,
// GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which
// case issuing BMI2 instructions results in a compiler error.
#if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__))
#define SNAPPY_HAVE_BMI2 1
#else
#define SNAPPY_HAVE_BMI2 0
#endif
#endif  // !defined(SNAPPY_HAVE_BMI2)

#if SNAPPY_HAVE_SSSE3
// Please do not replace with <x86intrin.h>. or with headers that assume more
// advanced SSE versions without checking with all the OWNERS.
#include <tmmintrin.h>
#endif

#if SNAPPY_HAVE_BMI2
// Please do not replace with <x86intrin.h>. or with headers that assume more
// advanced SSE versions without checking with all the OWNERS.
#include <immintrin.h>
#endif

#include <stdio.h> 
 
#include <algorithm> 
#include <string>
#include <vector>
#include <util/generic/string.h>
 
namespace snappy { 
 
using internal::COPY_1_BYTE_OFFSET;
using internal::COPY_2_BYTE_OFFSET;
using internal::LITERAL;
using internal::char_table;
using internal::kMaximumTagLength;

// Any hash function will produce a valid compressed bitstream, but a good 
// hash function reduces the number of collisions and thus yields better 
// compression for compressible input, and more speed for incompressible 
// input. Of course, it doesn't hurt if the hash function is reasonably fast 
// either, as it gets called a lot. 
static inline uint32 HashBytes(uint32 bytes, int shift) { 
  uint32 kMul = 0x1e35a7bd; 
  return (bytes * kMul) >> shift; 
} 
static inline uint32 Hash(const char* p, int shift) { 
  return HashBytes(UNALIGNED_LOAD32(p), shift); 
} 
 
size_t MaxCompressedLength(size_t source_len) { 
  // Compressed data can be defined as: 
  //    compressed := item* literal* 
  //    item       := literal* copy 
  // 
  // The trailing literal sequence has a space blowup of at most 62/60 
  // since a literal of length 60 needs one tag byte + one extra byte 
  // for length information. 
  // 
  // Item blowup is trickier to measure.  Suppose the "copy" op copies 
  // 4 bytes of data.  Because of a special check in the encoding code, 
  // we produce a 4-byte copy only if the offset is < 65536.  Therefore 
  // the copy op takes 3 bytes to encode, and this type of item leads 
  // to at most the 62/60 blowup for representing literals. 
  // 
  // Suppose the "copy" op copies 5 bytes of data.  If the offset is big 
  // enough, it will take 5 bytes to encode the copy op.  Therefore the 
  // worst case here is a one-byte literal followed by a five-byte copy. 
  // I.e., 6 bytes of input turn into 7 bytes of "compressed" data. 
  // 
  // This last factor dominates the blowup, so the final estimate is: 
  return 32 + source_len + source_len/6; 
} 
 
namespace {
 
void UnalignedCopy64(const void* src, void* dst) {
  char tmp[8];
  memcpy(tmp, src, 8);
  memcpy(dst, tmp, 8);
}

void UnalignedCopy128(const void* src, void* dst) {
  // memcpy gets vectorized when the appropriate compiler options are used.
  // For example, x86 compilers targeting SSE2+ will optimize to an SSE2 load
  // and store.
  char tmp[16];
  memcpy(tmp, src, 16);
  memcpy(dst, tmp, 16);
}

// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
// for handling COPY operations where the input and output regions may overlap.
// For example, suppose:
//    src       == "ab"
//    op        == src + 2
//    op_limit  == op + 20
// After IncrementalCopySlow(src, op, op_limit), the result will have eleven
// copies of "ab"
//    ababababababababababab 
// Note that this does not match the semantics of either memcpy() or memmove().
inline char* IncrementalCopySlow(const char* src, char* op,
                                 char* const op_limit) {
  // TODO: Remove pragma when LLVM is aware this
  // function is only called in cold regions and when cold regions don't get
  // vectorized or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
  while (op < op_limit) {
    *op++ = *src++; 
  }
  return op_limit;
} 
 
#if SNAPPY_HAVE_SSSE3
 
// This is a table of shuffle control masks that can be used as the source
// operand for PSHUFB to permute the contents of the destination XMM register
// into a repeating byte pattern.
alignas(16) const char pshufb_fill_patterns[7][16] = {
  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
  {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1},
  {0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0},
  {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3},
  {0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0},
  {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3},
  {0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1},
};
 
#endif  // SNAPPY_HAVE_SSSE3
 
// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than
// IncrementalCopySlow. buf_limit is the address past the end of the writable
// region of the buffer.
inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
                             char* const buf_limit) {
  // Terminology:
  //
  // slop = buf_limit - op
  // pat  = op - src
  // len  = limit - op
  assert(src < op);
  assert(op <= op_limit);
  assert(op_limit <= buf_limit);
  // NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that
  // to optimize this function but we have to also handle other cases in case
  // the input does not satisfy these conditions.
 
  size_t pattern_size = op - src;
  // The cases are split into different branches to allow the branch predictor,
  // FDO, and static prediction hints to work better. For each input we list the
  // ratio of invocations that match each condition.
  //
  // input        slop < 16   pat < 8  len > 16
  // ------------------------------------------
  // html|html4|cp   0%         1.01%    27.73%
  // urls            0%         0.88%    14.79%
  // jpg             0%        64.29%     7.14%
  // pdf             0%         2.56%    58.06%
  // txt[1-4]        0%         0.23%     0.97%
  // pb              0%         0.96%    13.88%
  // bin             0.01%     22.27%    41.17%
  //
  // It is very rare that we don't have enough slop for doing block copies. It
  // is also rare that we need to expand a pattern. Small patterns are common
  // for incompressible formats and for those we are plenty fast already.
  // Lengths are normally not greater than 16 but they vary depending on the
  // input. In general if we always predict len <= 16 it would be an ok
  // prediction.
  //
  // In order to be fast we want a pattern >= 8 bytes and an unrolled loop
  // copying 2x 8 bytes at a time.

  // Handle the uncommon case where pattern is less than 8 bytes.
  if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) {
#if SNAPPY_HAVE_SSSE3
    // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB
    // to permute the register's contents in-place into a repeating sequence of
    // the first "pattern_size" bytes.
    // For example, suppose:
    //    src       == "abc"
    //    op        == op + 3
    // After _mm_shuffle_epi8(), "pattern" will have five copies of "abc"
    // followed by one byte of slop: abcabcabcabcabca.
    //
    // The non-SSE fallback implementation suffers from store-forwarding stalls
    // because its loads and stores partly overlap. By expanding the pattern
    // in-place, we avoid the penalty.
    if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 16)) {
      const __m128i shuffle_mask = _mm_load_si128(
          reinterpret_cast<const __m128i*>(pshufb_fill_patterns)
          + pattern_size - 1);
      const __m128i pattern = _mm_shuffle_epi8(
          _mm_loadl_epi64(reinterpret_cast<const __m128i*>(src)), shuffle_mask);
      // Uninitialized bytes are masked out by the shuffle mask.
      // TODO: remove annotation and macro defs once MSan is fixed.
      SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(&pattern, sizeof(pattern));
      pattern_size *= 16 / pattern_size;
      char* op_end = std::min(op_limit, buf_limit - 15);
      while (op < op_end) {
        _mm_storeu_si128(reinterpret_cast<__m128i*>(op), pattern);
        op += pattern_size;
      }
      if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
    }
    return IncrementalCopySlow(src, op, op_limit);
#else  // !SNAPPY_HAVE_SSSE3
    // If plenty of buffer space remains, expand the pattern to at least 8
    // bytes. The way the following loop is written, we need 8 bytes of buffer
    // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10
    // bytes if pattern_size is 2.  Precisely encoding that is probably not
    // worthwhile; instead, invoke the slow path if we cannot write 11 bytes
    // (because 11 are required in the worst case).
    if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) {
      while (pattern_size < 8) {
        UnalignedCopy64(src, op);
        op += pattern_size;
        pattern_size *= 2;
      }
      if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
    } else {
      return IncrementalCopySlow(src, op, op_limit);
    }
#endif  // SNAPPY_HAVE_SSSE3
  }
  assert(pattern_size >= 8);

  // Copy 2x 8 bytes at a time. Because op - src can be < 16, a single
  // UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe
  // because expanding the pattern to at least 8 bytes guarantees that
  // op - src >= 8.
  //
  // Typically, the op_limit is the gating factor so try to simplify the loop
  // based on that.
  if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 16)) {
    // There is at least one, and at most four 16-byte blocks. Writing four
    // conditionals instead of a loop allows FDO to layout the code with respect
    // to the actual probabilities of each length.
    // TODO: Replace with loop with trip count hint.
    UnalignedCopy64(src, op); 
    UnalignedCopy64(src + 8, op + 8);

    if (op + 16 < op_limit) {
      UnalignedCopy64(src + 16, op + 16);
      UnalignedCopy64(src + 24, op + 24);
    }
    if (op + 32 < op_limit) {
      UnalignedCopy64(src + 32, op + 32);
      UnalignedCopy64(src + 40, op + 40);
    }
    if (op + 48 < op_limit) {
      UnalignedCopy64(src + 48, op + 48);
      UnalignedCopy64(src + 56, op + 56);
    }
    return op_limit;
  } 

  // Fall back to doing as much as we can with the available slop in the
  // buffer. This code path is relatively cold however so we save code size by
  // avoiding unrolling and vectorizing.
  //
  // TODO: Remove pragma when when cold regions don't get vectorized
  // or unrolled.
#ifdef __clang__
#pragma clang loop unroll(disable)
#endif
  for (char *op_end = buf_limit - 16; op < op_end; op += 16, src += 16) {
    UnalignedCopy64(src, op); 
    UnalignedCopy64(src + 8, op + 8);
  }
  if (op >= op_limit)
    return op_limit;

  // We only take this branch if we didn't have enough slop and we can do a
  // single 8 byte copy.
  if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
    UnalignedCopy64(src, op);
    src += 8; 
    op += 8; 
  } 
  return IncrementalCopySlow(src, op, op_limit);
} 
 
}  // namespace

template <bool allow_fast_path>
static inline char* EmitLiteral(char* op, 
                                const char* literal, 
                                int len) {
  // The vast majority of copies are below 16 bytes, for which a
  // call to memcpy is overkill. This fast path can sometimes
  // copy up to 15 bytes too much, but that is okay in the
  // main loop, since we have a bit to go on for both sides:
  //
  //   - The input will always have kInputMarginBytes = 15 extra
  //     available bytes, as long as we're in the main loop, and
  //     if not, allow_fast_path = false.
  //   - The output will always have 32 spare bytes (see
  //     MaxCompressedLength).
  assert(len > 0);      // Zero-length literals are disallowed
  int n = len - 1;
  if (allow_fast_path && len <= 16) {
    // Fits in tag byte
    *op++ = LITERAL | (n << 2);

    UnalignedCopy128(literal, op);
    return op + len;
  }

  if (n < 60) { 
    // Fits in tag byte 
    *op++ = LITERAL | (n << 2); 
  } else { 
    int count = (Bits::Log2Floor(n) >> 3) + 1;
    assert(count >= 1); 
    assert(count <= 4); 
    *op++ = LITERAL | ((59 + count) << 2);
    // Encode in upcoming bytes.
    // Write 4 bytes, though we may care about only 1 of them. The output buffer
    // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds
    // here and there is a memcpy of size 'len' below.
    LittleEndian::Store32(op, n);
    op += count;
  } 
  memcpy(op, literal, len); 
  return op + len; 
} 
 
template <bool len_less_than_12>
static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) {
  assert(len <= 64);
  assert(len >= 4);
  assert(offset < 65536);
  assert(len_less_than_12 == (len < 12));
 
  if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) {
    // offset fits in 11 bits.  The 3 highest go in the top of the first byte,
    // and the rest go in the second byte.
    *op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0);
    *op++ = offset & 0xff; 
  } else { 
    // Write 4 bytes, though we only care about 3 of them.  The output buffer
    // is required to have some slack, so the extra byte won't overrun it.
    uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
    LittleEndian::Store32(op, u);
    op += 3;
  } 
  return op; 
} 
 
template <bool len_less_than_12>
static inline char* EmitCopy(char* op, size_t offset, size_t len) {
  assert(len_less_than_12 == (len < 12));
  if (len_less_than_12) {
    return EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
  } else {
    // A special case for len <= 64 might help, but so far measurements suggest
    // it's in the noise.
 
    // Emit 64 byte copies but make sure to keep at least four bytes reserved.
    while (SNAPPY_PREDICT_FALSE(len >= 68)) {
      op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 64);
      len -= 64;
    }

    // One or two copies will now finish the job.
    if (len > 64) {
      op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, 60);
      len -= 60;
    }

    // Emit remainder.
    if (len < 12) {
      op = EmitCopyAtMost64</*len_less_than_12=*/true>(op, offset, len);
    } else {
      op = EmitCopyAtMost64</*len_less_than_12=*/false>(op, offset, len);
    }
    return op;
  } 
} 
 
bool GetUncompressedLength(const char* start, size_t n, size_t* result) { 
  uint32 v = 0; 
  const char* limit = start + n; 
  if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { 
    *result = v; 
    return true; 
  } else { 
    return false; 
  } 
} 
 
namespace {
uint32 CalculateTableSize(uint32 input_size) {
  static_assert(
      kMaxHashTableSize >= kMinHashTableSize,
      "kMaxHashTableSize should be greater or equal to kMinHashTableSize.");
  if (input_size > kMaxHashTableSize) {
    return kMaxHashTableSize;
  } 
  if (input_size < kMinHashTableSize) {
    return kMinHashTableSize;
  } 
  // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1.
  // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)).
  return 2u << Bits::Log2Floor(input_size - 1);
}
}  // namespace
 
namespace internal {
WorkingMemory::WorkingMemory(size_t input_size) {
  const size_t max_fragment_size = std::min(input_size, kBlockSize);
  const size_t table_size = CalculateTableSize(max_fragment_size);
  size_ = table_size * sizeof(*table_) + max_fragment_size +
          MaxCompressedLength(max_fragment_size);
  mem_ = std::allocator<char>().allocate(size_);
  table_ = reinterpret_cast<uint16*>(mem_);
  input_ = mem_ + table_size * sizeof(*table_);
  output_ = input_ + max_fragment_size;
}

WorkingMemory::~WorkingMemory() {
  std::allocator<char>().deallocate(mem_, size_);
}

uint16* WorkingMemory::GetHashTable(size_t fragment_size,
                                    int* table_size) const {
  const size_t htsize = CalculateTableSize(fragment_size);
  memset(table_, 0, htsize * sizeof(*table_));
  *table_size = htsize; 
  return table_;
} 
}  // end namespace internal 
 
// For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will 
// equal UNALIGNED_LOAD32(p + offset).  Motivation: On x86-64 hardware we have 
// empirically found that overlapping loads such as 
//  UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2) 
// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32. 
// 
// We have different versions for 64- and 32-bit; ideally we would avoid the 
// two functions and just inline the UNALIGNED_LOAD64 call into 
// GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever 
// enough to avoid loading the value multiple times then. For 64-bit, the load 
// is done when GetEightBytesAt() is called, whereas for 32-bit, the load is 
// done at GetUint32AtOffset() time. 
 
#ifdef ARCH_K8 
 
typedef uint64 EightBytesReference; 
 
static inline EightBytesReference GetEightBytesAt(const char* ptr) { 
  return UNALIGNED_LOAD64(ptr); 
} 
 
static inline uint32 GetUint32AtOffset(uint64 v, int offset) { 
  assert(offset >= 0);
  assert(offset <= 4);
  return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset); 
} 
 
#else 
 
typedef const char* EightBytesReference; 
 
static inline EightBytesReference GetEightBytesAt(const char* ptr) { 
  return ptr; 
} 
 
static inline uint32 GetUint32AtOffset(const char* v, int offset) { 
  assert(offset >= 0);
  assert(offset <= 4);
  return UNALIGNED_LOAD32(v + offset); 
} 
 
#endif 
 
// Flat array compression that does not emit the "uncompressed length" 
// prefix. Compresses "input" string to the "*op" buffer. 
// 
// REQUIRES: "input" is at most "kBlockSize" bytes long. 
// REQUIRES: "op" points to an array of memory that is at least 
// "MaxCompressedLength(input.size())" in size. 
// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. 
// REQUIRES: "table_size" is a power of two 
// 
// Returns an "end" pointer into "op" buffer. 
// "end - op" is the compressed size of "input". 
namespace internal { 
char* CompressFragment(const char* input, 
                       size_t input_size, 
                       char* op, 
                       uint16* table, 
                       const int table_size) { 
  // "ip" is the input pointer, and "op" is the output pointer. 
  const char* ip = input; 
  assert(input_size <= kBlockSize);
  assert((table_size & (table_size - 1)) == 0);  // table must be power of two
  const int shift = 32 - Bits::Log2Floor(table_size); 
  assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
  const char* ip_end = input + input_size; 
  const char* base_ip = ip; 
  // Bytes in [next_emit, ip) will be emitted as literal bytes.  Or 
  // [next_emit, ip_end) after the main loop. 
  const char* next_emit = ip; 
 
  const size_t kInputMarginBytes = 15; 
  if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
    const char* ip_limit = input + input_size - kInputMarginBytes; 
 
    for (uint32 next_hash = Hash(++ip, shift); ; ) { 
      assert(next_emit < ip);
      // The body of this loop calls EmitLiteral once and then EmitCopy one or 
      // more times.  (The exception is that when we're close to exhausting 
      // the input we goto emit_remainder.) 
      // 
      // In the first iteration of this loop we're just starting, so 
      // there's nothing to copy, so calling EmitLiteral once is 
      // necessary.  And we only start a new iteration when the 
      // current iteration has determined that a call to EmitLiteral will 
      // precede the next call to EmitCopy (if any). 
      // 
      // Step 1: Scan forward in the input looking for a 4-byte-long match. 
      // If we get close to exhausting the input then goto emit_remainder. 
      // 
      // Heuristic match skipping: If 32 bytes are scanned with no matches 
      // found, start looking only at every other byte. If 32 more bytes are 
      // scanned (or skipped), look at every third byte, etc.. When a match is
      // found, immediately go back to looking at every byte. This is a small
      // loss (~5% performance, ~0.1% density) for compressible data due to more
      // bookkeeping, but for non-compressible data (such as JPEG) it's a huge 
      // win since the compressor quickly "realizes" the data is incompressible 
      // and doesn't bother looking for matches everywhere. 
      // 
      // The "skip" variable keeps track of how many bytes there are since the 
      // last match; dividing it by 32 (ie. right-shifting by five) gives the 
      // number of bytes to move ahead for each iteration. 
      uint32 skip = 32; 
 
      const char* next_ip = ip; 
      const char* candidate; 
      do { 
        ip = next_ip; 
        uint32 hash = next_hash; 
        assert(hash == Hash(ip, shift));
        uint32 bytes_between_hash_lookups = skip >> 5;
        skip += bytes_between_hash_lookups;
        next_ip = ip + bytes_between_hash_lookups; 
        if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
          goto emit_remainder; 
        } 
        next_hash = Hash(next_ip, shift); 
        candidate = base_ip + table[hash]; 
        assert(candidate >= base_ip);
        assert(candidate < ip);
 
        table[hash] = ip - base_ip; 
      } while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
                                 UNALIGNED_LOAD32(candidate)));
 
      // Step 2: A 4-byte match has been found.  We'll later see if more 
      // than 4 bytes match.  But, prior to the match, input 
      // bytes [next_emit, ip) are unmatched.  Emit them as "literal bytes." 
      assert(next_emit + 16 <= ip_end);
      op = EmitLiteral</*allow_fast_path=*/true>(op, next_emit, ip - next_emit);
 
      // Step 3: Call EmitCopy, and then see if another EmitCopy could 
      // be our next move.  Repeat until we find no match for the 
      // input immediately after what was consumed by the last EmitCopy call. 
      // 
      // If we exit this loop normally then we need to call EmitLiteral next, 
      // though we don't yet know how big the literal will be.  We handle that 
      // by proceeding to the next iteration of the main loop.  We also can exit 
      // this loop via goto if we get close to exhausting the input. 
      EightBytesReference input_bytes; 
      uint32 candidate_bytes = 0; 
 
      do { 
        // We have a 4-byte match at ip, and no need to emit any 
        // "literal bytes" prior to ip. 
        const char* base = ip; 
        std::pair<size_t, bool> p =
            FindMatchLength(candidate + 4, ip + 4, ip_end);
        size_t matched = 4 + p.first;
        ip += matched; 
        size_t offset = base - candidate; 
        assert(0 == memcmp(base, candidate, matched));
        if (p.second) {
          op = EmitCopy</*len_less_than_12=*/true>(op, offset, matched);
        } else {
          op = EmitCopy</*len_less_than_12=*/false>(op, offset, matched);
        }
        next_emit = ip; 
        if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
          goto emit_remainder; 
        } 
        // We are now looking for a 4-byte match again.  We read
        // table[Hash(ip, shift)] for that.  To improve compression,
        // we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)].
        input_bytes = GetEightBytesAt(ip - 1);
        uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift); 
        table[prev_hash] = ip - base_ip - 1; 
        uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift); 
        candidate = base_ip + table[cur_hash]; 
        candidate_bytes = UNALIGNED_LOAD32(candidate); 
        table[cur_hash] = ip - base_ip; 
      } while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes); 
 
      next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift); 
      ++ip; 
    } 
  } 
 
 emit_remainder: 
  // Emit the remaining bytes as a literal 
  if (next_emit < ip_end) { 
    op = EmitLiteral</*allow_fast_path=*/false>(op, next_emit,
                                                ip_end - next_emit);
  } 
 
  return op; 
} 
}  // end namespace internal 
 
// Called back at avery compression call to trace parameters and sizes.
static inline void Report(const char *algorithm, size_t compressed_size,
                          size_t uncompressed_size) {}

// Signature of output types needed by decompression code. 
// The decompression code is templatized on a type that obeys this 
// signature so that we do not pay virtual function call overhead in 
// the middle of a tight decompression loop. 
// 
// class DecompressionWriter { 
//  public: 
//   // Called before decompression 
//   void SetExpectedLength(size_t length); 
// 
//   // Called after decompression 
//   bool CheckLength() const; 
// 
//   // Called repeatedly during decompression 
//   bool Append(const char* ip, size_t length); 
//   bool AppendFromSelf(uint32 offset, size_t length); 
// 
//   // The rules for how TryFastAppend differs from Append are somewhat
//   // convoluted:
//   // 
//   //  - TryFastAppend is allowed to decline (return false) at any
//   //    time, for any reason -- just "return false" would be
//   //    a perfectly legal implementation of TryFastAppend.
//   //    The intention is for TryFastAppend to allow a fast path
//   //    in the common case of a small append.
//   //  - TryFastAppend is allowed to read up to <available> bytes
//   //    from the input buffer, whereas Append is allowed to read
//   //    <length>. However, if it returns true, it must leave
//   //    at least five (kMaximumTagLength) bytes in the input buffer
//   //    afterwards, so that there is always enough space to read the
//   //    next tag without checking for a refill.
//   //  - TryFastAppend must always return decline (return false)
//   //    if <length> is 61 or more, as in this case the literal length is not
//   //    decoded fully. In practice, this should not be a big problem,
//   //    as it is unlikely that one would implement a fast path accepting
//   //    this much data.
//   // 
//   bool TryFastAppend(const char* ip, size_t available, size_t length); 
// }; 
 
static inline uint32 ExtractLowBytes(uint32 v, int n) {
  assert(n >= 0);
  assert(n <= 4);
#if SNAPPY_HAVE_BMI2
  return _bzhi_u32(v, 8 * n);
#else
  // This needs to be wider than uint32 otherwise `mask << 32` will be
  // undefined.
  uint64 mask = 0xffffffff;
  return v & ~(mask << (8 * n));
#endif
} 
 
static inline bool LeftShiftOverflows(uint8 value, uint32 shift) {
  assert(shift < 32);
  static const uint8 masks[] = {
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  //
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  //
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,  //
      0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe};
  return (value & masks[shift]) != 0;
} 
 
// Helper class for decompression 
class SnappyDecompressor { 
 private: 
  Source*       reader_;         // Underlying source of bytes to decompress 
  const char*   ip_;             // Points to next buffered byte 
  const char*   ip_limit_;       // Points just past buffered bytes 
  uint32        peeked_;         // Bytes peeked from reader (need to skip) 
  bool          eof_;            // Hit end of input without an error? 
  char          scratch_[kMaximumTagLength];  // See RefillTag().
 
  // Ensure that all of the tag metadata for the next tag is available 
  // in [ip_..ip_limit_-1].  Also ensures that [ip,ip+4] is readable even 
  // if (ip_limit_ - ip_ < 5). 
  // 
  // Returns true on success, false on error or end of input. 
  bool RefillTag(); 
 
 public: 
  explicit SnappyDecompressor(Source* reader) 
      : reader_(reader), 
        ip_(NULL), 
        ip_limit_(NULL), 
        peeked_(0), 
        eof_(false) { 
  } 
 
  ~SnappyDecompressor() { 
    // Advance past any bytes we peeked at from the reader 
    reader_->Skip(peeked_); 
  } 
 
  // Returns true iff we have hit the end of the input without an error. 
  bool eof() const { 
    return eof_; 
  } 
 
  // Read the uncompressed length stored at the start of the compressed data. 
  // On success, stores the length in *result and returns true.
  // On failure, returns false. 
  bool ReadUncompressedLength(uint32* result) { 
    assert(ip_ == NULL);       // Must not have read anything yet
    // Length is encoded in 1..5 bytes 
    *result = 0; 
    uint32 shift = 0; 
    while (true) { 
      if (shift >= 32) return false; 
      size_t n; 
      const char* ip = reader_->Peek(&n); 
      if (n == 0) return false; 
      const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); 
      reader_->Skip(1); 
      uint32 val = c & 0x7f;
      if (LeftShiftOverflows(static_cast<uint8>(val), shift)) return false;
      *result |= val << shift;
      if (c < 128) { 
        break; 
      } 
      shift += 7; 
    } 
    return true; 
  } 
 
  // Process the next item found in the input. 
  // Returns true if successful, false on error or end of input. 
  template <class Writer> 
#if defined(__GNUC__) && defined(__x86_64__)
  __attribute__((aligned(32)))
#endif
  void DecompressAllTags(Writer* writer) { 
    // In x86, pad the function body to start 16 bytes later. This function has
    // a couple of hotspots that are highly sensitive to alignment: we have
    // observed regressions by more than 20% in some metrics just by moving the
    // exact same code to a different position in the benchmark binary.
    //
    // Putting this code on a 32-byte-aligned boundary + 16 bytes makes us hit
    // the "lucky" case consistently. Unfortunately, this is a very brittle
    // workaround, and future differences in code generation may reintroduce
    // this regression. If you experience a big, difficult to explain, benchmark
    // performance regression here, first try removing this hack.
#if defined(__GNUC__) && defined(__x86_64__)
    // Two 8-byte "NOP DWORD ptr [EAX + EAX*1 + 00000000H]" instructions.
    asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
    asm(".byte 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00");
#endif

    const char* ip = ip_; 
    // We could have put this refill fragment only at the beginning of the loop. 
    // However, duplicating it at the end of each branch gives the compiler more 
    // scope to optimize the <ip_limit_ - ip> expression based on the local 
    // context, which overall increases speed. 
    #define MAYBE_REFILL() \ 
        if (ip_limit_ - ip < kMaximumTagLength) { \
          ip_ = ip; \ 
          if (!RefillTag()) return; \ 
          ip = ip_; \ 
        } 
 
    MAYBE_REFILL(); 
    for ( ;; ) { 
      const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++)); 
 
      // Ratio of iterations that have LITERAL vs non-LITERAL for different
      // inputs.
      //
      // input          LITERAL  NON_LITERAL
      // -----------------------------------
      // html|html4|cp   23%        77%
      // urls            36%        64%
      // jpg             47%        53%
      // pdf             19%        81%
      // txt[1-4]        25%        75%
      // pb              24%        76%
      // bin             24%        76%
      if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) {
        size_t literal_length = (c >> 2) + 1u; 
        if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) { 
          assert(literal_length < 61);
          ip += literal_length; 
          // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend()
          // will not return true unless there's already at least five spare
          // bytes in addition to the literal.
          continue; 
        } 
        if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) {
          // Long literal. 
          const size_t literal_length_length = literal_length - 60; 
          literal_length = 
              ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) +
              1;
          ip += literal_length_length; 
        } 
 
        size_t avail = ip_limit_ - ip; 
        while (avail < literal_length) { 
          if (!writer->Append(ip, avail)) return; 
          literal_length -= avail; 
          reader_->Skip(peeked_); 
          size_t n; 
          ip = reader_->Peek(&n); 
          avail = n; 
          peeked_ = avail; 
          if (avail == 0) return;  // Premature end of input 
          ip_limit_ = ip + avail; 
        } 
        if (!writer->Append(ip, literal_length)) { 
          return; 
        } 
        ip += literal_length; 
        MAYBE_REFILL(); 
      } else { 
        const size_t entry = char_table[c];
        const size_t trailer =
            ExtractLowBytes(LittleEndian::Load32(ip), entry >> 11);
        const size_t length = entry & 0xff;
        ip += entry >> 11; 
 
        // copy_offset/256 is encoded in bits 8..10.  By just fetching 
        // those bits, we get copy_offset (since the bit-field starts at 
        // bit 8). 
        const size_t copy_offset = entry & 0x700;
        if (!writer->AppendFromSelf(copy_offset + trailer, length)) { 
          return; 
        } 
        MAYBE_REFILL(); 
      } 
    } 
 
#undef MAYBE_REFILL 
  } 
}; 
 
bool SnappyDecompressor::RefillTag() { 
  const char* ip = ip_; 
  if (ip == ip_limit_) { 
    // Fetch a new fragment from the reader 
    reader_->Skip(peeked_);   // All peeked bytes are used up 
    size_t n; 
    ip = reader_->Peek(&n); 
    peeked_ = n; 
    eof_ = (n == 0);
    if (eof_) return false;
    ip_limit_ = ip + n; 
  } 
 
  // Read the tag character 
  assert(ip < ip_limit_);
  const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip)); 
  const uint32 entry = char_table[c]; 
  const uint32 needed = (entry >> 11) + 1;  // +1 byte for 'c' 
  assert(needed <= sizeof(scratch_));
 
  // Read more bytes from reader if needed 
  uint32 nbuf = ip_limit_ - ip; 
  if (nbuf < needed) { 
    // Stitch together bytes from ip and reader to form the word 
    // contents.  We store the needed bytes in "scratch_".  They 
    // will be consumed immediately by the caller since we do not 
    // read more than we need. 
    memmove(scratch_, ip, nbuf); 
    reader_->Skip(peeked_);  // All peeked bytes are used up 
    peeked_ = 0; 
    while (nbuf < needed) { 
      size_t length; 
      const char* src = reader_->Peek(&length); 
      if (length == 0) return false; 
      uint32 to_add = std::min<uint32>(needed - nbuf, length);
      memcpy(scratch_ + nbuf, src, to_add); 
      nbuf += to_add; 
      reader_->Skip(to_add); 
    } 
    assert(nbuf == needed);
    ip_ = scratch_; 
    ip_limit_ = scratch_ + needed; 
  } else if (nbuf < kMaximumTagLength) {
    // Have enough bytes, but move into scratch_ so that we do not 
    // read past end of input 
    memmove(scratch_, ip, nbuf); 
    reader_->Skip(peeked_);  // All peeked bytes are used up 
    peeked_ = 0; 
    ip_ = scratch_; 
    ip_limit_ = scratch_ + nbuf; 
  } else { 
    // Pass pointer to buffer returned by reader_. 
    ip_ = ip; 
  } 
  return true; 
} 
 
template <typename Writer> 
static bool InternalUncompress(Source* r, Writer* writer) {
  // Read the uncompressed length from the front of the compressed input 
  SnappyDecompressor decompressor(r); 
  uint32 uncompressed_len = 0; 
  if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; 

  return InternalUncompressAllTags(&decompressor, writer, r->Available(),
                                   uncompressed_len);
} 
 
template <typename Writer> 
static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, 
                                      Writer* writer, 
                                      uint32 compressed_len,
                                      uint32 uncompressed_len) {
  Report("snappy_uncompress", compressed_len, uncompressed_len);
 
  writer->SetExpectedLength(uncompressed_len); 
 
  // Process the entire input 
  decompressor->DecompressAllTags(writer); 
  writer->Flush();
  return (decompressor->eof() && writer->CheckLength()); 
} 
 
bool GetUncompressedLength(Source* source, uint32* result) { 
  SnappyDecompressor decompressor(source); 
  return decompressor.ReadUncompressedLength(result); 
} 
 
size_t Compress(Source* reader, Sink* writer) { 
  size_t written = 0; 
  size_t N = reader->Available(); 
  const size_t uncompressed_size = N;
  char ulength[Varint::kMax32]; 
  char* p = Varint::Encode32(ulength, N); 
  writer->Append(ulength, p-ulength); 
  written += (p - ulength); 
 
  internal::WorkingMemory wmem(N);
 
  while (N > 0) { 
    // Get next block to compress (without copying if possible) 
    size_t fragment_size; 
    const char* fragment = reader->Peek(&fragment_size); 
    assert(fragment_size != 0);  // premature end of input
    const size_t num_to_read = std::min(N, kBlockSize);
    size_t bytes_read = fragment_size; 
 
    size_t pending_advance = 0; 
    if (bytes_read >= num_to_read) { 
      // Buffer returned by reader is large enough 
      pending_advance = num_to_read; 
      fragment_size = num_to_read; 
    } else { 
      char* scratch = wmem.GetScratchInput();
      memcpy(scratch, fragment, bytes_read); 
      reader->Skip(bytes_read); 
 
      while (bytes_read < num_to_read) { 
        fragment = reader->Peek(&fragment_size); 
        size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read);
        memcpy(scratch + bytes_read, fragment, n); 
        bytes_read += n; 
        reader->Skip(n); 
      } 
      assert(bytes_read == num_to_read);
      fragment = scratch; 
      fragment_size = num_to_read; 
    } 
    assert(fragment_size == num_to_read);
 
    // Get encoding table for compression 
    int table_size; 
    uint16* table = wmem.GetHashTable(num_to_read, &table_size); 
 
    // Compress input_fragment and append to dest 
    const int max_output = MaxCompressedLength(num_to_read); 
 
    // Need a scratch buffer for the output, in case the byte sink doesn't 
    // have room for us directly. 

    // Since we encode kBlockSize regions followed by a region
    // which is <= kBlockSize in length, a previously allocated
    // scratch_output[] region is big enough for this iteration.
    char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput());
    char* end = internal::CompressFragment(fragment, fragment_size, dest, table,
                                           table_size);
    writer->Append(dest, end - dest); 
    written += (end - dest); 
 
    N -= num_to_read; 
    reader->Skip(pending_advance); 
  } 
 
  Report("snappy_compress", written, uncompressed_size);
 
  return written; 
} 
 
// ----------------------------------------------------------------------- 
// IOVec interfaces
// -----------------------------------------------------------------------

// A type that writes to an iovec.
// Note that this is not a "ByteSink", but a type that matches the
// Writer template argument to SnappyDecompressor::DecompressAllTags().
class SnappyIOVecWriter {
 private:
  // output_iov_end_ is set to iov + count and used to determine when
  // the end of the iovs is reached.
  const struct iovec* output_iov_end_;

#if !defined(NDEBUG)
  const struct iovec* output_iov_;
#endif  // !defined(NDEBUG)

  // Current iov that is being written into.
  const struct iovec* curr_iov_;

  // Pointer to current iov's write location.
  char* curr_iov_output_;

  // Remaining bytes to write into curr_iov_output.
  size_t curr_iov_remaining_;

  // Total bytes decompressed into output_iov_ so far.
  size_t total_written_;

  // Maximum number of bytes that will be decompressed into output_iov_.
  size_t output_limit_;

  static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) {
    return reinterpret_cast<char*>(iov->iov_base) + offset;
  }

 public:
  // Does not take ownership of iov. iov must be valid during the
  // entire lifetime of the SnappyIOVecWriter.
  inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
      : output_iov_end_(iov + iov_count),
#if !defined(NDEBUG)
        output_iov_(iov),
#endif  // !defined(NDEBUG)
        curr_iov_(iov),
        curr_iov_output_(iov_count ? reinterpret_cast<char*>(iov->iov_base)
                                   : nullptr),
        curr_iov_remaining_(iov_count ? iov->iov_len : 0),
        total_written_(0),
        output_limit_(-1) {}

  inline void SetExpectedLength(size_t len) {
    output_limit_ = len;
  }

  inline bool CheckLength() const {
    return total_written_ == output_limit_;
  }

  inline bool Append(const char* ip, size_t len) {
    if (total_written_ + len > output_limit_) {
      return false;
    }

    return AppendNoCheck(ip, len);
  }

  inline bool AppendNoCheck(const char* ip, size_t len) {
    while (len > 0) {
      if (curr_iov_remaining_ == 0) {
        // This iovec is full. Go to the next one.
        if (curr_iov_ + 1 >= output_iov_end_) {
          return false;
        }
        ++curr_iov_;
        curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
        curr_iov_remaining_ = curr_iov_->iov_len;
      }

      const size_t to_write = std::min(len, curr_iov_remaining_);
      memcpy(curr_iov_output_, ip, to_write);
      curr_iov_output_ += to_write;
      curr_iov_remaining_ -= to_write;
      total_written_ += to_write;
      ip += to_write;
      len -= to_write;
    }

    return true;
  }

  inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
    const size_t space_left = output_limit_ - total_written_;
    if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
        curr_iov_remaining_ >= 16) {
      // Fast path, used for the majority (about 95%) of invocations.
      UnalignedCopy128(ip, curr_iov_output_);
      curr_iov_output_ += len;
      curr_iov_remaining_ -= len;
      total_written_ += len;
      return true;
    }

    return false;
  }

  inline bool AppendFromSelf(size_t offset, size_t len) {
    // See SnappyArrayWriter::AppendFromSelf for an explanation of
    // the "offset - 1u" trick.
    if (offset - 1u >= total_written_) {
      return false;
    }
    const size_t space_left = output_limit_ - total_written_;
    if (len > space_left) {
      return false;
    }

    // Locate the iovec from which we need to start the copy.
    const iovec* from_iov = curr_iov_;
    size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_;
    while (offset > 0) {
      if (from_iov_offset >= offset) {
        from_iov_offset -= offset;
        break;
      }

      offset -= from_iov_offset;
      --from_iov;
#if !defined(NDEBUG)
      assert(from_iov >= output_iov_);
#endif  // !defined(NDEBUG)
      from_iov_offset = from_iov->iov_len;
    }

    // Copy <len> bytes starting from the iovec pointed to by from_iov_index to
    // the current iovec.
    while (len > 0) {
      assert(from_iov <= curr_iov_);
      if (from_iov != curr_iov_) {
        const size_t to_copy =
            std::min(from_iov->iov_len - from_iov_offset, len);
        AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy);
        len -= to_copy;
        if (len > 0) {
          ++from_iov;
          from_iov_offset = 0;
        }
      } else {
        size_t to_copy = curr_iov_remaining_;
        if (to_copy == 0) {
          // This iovec is full. Go to the next one.
          if (curr_iov_ + 1 >= output_iov_end_) {
            return false;
          }
          ++curr_iov_;
          curr_iov_output_ = reinterpret_cast<char*>(curr_iov_->iov_base);
          curr_iov_remaining_ = curr_iov_->iov_len;
          continue;
        }
        if (to_copy > len) {
          to_copy = len;
        }

        IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset),
                        curr_iov_output_, curr_iov_output_ + to_copy,
                        curr_iov_output_ + curr_iov_remaining_);
        curr_iov_output_ += to_copy;
        curr_iov_remaining_ -= to_copy;
        from_iov_offset += to_copy;
        total_written_ += to_copy;
        len -= to_copy;
      }
    }

    return true;
  }

  inline void Flush() {}
};

bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
                          const struct iovec* iov, size_t iov_cnt) {
  ByteArraySource reader(compressed, compressed_length);
  return RawUncompressToIOVec(&reader, iov, iov_cnt);
}

bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
                          size_t iov_cnt) {
  SnappyIOVecWriter output(iov, iov_cnt);
  return InternalUncompress(compressed, &output);
}

// -----------------------------------------------------------------------
// Flat array interfaces 
// ----------------------------------------------------------------------- 
 
// A type that writes to a flat array. 
// Note that this is not a "ByteSink", but a type that matches the 
// Writer template argument to SnappyDecompressor::DecompressAllTags(). 
class SnappyArrayWriter { 
 private: 
  char* base_; 
  char* op_; 
  char* op_limit_; 
 
 public: 
  inline explicit SnappyArrayWriter(char* dst) 
      : base_(dst), 
        op_(dst),
        op_limit_(dst) {
  } 
 
  inline void SetExpectedLength(size_t len) { 
    op_limit_ = op_ + len; 
  } 
 
  inline bool CheckLength() const { 
    return op_ == op_limit_; 
  } 
 
  inline bool Append(const char* ip, size_t len) { 
    char* op = op_; 
    const size_t space_left = op_limit_ - op; 
    if (space_left < len) { 
      return false; 
    } 
    memcpy(op, ip, len); 
    op_ = op + len; 
    return true; 
  } 
 
  inline bool TryFastAppend(const char* ip, size_t available, size_t len) { 
    char* op = op_; 
    const size_t space_left = op_limit_ - op; 
    if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
      // Fast path, used for the majority (about 95%) of invocations. 
      UnalignedCopy128(ip, op);
      op_ = op + len; 
      return true; 
    } else { 
      return false; 
    } 
  } 
 
  inline bool AppendFromSelf(size_t offset, size_t len) { 
    char* const op_end = op_ + len;
 
    // Check if we try to append from before the start of the buffer.
    // Normally this would just be a check for "produced < offset",
    // but "produced <= offset - 1u" is equivalent for every case
    // except the one where offset==0, where the right side will wrap around
    // to a very big number. This is convenient, as offset==0 is another
    // invalid case that we also want to catch, so that we do not go
    // into an infinite loop.
    if (Produced() <= offset - 1u || op_end > op_limit_) return false;
    op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_);
 
    return true; 
  } 
  inline size_t Produced() const {
    assert(op_ >= base_);
    return op_ - base_;
  }
  inline void Flush() {}
}; 
 
bool RawUncompress(const char* compressed, size_t n, char* uncompressed) { 
  ByteArraySource reader(compressed, n); 
  return RawUncompress(&reader, uncompressed); 
} 
 
bool RawUncompress(Source* compressed, char* uncompressed) { 
  SnappyArrayWriter output(uncompressed); 
  return InternalUncompress(compressed, &output);
} 
 
bool Uncompress(const char* compressed, size_t n, std::string* uncompressed) {
  size_t ulength; 
  if (!GetUncompressedLength(compressed, n, &ulength)) { 
    return false; 
  } 
  // On 32-bit builds: max_size() < kuint32max.  Check for that instead
  // of crashing (e.g., consider externally specified compressed data).
  if (ulength > uncompressed->max_size()) {
    return false; 
  } 
  STLStringResizeUninitialized(uncompressed, ulength); 
  return RawUncompress(compressed, n, string_as_array(uncompressed)); 
} 
 
bool Uncompress(const char* compressed, size_t n, TString* uncompressed) {
  size_t ulength;
  if (!GetUncompressedLength(compressed, n, &ulength)) {
    return false;
  }
  // On 32-bit builds: max_size() < kuint32max.  Check for that instead
  // of crashing (e.g., consider externally specified compressed data).
  if (ulength > uncompressed->max_size()) {
    return false;
  }
  uncompressed->ReserveAndResize(ulength);
  return RawUncompress(compressed, n, uncompressed->begin());
}

// A Writer that drops everything on the floor and just does validation 
class SnappyDecompressionValidator { 
 private: 
  size_t expected_; 
  size_t produced_; 
 
 public: 
  inline SnappyDecompressionValidator() : expected_(0), produced_(0) { }
  inline void SetExpectedLength(size_t len) { 
    expected_ = len; 
  } 
  inline bool CheckLength() const { 
    return expected_ == produced_; 
  } 
  inline bool Append(const char* ip, size_t len) { 
    produced_ += len; 
    return produced_ <= expected_; 
  } 
  inline bool TryFastAppend(const char* ip, size_t available, size_t length) { 
    return false; 
  } 
  inline bool AppendFromSelf(size_t offset, size_t len) { 
    // See SnappyArrayWriter::AppendFromSelf for an explanation of
    // the "offset - 1u" trick.
    if (produced_ <= offset - 1u) return false;
    produced_ += len; 
    return produced_ <= expected_; 
  } 
  inline void Flush() {}
}; 
 
bool IsValidCompressedBuffer(const char* compressed, size_t n) { 
  ByteArraySource reader(compressed, n); 
  SnappyDecompressionValidator writer; 
  return InternalUncompress(&reader, &writer);
} 
 
bool IsValidCompressed(Source* compressed) {
  SnappyDecompressionValidator writer;
  return InternalUncompress(compressed, &writer);
}

void RawCompress(const char* input, 
                 size_t input_length, 
                 char* compressed, 
                 size_t* compressed_length) { 
  ByteArraySource reader(input, input_length); 
  UncheckedByteArraySink writer(compressed); 
  Compress(&reader, &writer); 
 
  // Compute how many bytes were added 
  *compressed_length = (writer.CurrentDestination() - compressed); 
} 
 
size_t Compress(const char* input, size_t input_length,
                std::string* compressed) {
  // Pre-grow the buffer to the max length of the compressed output 
  STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));
 
  size_t compressed_length; 
  RawCompress(input, input_length, string_as_array(compressed), 
              &compressed_length); 
  compressed->resize(compressed_length); 
  return compressed_length; 
} 
 
size_t Compress(const char* input, size_t input_length,
                TString* compressed) {
  // Pre-grow the buffer to the max length of the compressed output
  compressed->ReserveAndResize(MaxCompressedLength(input_length));

  size_t compressed_length;
  RawCompress(input, input_length, compressed->begin(),
              &compressed_length);
  compressed->resize(compressed_length);
  return compressed_length;
}

// -----------------------------------------------------------------------
// Sink interface
// -----------------------------------------------------------------------
 
// A type that decompresses into a Sink. The template parameter
// Allocator must export one method "char* Allocate(int size);", which
// allocates a buffer of "size" and appends that to the destination.
template <typename Allocator>
class SnappyScatteredWriter {
  Allocator allocator_;
 
  // We need random access into the data generated so far.  Therefore
  // we keep track of all of the generated data as an array of blocks.
  // All of the blocks except the last have length kBlockSize.
  std::vector<char*> blocks_;
  size_t expected_;

  // Total size of all fully generated blocks so far
  size_t full_size_;

  // Pointer into current output block
  char* op_base_;       // Base of output block
  char* op_ptr_;        // Pointer to next unfilled byte in block
  char* op_limit_;      // Pointer just past block

  inline size_t Size() const {
    return full_size_ + (op_ptr_ - op_base_);
  }

  bool SlowAppend(const char* ip, size_t len);
  bool SlowAppendFromSelf(size_t offset, size_t len);

 public:
  inline explicit SnappyScatteredWriter(const Allocator& allocator)
      : allocator_(allocator),
        full_size_(0),
        op_base_(NULL),
        op_ptr_(NULL),
        op_limit_(NULL) {
  }

  inline void SetExpectedLength(size_t len) {
    assert(blocks_.empty());
    expected_ = len;
  }

  inline bool CheckLength() const {
    return Size() == expected_;
  }

  // Return the number of bytes actually uncompressed so far
  inline size_t Produced() const {
    return Size();
  }

  inline bool Append(const char* ip, size_t len) {
    size_t avail = op_limit_ - op_ptr_;
    if (len <= avail) {
      // Fast path
      memcpy(op_ptr_, ip, len);
      op_ptr_ += len;
      return true;
    } else {
      return SlowAppend(ip, len);
    }
  }

  inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
    char* op = op_ptr_;
    const int space_left = op_limit_ - op;
    if (length <= 16 && available >= 16 + kMaximumTagLength &&
        space_left >= 16) {
      // Fast path, used for the majority (about 95%) of invocations.
      UnalignedCopy128(ip, op);
      op_ptr_ = op + length;
      return true;
    } else {
      return false;
    }
  }

  inline bool AppendFromSelf(size_t offset, size_t len) {
    char* const op_end = op_ptr_ + len;
    // See SnappyArrayWriter::AppendFromSelf for an explanation of
    // the "offset - 1u" trick.
    if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ &&
                          op_end <= op_limit_)) {
      // Fast path: src and dst in current block.
      op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_);
      return true;
    }
    return SlowAppendFromSelf(offset, len);
  }

  // Called at the end of the decompress. We ask the allocator
  // write all blocks to the sink.
  inline void Flush() { allocator_.Flush(Produced()); }
};

template<typename Allocator>
bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
  size_t avail = op_limit_ - op_ptr_;
  while (len > avail) {
    // Completely fill this block
    memcpy(op_ptr_, ip, avail);
    op_ptr_ += avail;
    assert(op_limit_ - op_ptr_ == 0);
    full_size_ += (op_ptr_ - op_base_);
    len -= avail;
    ip += avail;

    // Bounds check
    if (full_size_ + len > expected_) {
      return false;
    }

    // Make new block
    size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_);
    op_base_ = allocator_.Allocate(bsize);
    op_ptr_ = op_base_;
    op_limit_ = op_base_ + bsize;
    blocks_.push_back(op_base_);
    avail = bsize;
  }

  memcpy(op_ptr_, ip, len);
  op_ptr_ += len;
  return true;
}

template<typename Allocator>
bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
                                                         size_t len) {
  // Overflow check
  // See SnappyArrayWriter::AppendFromSelf for an explanation of
  // the "offset - 1u" trick.
  const size_t cur = Size();
  if (offset - 1u >= cur) return false;
  if (expected_ - cur < len) return false;

  // Currently we shouldn't ever hit this path because Compress() chops the
  // input into blocks and does not create cross-block copies. However, it is
  // nice if we do not rely on that, since we can get better compression if we
  // allow cross-block copies and thus might want to change the compressor in
  // the future.
  size_t src = cur - offset;
  while (len-- > 0) {
    char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)];
    Append(&c, 1);
    src++;
  }
  return true;
}

class SnappySinkAllocator {
 public:
  explicit SnappySinkAllocator(Sink* dest): dest_(dest) {}
  ~SnappySinkAllocator() {}

  char* Allocate(int size) {
    Datablock block(new char[size], size);
    blocks_.push_back(block);
    return block.data;
  }

  // We flush only at the end, because the writer wants
  // random access to the blocks and once we hand the
  // block over to the sink, we can't access it anymore.
  // Also we don't write more than has been actually written
  // to the blocks.
  void Flush(size_t size) {
    size_t size_written = 0;
    size_t block_size;
    for (int i = 0; i < blocks_.size(); ++i) {
      block_size = std::min<size_t>(blocks_[i].size, size - size_written);
      dest_->AppendAndTakeOwnership(blocks_[i].data, block_size,
                                    &SnappySinkAllocator::Deleter, NULL);
      size_written += block_size;
    }
    blocks_.clear();
  }

 private:
  struct Datablock {
    char* data;
    size_t size;
    Datablock(char* p, size_t s) : data(p), size(s) {}
  };

  static void Deleter(void* arg, const char* bytes, size_t size) {
    delete[] bytes;
  }

  Sink* dest_;
  std::vector<Datablock> blocks_;

  // Note: copying this object is allowed
};

size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
  SnappySinkAllocator allocator(uncompressed);
  SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
  InternalUncompress(compressed, &writer);
  return writer.Produced();
}

bool Uncompress(Source* compressed, Sink* uncompressed) {
  // Read the uncompressed length from the front of the compressed input
  SnappyDecompressor decompressor(compressed);
  uint32 uncompressed_len = 0;
  if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
    return false;
  }

  char c;
  size_t allocated_size;
  char* buf = uncompressed->GetAppendBufferVariable(
      1, uncompressed_len, &c, 1, &allocated_size);

  const size_t compressed_len = compressed->Available();
  // If we can get a flat buffer, then use it, otherwise do block by block
  // uncompression
  if (allocated_size >= uncompressed_len) {
    SnappyArrayWriter writer(buf);
    bool result = InternalUncompressAllTags(&decompressor, &writer,
                                            compressed_len, uncompressed_len);
    uncompressed->Append(buf, writer.Produced());
    return result;
  } else {
    SnappySinkAllocator allocator(uncompressed);
    SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
    return InternalUncompressAllTags(&decompressor, &writer, compressed_len,
                                     uncompressed_len);
  }
}

}  // namespace snappy