aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/poco/Foundation/src/Random.cpp
blob: 05da8e895b54b9e33caef6554ec331b00c107deb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
// 
// Random.cpp 
// 
// Library: Foundation 
// Package: Crypt 
// Module:  Random 
// 
// Definition of class Random. 
// 
// Copyright (c) 2004-2006, Applied Informatics Software Engineering GmbH. 
// and Contributors. 
// 
// SPDX-License-Identifier:	BSL-1.0 
// 
// 
// Based on the FreeBSD random number generator. 
// src/lib/libc/stdlib/random.c,v 1.25  
// 
// Copyright (c) 1983, 1993 
// The Regents of the University of California.  All rights reserved. 
// Redistribution and use in source and binary forms, with or without 
// modification, are permitted provided that the following conditions 
// are met: 
// 1. Redistributions of source code must retain the above copyright 
//    notice, this list of conditions and the following disclaimer. 
// 2. Redistributions in binary form must reproduce the above copyright 
//    notice, this list of conditions and the following disclaimer in the 
//    documentation and/or other materials provided with the distribution. 
// 4. Neither the name of the University nor the names of its contributors 
//    may be used to endorse or promote products derived from this software 
//    without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
// ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
// SUCH DAMAGE. 
// 
 
 
#include "Poco/Random.h" 
#include "Poco/RandomStream.h" 
#include <ctime> 
#if defined(_WIN32_WCE) && _WIN32_WCE < 0x800 
#error #include "wce_time.h" 
#endif 
 
 
/* 
 * random.c: 
 * 
 * An improved random number generation package.  In addition to the standard 
 * rand()/srand() like interface, this package also has a special state info 
 * interface.  The initstate() routine is called with a seed, an array of 
 * bytes, and a count of how many bytes are being passed in; this array is 
 * then initialized to contain information for random number generation with 
 * that much state information.  Good sizes for the amount of state 
 * information are 32, 64, 128, and 256 bytes.  The state can be switched by 
 * calling the setstate() routine with the same array as was initiallized 
 * with initstate().  By default, the package runs with 128 bytes of state 
 * information and generates far better random numbers than a linear 
 * congruential generator.  If the amount of state information is less than 
 * 32 bytes, a simple linear congruential R.N.G. is used. 
 * 
 * Internally, the state information is treated as an array of uint32_t's; the 
 * zeroeth element of the array is the type of R.N.G. being used (small 
 * integer); the remainder of the array is the state information for the 
 * R.N.G.  Thus, 32 bytes of state information will give 7 ints worth of 
 * state information, which will allow a degree seven polynomial.  (Note: 
 * the zeroeth word of state information also has some other information 
 * stored in it -- see setstate() for details). 
 * 
 * The random number generation technique is a linear feedback shift register 
 * approach, employing trinomials (since there are fewer terms to sum up that 
 * way).  In this approach, the least significant bit of all the numbers in 
 * the state table will act as a linear feedback shift register, and will 
 * have period 2^deg - 1 (where deg is the degree of the polynomial being 
 * used, assuming that the polynomial is irreducible and primitive).  The 
 * higher order bits will have longer periods, since their values are also 
 * influenced by pseudo-random carries out of the lower bits.  The total 
 * period of the generator is approximately deg*(2**deg - 1); thus doubling 
 * the amount of state information has a vast influence on the period of the 
 * generator.  Note: the deg*(2**deg - 1) is an approximation only good for 
 * large deg, when the period of the shift is the dominant factor. 
 * With deg equal to seven, the period is actually much longer than the 
 * 7*(2**7 - 1) predicted by this formula. 
 * 
 * Modified 28 December 1994 by Jacob S. Rosenberg. 
 * The following changes have been made: 
 * All references to the type u_int have been changed to unsigned long. 
 * All references to type int have been changed to type long.  Other 
 * cleanups have been made as well.  A warning for both initstate and 
 * setstate has been inserted to the effect that on Sparc platforms 
 * the 'arg_state' variable must be forced to begin on word boundaries. 
 * This can be easily done by casting a long integer array to char *. 
 * The overall logic has been left STRICTLY alone.  This software was 
 * tested on both a VAX and Sun SpacsStation with exactly the same 
 * results.  The new version and the original give IDENTICAL results. 
 * The new version is somewhat faster than the original.  As the 
 * documentation says:  "By default, the package runs with 128 bytes of 
 * state information and generates far better random numbers than a linear 
 * congruential generator.  If the amount of state information is less than 
 * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of 
 * 128 bytes, this new version runs about 19 percent faster and for a 16 
 * byte buffer it is about 5 percent faster. 
 */ 
 
 
/* 
 * For each of the currently supported random number generators, we have a 
 * break value on the amount of state information (you need at least this 
 * many bytes of state info to support this random number generator), a degree 
 * for the polynomial (actually a trinomial) that the R.N.G. is based on, and 
 * the separation between the two lower order coefficients of the trinomial. 
 */ 
#define	TYPE_0		0		/* linear congruential */ 
#define	BREAK_0		8 
#define	DEG_0		0 
#define	SEP_0		0 
 
#define	TYPE_1		1		/* x**7 + x**3 + 1 */ 
#define	BREAK_1		32 
#define	DEG_1		7 
#define	SEP_1		3 
 
#define	TYPE_2		2		/* x**15 + x + 1 */ 
#define	BREAK_2		64 
#define	DEG_2		15 
#define	SEP_2		1 
 
#define	TYPE_3		3		/* x**31 + x**3 + 1 */ 
#define	BREAK_3		128 
#define	DEG_3		31 
#define	SEP_3		3 
 
#define	TYPE_4		4		/* x**63 + x + 1 */ 
#define	BREAK_4		256 
#define	DEG_4		63 
#define	SEP_4		1 
 
 
namespace Poco { 
 
 
Random::Random(int stateSize) 
{ 
	poco_assert (BREAK_0 <= stateSize && stateSize <= BREAK_4); 
 
	_pBuffer = new char[stateSize]; 
#if defined(_WIN32_WCE) && _WIN32_WCE < 0x800 
	initState((UInt32) wceex_time(NULL), _pBuffer, stateSize); 
#else 
	initState((UInt32) std::time(NULL), _pBuffer, stateSize); 
#endif 
} 
 
 
Random::~Random() 
{ 
	delete [] _pBuffer; 
} 
 
 
/* 
 * Compute x = (7^5 * x) mod (2^31 - 1) 
 * wihout overflowing 31 bits: 
 *      (2^31 - 1) = 127773 * (7^5) + 2836 
 * From "Random number generators: good ones are hard to find", 
 * Park and Miller, Communications of the ACM, vol. 31, no. 10, 
 * October 1988, p. 1195. 
 */ 
inline UInt32 Random::goodRand(Int32 x) 
{ 
	Int32 hi, lo; 
 
	if (x == 0) x = 123459876; 
	hi = x / 127773; 
	lo = x % 127773; 
	x = 16807 * lo - 2836 * hi; 
	if (x < 0) x += 0x7FFFFFFF; 
 
	return x; 
} 
 
 
/* 
 * Initialize the random number generator based on the given seed.  If the 
 * type is the trivial no-state-information type, just remember the seed. 
 * Otherwise, initializes state[] based on the given "seed" via a linear 
 * congruential generator.  Then, the pointers are set to known locations 
 * that are exactly rand_sep places apart.  Lastly, it cycles the state 
 * information a given number of times to get rid of any initial dependencies 
 * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[] 
 * for default usage relies on values produced by this routine. 
 */ 
void Random::seed(UInt32 x) 
{ 
	int i, lim; 
 
	_state[0] = x; 
	if (_randType == TYPE_0) 
		lim = NSHUFF; 
	else  
	{ 
		for (i = 1; i < _randDeg; i++) 
			_state[i] = goodRand(_state[i - 1]); 
		_fptr = &_state[_randSep]; 
		_rptr = &_state[0]; 
		lim = 10 * _randDeg; 
	} 
	for (i = 0; i < lim; i++) 
		next(); 
} 
 
 
/* 
 * Many programs choose the seed value in a totally predictable manner. 
 * This often causes problems.  We seed the generator using the much more 
 * secure random(4) interface.  Note that this particular seeding 
 * procedure can generate states which are impossible to reproduce by 
 * calling srandom() with any value, since the succeeding terms in the 
 * state buffer are no longer derived from the LC algorithm applied to 
 * a fixed seed. 
 */ 
void Random::seed() 
{ 
	std::streamsize len; 
 
	if (_randType == TYPE_0) 
		len = sizeof _state[0]; 
	else 
		len = _randDeg * sizeof _state[0]; 
 
	RandomInputStream rstr; 
	rstr.read((char*) _state, len); 
} 
 
 
/* 
 * Initialize the state information in the given array of n bytes for future 
 * random number generation.  Based on the number of bytes we are given, and 
 * the break values for the different R.N.G.'s, we choose the best (largest) 
 * one we can and set things up for it.  srandom() is then called to 
 * initialize the state information. 
 * 
 * Note that on return from srandom(), we set state[-1] to be the type 
 * multiplexed with the current value of the rear pointer; this is so 
 * successive calls to initstate() won't lose this information and will be 
 * able to restart with setstate(). 
 * 
 * Note: the first thing we do is save the current state, if any, just like 
 * setstate() so that it doesn't matter when initstate is called. 
 * 
 * Returns a pointer to the old state. 
 * 
 * Note: The Sparc platform requires that arg_state begin on an int 
 * word boundary; otherwise a bus error will occur. Even so, lint will 
 * complain about mis-alignment, but you should disregard these messages. 
 */ 
void Random::initState(UInt32 s, char* argState, Int32 n) 
{ 
	UInt32* intArgState = (UInt32*) argState; 
 
	if (n < BREAK_0)  
	{ 
		poco_bugcheck_msg("not enough state"); 
		return; 
	} 
	if (n < BREAK_1)  
	{ 
		_randType = TYPE_0; 
		_randDeg  = DEG_0; 
		_randSep  = SEP_0; 
	}  
	else if (n < BREAK_2)  
	{ 
		_randType = TYPE_1; 
		_randDeg  = DEG_1; 
		_randSep  = SEP_1; 
	}  
	else if (n < BREAK_3)  
	{ 
		_randType = TYPE_2; 
		_randDeg  = DEG_2; 
		_randSep  = SEP_2; 
	}  
	else if (n < BREAK_4)  
	{ 
		_randType = TYPE_3; 
		_randDeg  = DEG_3; 
		_randSep  = SEP_3; 
	}  
	else  
	{ 
		_randType = TYPE_4; 
		_randDeg = DEG_4; 
		_randSep = SEP_4; 
	} 
	_state  = intArgState + 1; /* first location */ 
	_endPtr = &_state[_randDeg];	/* must set end_ptr before seed */ 
	seed(s); 
	if (_randType == TYPE_0) 
		intArgState[0] = _randType; 
	else 
		intArgState[0] = MAX_TYPES * (int) (_rptr - _state) + _randType; 
} 
 
 
/* 
 * Next: 
 * 
 * If we are using the trivial TYPE_0 R.N.G., just do the old linear 
 * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is 
 * the same in all the other cases due to all the global variables that have 
 * been set up.  The basic operation is to add the number at the rear pointer 
 * into the one at the front pointer.  Then both pointers are advanced to 
 * the next location cyclically in the table.  The value returned is the sum 
 * generated, reduced to 31 bits by throwing away the "least random" low bit. 
 * 
 * Note: the code takes advantage of the fact that both the front and 
 * rear pointers can't wrap on the same call by not testing the rear 
 * pointer if the front one has wrapped. 
 * 
 * Returns a 31-bit random number. 
 */ 
UInt32 Random::next() 
{ 
	UInt32 i; 
	UInt32 *f, *r; 
 
	if (_randType == TYPE_0)  
	{ 
		i = _state[0]; 
		_state[0] = i = goodRand(i) & 0x7FFFFFFF; 
	}  
	else  
	{ 
		/* 
		 * Use local variables rather than static variables for speed. 
		 */ 
		f = _fptr; r = _rptr; 
		*f += *r; 
		i = (*f >> 1) & 0x7FFFFFFF;	/* chucking least random bit */ 
		if (++f >= _endPtr) { 
			f = _state; 
			++r; 
		} 
		else if (++r >= _endPtr) { 
			r = _state; 
		} 
 
		_fptr = f; _rptr = r; 
	} 
	return i; 
} 
 
 
} // namespace Poco