1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
// Copyright 2005 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This tests to make sure numbers are parsed from strings
// correctly.
// Todo: Expand the test to validate strings parsed to the other types
// supported by RE2::Arg class
#include <stdint.h>
#include <string.h>
#include "library/cpp/testing/gtest/gtest.h"
#include "util/logging.h"
#include "re2/re2.h"
namespace re2 {
struct SuccessTable {
const char * value_string;
int64_t value;
bool success[6];
};
// Test boundary cases for different integral sizes.
// Specifically I want to make sure that values outside the boundries
// of an integral type will fail and that negative numbers will fail
// for unsigned types. The following table contains the boundaries for
// the various integral types and has entries for whether or not each
// type can contain the given value.
const SuccessTable kSuccessTable[] = {
// string integer value i16 u16 i32 u32 i64 u64
// 0 to 2^7-1
{ "0", 0, { true, true, true, true, true, true }},
{ "127", 127, { true, true, true, true, true, true }},
// -1 to -2^7
{ "-1", -1, { true, false, true, false, true, false }},
{ "-128", -128, { true, false, true, false, true, false }},
// 2^7 to 2^8-1
{ "128", 128, { true, true, true, true, true, true }},
{ "255", 255, { true, true, true, true, true, true }},
// 2^8 to 2^15-1
{ "256", 256, { true, true, true, true, true, true }},
{ "32767", 32767, { true, true, true, true, true, true }},
// -2^7-1 to -2^15
{ "-129", -129, { true, false, true, false, true, false }},
{ "-32768", -32768, { true, false, true, false, true, false }},
// 2^15 to 2^16-1
{ "32768", 32768, { false, true, true, true, true, true }},
{ "65535", 65535, { false, true, true, true, true, true }},
// 2^16 to 2^31-1
{ "65536", 65536, { false, false, true, true, true, true }},
{ "2147483647", 2147483647, { false, false, true, true, true, true }},
// -2^15-1 to -2^31
{ "-32769", -32769, { false, false, true, false, true, false }},
{ "-2147483648", static_cast<int64_t>(0xFFFFFFFF80000000LL),
{ false, false, true, false, true, false }},
// 2^31 to 2^32-1
{ "2147483648", 2147483648U, { false, false, false, true, true, true }},
{ "4294967295", 4294967295U, { false, false, false, true, true, true }},
// 2^32 to 2^63-1
{ "4294967296", 4294967296LL, { false, false, false, false, true, true }},
{ "9223372036854775807",
9223372036854775807LL, { false, false, false, false, true, true }},
// -2^31-1 to -2^63
{ "-2147483649", -2147483649LL, { false, false, false, false, true, false }},
{ "-9223372036854775808", static_cast<int64_t>(0x8000000000000000LL),
{ false, false, false, false, true, false }},
// 2^63 to 2^64-1
{ "9223372036854775808", static_cast<int64_t>(9223372036854775808ULL),
{ false, false, false, false, false, true }},
{ "18446744073709551615", static_cast<int64_t>(18446744073709551615ULL),
{ false, false, false, false, false, true }},
// >= 2^64
{ "18446744073709551616", 0, { false, false, false, false, false, false }},
};
const int kNumStrings = arraysize(kSuccessTable);
// It's ugly to use a macro, but we apparently can't use the EXPECT_EQ
// macro outside of a TEST block and this seems to be the only way to
// avoid code duplication. I can also pull off a couple nice tricks
// using concatenation for the type I'm checking against.
#define PARSE_FOR_TYPE(type, column) { \
type r; \
for (int i = 0; i < kNumStrings; ++i) { \
RE2::Arg arg(&r); \
const char* const p = kSuccessTable[i].value_string; \
bool retval = arg.Parse(p, strlen(p)); \
bool success = kSuccessTable[i].success[column]; \
EXPECT_EQ(retval, success) \
<< "Parsing '" << p << "' for type " #type " should return " \
<< success; \
if (success) { \
EXPECT_EQ(r, (type)kSuccessTable[i].value); \
} \
} \
}
TEST(RE2ArgTest, Int16Test) {
PARSE_FOR_TYPE(int16_t, 0);
}
TEST(RE2ArgTest, Uint16Test) {
PARSE_FOR_TYPE(uint16_t, 1);
}
TEST(RE2ArgTest, Int32Test) {
PARSE_FOR_TYPE(int32_t, 2);
}
TEST(RE2ArgTest, Uint32Test) {
PARSE_FOR_TYPE(uint32_t, 3);
}
TEST(RE2ArgTest, Int64Test) {
PARSE_FOR_TYPE(int64_t, 4);
}
TEST(RE2ArgTest, Uint64Test) {
PARSE_FOR_TYPE(uint64_t, 5);
}
TEST(RE2ArgTest, ParseFromTest) {
#if !defined(_MSC_VER)
struct {
bool ParseFrom(const char* str, size_t n) {
LOG(INFO) << "str = " << str << ", n = " << n;
return true;
}
} obj1;
RE2::Arg arg1(&obj1);
EXPECT_TRUE(arg1.Parse("one", 3));
struct {
bool ParseFrom(const char* str, size_t n) {
LOG(INFO) << "str = " << str << ", n = " << n;
return false;
}
// Ensure that RE2::Arg works even with overloaded ParseFrom().
void ParseFrom(const char* str) {}
} obj2;
RE2::Arg arg2(&obj2);
EXPECT_FALSE(arg2.Parse("two", 3));
#endif
}
} // namespace re2
|