aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/pcre/sljit/sljitNativeMIPS_common.c
blob: 81e4e2daed7ddc66c1b17aa9641900e01d004336 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
/* 
 *    Stack-less Just-In-Time compiler 
 * 
 *    Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without modification, are 
 * permitted provided that the following conditions are met: 
 * 
 *   1. Redistributions of source code must retain the above copyright notice, this list of 
 *      conditions and the following disclaimer. 
 * 
 *   2. Redistributions in binary form must reproduce the above copyright notice, this list 
 *      of conditions and the following disclaimer in the documentation and/or other materials 
 *      provided with the distribution. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY 
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 
 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */ 
 
/* Latest MIPS architecture. */ 
/* Automatically detect SLJIT_MIPS_R1 */ 
 
#if (defined __mips_isa_rev) && (__mips_isa_rev >= 6) 
#define SLJIT_MIPS_R6 1 
#endif 
 
SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void) 
{ 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
	return "MIPS32-R6" SLJIT_CPUINFO; 
#else /* !SLJIT_CONFIG_MIPS_32 */ 
	return "MIPS64-R6" SLJIT_CPUINFO; 
#endif /* SLJIT_CONFIG_MIPS_32 */ 
 
#elif (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1) 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
	return "MIPS32-R1" SLJIT_CPUINFO; 
#else /* !SLJIT_CONFIG_MIPS_32 */ 
	return "MIPS64-R1" SLJIT_CPUINFO; 
#endif /* SLJIT_CONFIG_MIPS_32 */ 
 
#else /* SLJIT_MIPS_R1 */ 
	return "MIPS III" SLJIT_CPUINFO; 
#endif /* SLJIT_MIPS_R6 */ 
} 
 
/* Length of an instruction word 
   Both for mips-32 and mips-64 */ 
typedef sljit_u32 sljit_ins; 
 
#define TMP_REG1	(SLJIT_NUMBER_OF_REGISTERS + 2) 
#define TMP_REG2	(SLJIT_NUMBER_OF_REGISTERS + 3) 
#define TMP_REG3	(SLJIT_NUMBER_OF_REGISTERS + 4) 
 
/* For position independent code, t9 must contain the function address. */ 
#define PIC_ADDR_REG	TMP_REG2 
 
/* Floating point status register. */ 
#define FCSR_REG	31 
/* Return address register. */ 
#define RETURN_ADDR_REG	31 
 
/* Flags are kept in volatile registers. */ 
#define EQUAL_FLAG	3 
#define OTHER_FLAG	1 
 
#define TMP_FREG1	(SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) 
#define TMP_FREG2	(SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2) 
#define TMP_FREG3	(SLJIT_NUMBER_OF_FLOAT_REGISTERS + 3) 
 
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 5] = { 
	0, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 24, 23, 22, 21, 20, 19, 18, 17, 16, 29, 4, 25, 31 
}; 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
 
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 4] = { 
	0, 0, 14, 2, 4, 6, 8, 12, 10, 16 
}; 
 
#else 
 
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 4] = { 
	0, 0, 13, 14, 15, 16, 17, 12, 18, 10 
}; 
 
#endif 
 
/* --------------------------------------------------------------------- */ 
/*  Instrucion forms                                                     */ 
/* --------------------------------------------------------------------- */ 
 
#define S(s)		(reg_map[s] << 21) 
#define T(t)		(reg_map[t] << 16) 
#define D(d)		(reg_map[d] << 11) 
#define FT(t)		(freg_map[t] << 16) 
#define FS(s)		(freg_map[s] << 11) 
#define FD(d)		(freg_map[d] << 6) 
/* Absolute registers. */ 
#define SA(s)		((s) << 21) 
#define TA(t)		((t) << 16) 
#define DA(d)		((d) << 11) 
#define IMM(imm)	((imm) & 0xffff) 
#define SH_IMM(imm)	((imm) << 6) 
 
#define DR(dr)		(reg_map[dr]) 
#define FR(dr)		(freg_map[dr]) 
#define HI(opcode)	((opcode) << 26) 
#define LO(opcode)	(opcode) 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
/* CMP.cond.fmt */ 
/* S = (20 << 21) D = (21 << 21) */ 
#define CMP_FMT_S	(20 << 21) 
#endif /* SLJIT_MIPS_R6 */ 
/* S = (16 << 21) D = (17 << 21) */ 
#define FMT_S		(16 << 21) 
#define FMT_D		(17 << 21) 
 
#define ABS_S		(HI(17) | FMT_S | LO(5)) 
#define ADD_S		(HI(17) | FMT_S | LO(0)) 
#define ADDIU		(HI(9)) 
#define ADDU		(HI(0) | LO(33)) 
#define AND		(HI(0) | LO(36)) 
#define ANDI		(HI(12)) 
#define B		(HI(4)) 
#define BAL		(HI(1) | (17 << 16)) 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#define BC1EQZ		(HI(17) | (9 << 21) | FT(TMP_FREG3)) 
#define BC1NEZ		(HI(17) | (13 << 21) | FT(TMP_FREG3)) 
#else /* !SLJIT_MIPS_R6 */ 
#define BC1F		(HI(17) | (8 << 21)) 
#define BC1T		(HI(17) | (8 << 21) | (1 << 16)) 
#endif /* SLJIT_MIPS_R6 */ 
#define BEQ		(HI(4)) 
#define BGEZ		(HI(1) | (1 << 16)) 
#define BGTZ		(HI(7)) 
#define BLEZ		(HI(6)) 
#define BLTZ		(HI(1) | (0 << 16)) 
#define BNE		(HI(5)) 
#define BREAK		(HI(0) | LO(13)) 
#define CFC1		(HI(17) | (2 << 21)) 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#define C_UEQ_S		(HI(17) | CMP_FMT_S | LO(3)) 
#define C_ULE_S		(HI(17) | CMP_FMT_S | LO(7)) 
#define C_ULT_S		(HI(17) | CMP_FMT_S | LO(5)) 
#define C_UN_S		(HI(17) | CMP_FMT_S | LO(1)) 
#define C_FD		(FD(TMP_FREG3)) 
#else /* !SLJIT_MIPS_R6 */ 
#define C_UEQ_S		(HI(17) | FMT_S | LO(51)) 
#define C_ULE_S		(HI(17) | FMT_S | LO(55)) 
#define C_ULT_S		(HI(17) | FMT_S | LO(53)) 
#define C_UN_S		(HI(17) | FMT_S | LO(49)) 
#define C_FD		(0) 
#endif /* SLJIT_MIPS_R6 */ 
#define CVT_S_S		(HI(17) | FMT_S | LO(32)) 
#define DADDIU		(HI(25)) 
#define DADDU		(HI(0) | LO(45)) 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#define DDIV		(HI(0) | (2 << 6) | LO(30)) 
#define DDIVU		(HI(0) | (2 << 6) | LO(31)) 
#define DMOD		(HI(0) | (3 << 6) | LO(30)) 
#define DMODU		(HI(0) | (3 << 6) | LO(31)) 
#define DIV		(HI(0) | (2 << 6) | LO(26)) 
#define DIVU		(HI(0) | (2 << 6) | LO(27)) 
#define DMUH		(HI(0) | (3 << 6) | LO(28)) 
#define DMUHU		(HI(0) | (3 << 6) | LO(29)) 
#define DMUL		(HI(0) | (2 << 6) | LO(28)) 
#define DMULU		(HI(0) | (2 << 6) | LO(29)) 
#else /* !SLJIT_MIPS_R6 */ 
#define DDIV		(HI(0) | LO(30)) 
#define DDIVU		(HI(0) | LO(31)) 
#define DIV		(HI(0) | LO(26)) 
#define DIVU		(HI(0) | LO(27)) 
#define DMULT		(HI(0) | LO(28)) 
#define DMULTU		(HI(0) | LO(29)) 
#endif /* SLJIT_MIPS_R6 */ 
#define DIV_S		(HI(17) | FMT_S | LO(3)) 
#define DSLL		(HI(0) | LO(56)) 
#define DSLL32		(HI(0) | LO(60)) 
#define DSLLV		(HI(0) | LO(20)) 
#define DSRA		(HI(0) | LO(59)) 
#define DSRA32		(HI(0) | LO(63)) 
#define DSRAV		(HI(0) | LO(23)) 
#define DSRL		(HI(0) | LO(58)) 
#define DSRL32		(HI(0) | LO(62)) 
#define DSRLV		(HI(0) | LO(22)) 
#define DSUBU		(HI(0) | LO(47)) 
#define J		(HI(2)) 
#define JAL		(HI(3)) 
#define JALR		(HI(0) | LO(9)) 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#define JR		(HI(0) | LO(9)) 
#else /* !SLJIT_MIPS_R6 */ 
#define JR		(HI(0) | LO(8)) 
#endif /* SLJIT_MIPS_R6 */ 
#define LD		(HI(55)) 
#define LUI		(HI(15)) 
#define LW		(HI(35)) 
#define MFC1		(HI(17)) 
#if !(defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#define MFHI		(HI(0) | LO(16)) 
#define MFLO		(HI(0) | LO(18)) 
#else /* SLJIT_MIPS_R6 */ 
#define MOD		(HI(0) | (3 << 6) | LO(26)) 
#define MODU		(HI(0) | (3 << 6) | LO(27)) 
#endif /* !SLJIT_MIPS_R6 */ 
#define MOV_S		(HI(17) | FMT_S | LO(6)) 
#define MTC1		(HI(17) | (4 << 21)) 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#define MUH		(HI(0) | (3 << 6) | LO(24)) 
#define MUHU		(HI(0) | (3 << 6) | LO(25)) 
#define MUL		(HI(0) | (2 << 6) | LO(24)) 
#define MULU		(HI(0) | (2 << 6) | LO(25)) 
#else /* !SLJIT_MIPS_R6 */ 
#define MULT		(HI(0) | LO(24)) 
#define MULTU		(HI(0) | LO(25)) 
#endif /* SLJIT_MIPS_R6 */ 
#define MUL_S		(HI(17) | FMT_S | LO(2)) 
#define NEG_S		(HI(17) | FMT_S | LO(7)) 
#define NOP		(HI(0) | LO(0)) 
#define NOR		(HI(0) | LO(39)) 
#define OR		(HI(0) | LO(37)) 
#define ORI		(HI(13)) 
#define SD		(HI(63)) 
#define SDC1		(HI(61)) 
#define SLT		(HI(0) | LO(42)) 
#define SLTI		(HI(10)) 
#define SLTIU		(HI(11)) 
#define SLTU		(HI(0) | LO(43)) 
#define SLL		(HI(0) | LO(0)) 
#define SLLV		(HI(0) | LO(4)) 
#define SRL		(HI(0) | LO(2)) 
#define SRLV		(HI(0) | LO(6)) 
#define SRA		(HI(0) | LO(3)) 
#define SRAV		(HI(0) | LO(7)) 
#define SUB_S		(HI(17) | FMT_S | LO(1)) 
#define SUBU		(HI(0) | LO(35)) 
#define SW		(HI(43)) 
#define SWC1		(HI(57)) 
#define TRUNC_W_S	(HI(17) | FMT_S | LO(13)) 
#define XOR		(HI(0) | LO(38)) 
#define XORI		(HI(14)) 
 
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1) || (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#define CLZ		(HI(28) | LO(32)) 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#define DCLZ		(LO(18)) 
#else /* !SLJIT_MIPS_R6 */ 
#define DCLZ		(HI(28) | LO(36)) 
#define MOVF		(HI(0) | (0 << 16) | LO(1)) 
#define MOVN		(HI(0) | LO(11)) 
#define MOVT		(HI(0) | (1 << 16) | LO(1)) 
#define MOVZ		(HI(0) | LO(10)) 
#define MUL		(HI(28) | LO(2)) 
#endif /* SLJIT_MIPS_R6 */ 
#define PREF		(HI(51)) 
#define PREFX		(HI(19) | LO(15)) 
#define SEB		(HI(31) | (16 << 6) | LO(32)) 
#define SEH		(HI(31) | (24 << 6) | LO(32)) 
#endif 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#define ADDU_W		ADDU 
#define ADDIU_W		ADDIU 
#define SLL_W		SLL 
#define SUBU_W		SUBU 
#else 
#define ADDU_W		DADDU 
#define ADDIU_W		DADDIU 
#define SLL_W		DSLL 
#define SUBU_W		DSUBU 
#endif 
 
#define SIMM_MAX	(0x7fff) 
#define SIMM_MIN	(-0x8000) 
#define UIMM_MAX	(0xffff) 
 
/* dest_reg is the absolute name of the register 
   Useful for reordering instructions in the delay slot. */ 
static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins, sljit_s32 delay_slot) 
{ 
	SLJIT_ASSERT(delay_slot == MOVABLE_INS || delay_slot >= UNMOVABLE_INS 
		|| delay_slot == ((ins >> 11) & 0x1f) || delay_slot == ((ins >> 16) & 0x1f)); 
	sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); 
	FAIL_IF(!ptr); 
	*ptr = ins; 
	compiler->size++; 
	compiler->delay_slot = delay_slot; 
	return SLJIT_SUCCESS; 
} 
 
static SLJIT_INLINE sljit_ins invert_branch(sljit_s32 flags) 
{ 
	if (flags & IS_BIT26_COND) 
		return (1 << 26); 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
	if (flags & IS_BIT23_COND) 
		return (1 << 23); 
#endif /* SLJIT_MIPS_R6 */ 
	return (1 << 16); 
} 
 
static SLJIT_INLINE sljit_ins* detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code, sljit_sw executable_offset) 
{ 
	sljit_sw diff; 
	sljit_uw target_addr; 
	sljit_ins *inst; 
	sljit_ins saved_inst; 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
	if (jump->flags & (SLJIT_REWRITABLE_JUMP | IS_CALL)) 
		return code_ptr; 
#else 
	if (jump->flags & SLJIT_REWRITABLE_JUMP) 
		return code_ptr; 
#endif 
 
	if (jump->flags & JUMP_ADDR) 
		target_addr = jump->u.target; 
	else { 
		SLJIT_ASSERT(jump->flags & JUMP_LABEL); 
		target_addr = (sljit_uw)(code + jump->u.label->size) + (sljit_uw)executable_offset; 
	} 
 
	inst = (sljit_ins *)jump->addr; 
	if (jump->flags & IS_COND) 
		inst--; 
 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
	if (jump->flags & IS_CALL) 
		goto keep_address; 
#endif 
 
	/* B instructions. */ 
	if (jump->flags & IS_MOVABLE) { 
		diff = ((sljit_sw)target_addr - (sljit_sw)inst - executable_offset) >> 2; 
		if (diff <= SIMM_MAX && diff >= SIMM_MIN) { 
			jump->flags |= PATCH_B; 
 
			if (!(jump->flags & IS_COND)) { 
				inst[0] = inst[-1]; 
				inst[-1] = (jump->flags & IS_JAL) ? BAL : B; 
				jump->addr -= sizeof(sljit_ins); 
				return inst; 
			} 
			saved_inst = inst[0]; 
			inst[0] = inst[-1]; 
			inst[-1] = saved_inst ^ invert_branch(jump->flags); 
			jump->addr -= 2 * sizeof(sljit_ins); 
			return inst; 
		} 
	} 
	else { 
		diff = ((sljit_sw)target_addr - (sljit_sw)(inst + 1) - executable_offset) >> 2; 
		if (diff <= SIMM_MAX && diff >= SIMM_MIN) { 
			jump->flags |= PATCH_B; 
 
			if (!(jump->flags & IS_COND)) { 
				inst[0] = (jump->flags & IS_JAL) ? BAL : B; 
				inst[1] = NOP; 
				return inst + 1; 
			} 
			inst[0] = inst[0] ^ invert_branch(jump->flags); 
			inst[1] = NOP; 
			jump->addr -= sizeof(sljit_ins); 
			return inst + 1; 
		} 
	} 
 
	if (jump->flags & IS_COND) { 
		if ((jump->flags & IS_MOVABLE) && (target_addr & ~0xfffffff) == ((jump->addr + 2 * sizeof(sljit_ins)) & ~0xfffffff)) { 
			jump->flags |= PATCH_J; 
			saved_inst = inst[0]; 
			inst[0] = inst[-1]; 
			inst[-1] = (saved_inst & 0xffff0000) | 3; 
			inst[1] = J; 
			inst[2] = NOP; 
			return inst + 2; 
		} 
		else if ((target_addr & ~0xfffffff) == ((jump->addr + 3 * sizeof(sljit_ins)) & ~0xfffffff)) { 
			jump->flags |= PATCH_J; 
			inst[0] = (inst[0] & 0xffff0000) | 3; 
			inst[1] = NOP; 
			inst[2] = J; 
			inst[3] = NOP; 
			jump->addr += sizeof(sljit_ins); 
			return inst + 3; 
		} 
	} 
	else { 
		/* J instuctions. */ 
		if ((jump->flags & IS_MOVABLE) && (target_addr & ~0xfffffff) == (jump->addr & ~0xfffffff)) { 
			jump->flags |= PATCH_J; 
			inst[0] = inst[-1]; 
			inst[-1] = (jump->flags & IS_JAL) ? JAL : J; 
			jump->addr -= sizeof(sljit_ins); 
			return inst; 
		} 
 
		if ((target_addr & ~0xfffffff) == ((jump->addr + sizeof(sljit_ins)) & ~0xfffffff)) { 
			jump->flags |= PATCH_J; 
			inst[0] = (jump->flags & IS_JAL) ? JAL : J; 
			inst[1] = NOP; 
			return inst + 1; 
		} 
	} 
 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
keep_address: 
	if (target_addr <= 0x7fffffff) { 
		jump->flags |= PATCH_ABS32; 
		if (jump->flags & IS_COND) { 
			inst[0] -= 4; 
			inst++; 
		} 
		inst[2] = inst[6]; 
		inst[3] = inst[7]; 
		return inst + 3; 
	} 
	if (target_addr <= 0x7fffffffffffl) { 
		jump->flags |= PATCH_ABS48; 
		if (jump->flags & IS_COND) { 
			inst[0] -= 2; 
			inst++; 
		} 
		inst[4] = inst[6]; 
		inst[5] = inst[7]; 
		return inst + 5; 
	} 
#endif 
 
	return code_ptr; 
} 
 
#ifdef __GNUC__ 
static __attribute__ ((noinline)) void sljit_cache_flush(void* code, void* code_ptr) 
{ 
	SLJIT_CACHE_FLUSH(code, code_ptr); 
} 
#endif 
 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
 
static SLJIT_INLINE sljit_sw put_label_get_length(struct sljit_put_label *put_label, sljit_uw max_label) 
{ 
	if (max_label < 0x80000000l) { 
		put_label->flags = 0; 
		return 1; 
	} 
 
	if (max_label < 0x800000000000l) { 
		put_label->flags = 1; 
		return 3; 
	} 
 
	put_label->flags = 2; 
	return 5; 
} 
 
static SLJIT_INLINE void put_label_set(struct sljit_put_label *put_label) 
{ 
	sljit_uw addr = put_label->label->addr; 
	sljit_ins *inst = (sljit_ins *)put_label->addr; 
	sljit_s32 reg = *inst; 
 
	if (put_label->flags == 0) { 
		SLJIT_ASSERT(addr < 0x80000000l); 
		inst[0] = LUI | T(reg) | IMM(addr >> 16); 
	} 
	else if (put_label->flags == 1) { 
		SLJIT_ASSERT(addr < 0x800000000000l); 
		inst[0] = LUI | T(reg) | IMM(addr >> 32); 
		inst[1] = ORI | S(reg) | T(reg) | IMM((addr >> 16) & 0xffff); 
		inst[2] = DSLL | T(reg) | D(reg) | SH_IMM(16); 
		inst += 2; 
	} 
	else { 
		inst[0] = LUI | T(reg) | IMM(addr >> 48); 
		inst[1] = ORI | S(reg) | T(reg) | IMM((addr >> 32) & 0xffff); 
		inst[2] = DSLL | T(reg) | D(reg) | SH_IMM(16); 
		inst[3] = ORI | S(reg) | T(reg) | IMM((addr >> 16) & 0xffff); 
		inst[4] = DSLL | T(reg) | D(reg) | SH_IMM(16); 
		inst += 4; 
	} 
 
	inst[1] = ORI | S(reg) | T(reg) | IMM(addr & 0xffff); 
} 
 
#endif 
 
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) 
{ 
	struct sljit_memory_fragment *buf; 
	sljit_ins *code; 
	sljit_ins *code_ptr; 
	sljit_ins *buf_ptr; 
	sljit_ins *buf_end; 
	sljit_uw word_count; 
	sljit_uw next_addr; 
	sljit_sw executable_offset; 
	sljit_uw addr; 
 
	struct sljit_label *label; 
	struct sljit_jump *jump; 
	struct sljit_const *const_; 
	struct sljit_put_label *put_label; 
 
	CHECK_ERROR_PTR(); 
	CHECK_PTR(check_sljit_generate_code(compiler)); 
	reverse_buf(compiler); 
 
	code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins)); 
	PTR_FAIL_WITH_EXEC_IF(code); 
	buf = compiler->buf; 
 
	code_ptr = code; 
	word_count = 0; 
	next_addr = 0; 
	executable_offset = SLJIT_EXEC_OFFSET(code); 
 
	label = compiler->labels; 
	jump = compiler->jumps; 
	const_ = compiler->consts; 
	put_label = compiler->put_labels; 
 
	do { 
		buf_ptr = (sljit_ins*)buf->memory; 
		buf_end = buf_ptr + (buf->used_size >> 2); 
		do { 
			*code_ptr = *buf_ptr++; 
			if (next_addr == word_count) { 
				SLJIT_ASSERT(!label || label->size >= word_count); 
				SLJIT_ASSERT(!jump || jump->addr >= word_count); 
				SLJIT_ASSERT(!const_ || const_->addr >= word_count); 
				SLJIT_ASSERT(!put_label || put_label->addr >= word_count); 
 
				/* These structures are ordered by their address. */ 
				if (label && label->size == word_count) { 
					label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset); 
					label->size = code_ptr - code; 
					label = label->next; 
				} 
				if (jump && jump->addr == word_count) { 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
					jump->addr = (sljit_uw)(code_ptr - 3); 
#else 
					jump->addr = (sljit_uw)(code_ptr - 7); 
#endif 
					code_ptr = detect_jump_type(jump, code_ptr, code, executable_offset); 
					jump = jump->next; 
				} 
				if (const_ && const_->addr == word_count) { 
					const_->addr = (sljit_uw)code_ptr; 
					const_ = const_->next; 
				} 
				if (put_label && put_label->addr == word_count) { 
					SLJIT_ASSERT(put_label->label); 
					put_label->addr = (sljit_uw)code_ptr; 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
					code_ptr += put_label_get_length(put_label, (sljit_uw)(SLJIT_ADD_EXEC_OFFSET(code, executable_offset) + put_label->label->size)); 
					word_count += 5; 
#endif 
					put_label = put_label->next; 
				} 
				next_addr = compute_next_addr(label, jump, const_, put_label); 
			} 
			code_ptr ++; 
			word_count ++; 
		} while (buf_ptr < buf_end); 
 
		buf = buf->next; 
	} while (buf); 
 
	if (label && label->size == word_count) { 
		label->addr = (sljit_uw)code_ptr; 
		label->size = code_ptr - code; 
		label = label->next; 
	} 
 
	SLJIT_ASSERT(!label); 
	SLJIT_ASSERT(!jump); 
	SLJIT_ASSERT(!const_); 
	SLJIT_ASSERT(!put_label); 
	SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size); 
 
	jump = compiler->jumps; 
	while (jump) { 
		do { 
			addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target; 
			buf_ptr = (sljit_ins *)jump->addr; 
 
			if (jump->flags & PATCH_B) { 
				addr = (sljit_sw)(addr - ((sljit_uw)SLJIT_ADD_EXEC_OFFSET(buf_ptr, executable_offset) + sizeof(sljit_ins))) >> 2; 
				SLJIT_ASSERT((sljit_sw)addr <= SIMM_MAX && (sljit_sw)addr >= SIMM_MIN); 
				buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | (addr & 0xffff); 
				break; 
			} 
			if (jump->flags & PATCH_J) { 
				SLJIT_ASSERT((addr & ~0xfffffff) == (((sljit_uw)SLJIT_ADD_EXEC_OFFSET(buf_ptr, executable_offset) + sizeof(sljit_ins)) & ~0xfffffff)); 
				buf_ptr[0] |= (addr >> 2) & 0x03ffffff; 
				break; 
			} 
 
			/* Set the fields of immediate loads. */ 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
			buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff); 
			buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff); 
#else 
			if (jump->flags & PATCH_ABS32) { 
				SLJIT_ASSERT(addr <= 0x7fffffff); 
				buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff); 
				buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff); 
			} 
			else if (jump->flags & PATCH_ABS48) { 
				SLJIT_ASSERT(addr <= 0x7fffffffffffl); 
				buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 32) & 0xffff); 
				buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 16) & 0xffff); 
				buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | (addr & 0xffff); 
			} 
			else { 
				buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 48) & 0xffff); 
				buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 32) & 0xffff); 
				buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | ((addr >> 16) & 0xffff); 
				buf_ptr[5] = (buf_ptr[5] & 0xffff0000) | (addr & 0xffff); 
			} 
#endif 
		} while (0); 
		jump = jump->next; 
	} 
 
	put_label = compiler->put_labels; 
	while (put_label) { 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
		addr = put_label->label->addr; 
		buf_ptr = (sljit_ins *)put_label->addr; 
 
		SLJIT_ASSERT((buf_ptr[0] & 0xffe00000) == LUI && (buf_ptr[1] & 0xfc000000) == ORI); 
		buf_ptr[0] |= (addr >> 16) & 0xffff; 
		buf_ptr[1] |= addr & 0xffff; 
#else 
		put_label_set(put_label); 
#endif 
		put_label = put_label->next; 
	} 
 
	compiler->error = SLJIT_ERR_COMPILED; 
	compiler->executable_offset = executable_offset; 
	compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins); 
 
	code = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code, executable_offset); 
	code_ptr = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset); 
 
#ifndef __GNUC__ 
	SLJIT_CACHE_FLUSH(code, code_ptr); 
#else 
	/* GCC workaround for invalid code generation with -O2. */ 
	sljit_cache_flush(code, code_ptr); 
#endif 
	return code; 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type) 
{ 
	sljit_sw fir = 0; 
 
	switch (feature_type) { 
	case SLJIT_HAS_FPU: 
#ifdef SLJIT_IS_FPU_AVAILABLE 
		return SLJIT_IS_FPU_AVAILABLE; 
#elif defined(__GNUC__) 
		asm ("cfc1 %0, $0" : "=r"(fir)); 
		return (fir >> 22) & 0x1; 
#else 
#error "FIR check is not implemented for this architecture" 
#endif 
 
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1) 
	case SLJIT_HAS_CLZ: 
	case SLJIT_HAS_CMOV: 
		return 1; 
#endif 
 
	default: 
		return fir; 
	} 
} 
 
/* --------------------------------------------------------------------- */ 
/*  Entry, exit                                                          */ 
/* --------------------------------------------------------------------- */ 
 
/* Creates an index in data_transfer_insts array. */ 
#define LOAD_DATA	0x01 
#define WORD_DATA	0x00 
#define BYTE_DATA	0x02 
#define HALF_DATA	0x04 
#define INT_DATA	0x06 
#define SIGNED_DATA	0x08 
/* Separates integer and floating point registers */ 
#define GPR_REG		0x0f 
#define DOUBLE_DATA	0x10 
#define SINGLE_DATA	0x12 
 
#define MEM_MASK	0x1f 
 
#define ARG_TEST	0x00020 
#define ALT_KEEP_CACHE	0x00040 
#define CUMULATIVE_OP	0x00080 
#define LOGICAL_OP	0x00100 
#define IMM_OP		0x00200 
#define SRC2_IMM	0x00400 
 
#define UNUSED_DEST	0x00800 
#define REG_DEST	0x01000 
#define REG1_SOURCE	0x02000 
#define REG2_SOURCE	0x04000 
#define SLOW_SRC1	0x08000 
#define SLOW_SRC2	0x10000 
#define SLOW_DEST	0x20000 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#define STACK_STORE	SW 
#define STACK_LOAD	LW 
#else 
#define STACK_STORE	SD 
#define STACK_LOAD	LD 
#endif 
 
static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw); 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#include "sljitNativeMIPS_32.c" 
#else 
#include "sljitNativeMIPS_64.c" 
#endif 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, 
	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, 
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) 
{ 
	sljit_ins base; 
	sljit_s32 args, i, tmp, offs; 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); 
	set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); 
 
	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + SLJIT_LOCALS_OFFSET; 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
	local_size = (local_size + 15) & ~0xf; 
#else 
	local_size = (local_size + 31) & ~0x1f; 
#endif 
	compiler->local_size = local_size; 
 
	if (local_size <= SIMM_MAX) { 
		/* Frequent case. */ 
		FAIL_IF(push_inst(compiler, ADDIU_W | S(SLJIT_SP) | T(SLJIT_SP) | IMM(-local_size), DR(SLJIT_SP))); 
		base = S(SLJIT_SP); 
		offs = local_size - (sljit_sw)sizeof(sljit_sw); 
	} 
	else { 
		FAIL_IF(load_immediate(compiler, DR(OTHER_FLAG), local_size)); 
		FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_SP) | TA(0) | D(TMP_REG2), DR(TMP_REG2))); 
		FAIL_IF(push_inst(compiler, SUBU_W | S(SLJIT_SP) | T(OTHER_FLAG) | D(SLJIT_SP), DR(SLJIT_SP))); 
		base = S(TMP_REG2); 
		local_size = 0; 
		offs = -(sljit_sw)sizeof(sljit_sw); 
	} 
 
	FAIL_IF(push_inst(compiler, STACK_STORE | base | TA(RETURN_ADDR_REG) | IMM(offs), MOVABLE_INS)); 
 
	tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG; 
	for (i = SLJIT_S0; i >= tmp; i--) { 
		offs -= (sljit_s32)(sizeof(sljit_sw)); 
		FAIL_IF(push_inst(compiler, STACK_STORE | base | T(i) | IMM(offs), MOVABLE_INS)); 
	} 
 
	for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) { 
		offs -= (sljit_s32)(sizeof(sljit_sw)); 
		FAIL_IF(push_inst(compiler, STACK_STORE | base | T(i) | IMM(offs), MOVABLE_INS)); 
	} 
 
	args = get_arg_count(arg_types); 
 
	if (args >= 1) 
		FAIL_IF(push_inst(compiler, ADDU_W | SA(4) | TA(0) | D(SLJIT_S0), DR(SLJIT_S0))); 
	if (args >= 2) 
		FAIL_IF(push_inst(compiler, ADDU_W | SA(5) | TA(0) | D(SLJIT_S1), DR(SLJIT_S1))); 
	if (args >= 3) 
		FAIL_IF(push_inst(compiler, ADDU_W | SA(6) | TA(0) | D(SLJIT_S2), DR(SLJIT_S2))); 
 
	return SLJIT_SUCCESS; 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, 
	sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, 
	sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) 
{ 
	CHECK_ERROR(); 
	CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); 
	set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); 
 
	local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + SLJIT_LOCALS_OFFSET; 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
	compiler->local_size = (local_size + 15) & ~0xf; 
#else 
	compiler->local_size = (local_size + 31) & ~0x1f; 
#endif 
	return SLJIT_SUCCESS; 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) 
{ 
	sljit_s32 local_size, i, tmp, offs; 
	sljit_ins base; 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_return(compiler, op, src, srcw)); 
 
	FAIL_IF(emit_mov_before_return(compiler, op, src, srcw)); 
 
	local_size = compiler->local_size; 
	if (local_size <= SIMM_MAX) 
		base = S(SLJIT_SP); 
	else { 
		FAIL_IF(load_immediate(compiler, DR(TMP_REG1), local_size)); 
		FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_SP) | T(TMP_REG1) | D(TMP_REG1), DR(TMP_REG1))); 
		base = S(TMP_REG1); 
		local_size = 0; 
	} 
 
	FAIL_IF(push_inst(compiler, STACK_LOAD | base | TA(RETURN_ADDR_REG) | IMM(local_size - (sljit_s32)sizeof(sljit_sw)), RETURN_ADDR_REG)); 
	offs = local_size - (sljit_s32)GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1); 
 
	tmp = compiler->scratches; 
	for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) { 
		FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(i) | IMM(offs), DR(i))); 
		offs += (sljit_s32)(sizeof(sljit_sw)); 
	} 
 
	tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; 
	for (i = tmp; i <= SLJIT_S0; i++) { 
		FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(i) | IMM(offs), DR(i))); 
		offs += (sljit_s32)(sizeof(sljit_sw)); 
	} 
 
	SLJIT_ASSERT(offs == local_size - (sljit_sw)(sizeof(sljit_sw))); 
 
	FAIL_IF(push_inst(compiler, JR | SA(RETURN_ADDR_REG), UNMOVABLE_INS)); 
	if (compiler->local_size <= SIMM_MAX) 
		return push_inst(compiler, ADDIU_W | S(SLJIT_SP) | T(SLJIT_SP) | IMM(compiler->local_size), UNMOVABLE_INS); 
	else 
		return push_inst(compiler, ADDU_W | S(TMP_REG1) | TA(0) | D(SLJIT_SP), UNMOVABLE_INS); 
} 
 
#undef STACK_STORE 
#undef STACK_LOAD 
 
/* --------------------------------------------------------------------- */ 
/*  Operators                                                            */ 
/* --------------------------------------------------------------------- */ 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#define ARCH_32_64(a, b)	a 
#else 
#define ARCH_32_64(a, b)	b 
#endif 
 
static const sljit_ins data_transfer_insts[16 + 4] = { 
/* u w s */ ARCH_32_64(HI(43) /* sw */, HI(63) /* sd */), 
/* u w l */ ARCH_32_64(HI(35) /* lw */, HI(55) /* ld */), 
/* u b s */ HI(40) /* sb */, 
/* u b l */ HI(36) /* lbu */, 
/* u h s */ HI(41) /* sh */, 
/* u h l */ HI(37) /* lhu */, 
/* u i s */ HI(43) /* sw */, 
/* u i l */ ARCH_32_64(HI(35) /* lw */, HI(39) /* lwu */), 
 
/* s w s */ ARCH_32_64(HI(43) /* sw */, HI(63) /* sd */), 
/* s w l */ ARCH_32_64(HI(35) /* lw */, HI(55) /* ld */), 
/* s b s */ HI(40) /* sb */, 
/* s b l */ HI(32) /* lb */, 
/* s h s */ HI(41) /* sh */, 
/* s h l */ HI(33) /* lh */, 
/* s i s */ HI(43) /* sw */, 
/* s i l */ HI(35) /* lw */, 
 
/* d   s */ HI(61) /* sdc1 */, 
/* d   l */ HI(53) /* ldc1 */, 
/* s   s */ HI(57) /* swc1 */, 
/* s   l */ HI(49) /* lwc1 */, 
}; 
 
#undef ARCH_32_64 
 
/* reg_ar is an absoulute register! */ 
 
/* Can perform an operation using at most 1 instruction. */ 
static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw) 
{ 
	SLJIT_ASSERT(arg & SLJIT_MEM); 
 
	if (!(arg & OFFS_REG_MASK) && argw <= SIMM_MAX && argw >= SIMM_MIN) { 
		/* Works for both absoulte and relative addresses. */ 
		if (SLJIT_UNLIKELY(flags & ARG_TEST)) 
			return 1; 
		FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(arg & REG_MASK) 
			| TA(reg_ar) | IMM(argw), ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) ? reg_ar : MOVABLE_INS)); 
		return -1; 
	} 
	return 0; 
} 
 
/* See getput_arg below. 
   Note: can_cache is called only for binary operators. Those 
   operators always uses word arguments without write back. */ 
static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw) 
{ 
	SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM)); 
 
	/* Simple operation except for updates. */ 
	if (arg & OFFS_REG_MASK) { 
		argw &= 0x3; 
		next_argw &= 0x3; 
		if (argw && argw == next_argw && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK))) 
			return 1; 
		return 0; 
	} 
 
	if (arg == next_arg) { 
		if (((next_argw - argw) <= SIMM_MAX && (next_argw - argw) >= SIMM_MIN)) 
			return 1; 
		return 0; 
	} 
 
	return 0; 
} 
 
/* Emit the necessary instructions. See can_cache above. */ 
static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw) 
{ 
	sljit_s32 tmp_ar, base, delay_slot; 
 
	SLJIT_ASSERT(arg & SLJIT_MEM); 
	if (!(next_arg & SLJIT_MEM)) { 
		next_arg = 0; 
		next_argw = 0; 
	} 
 
	if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) { 
		tmp_ar = reg_ar; 
		delay_slot = reg_ar; 
	} 
	else { 
		tmp_ar = DR(TMP_REG1); 
		delay_slot = MOVABLE_INS; 
	} 
	base = arg & REG_MASK; 
 
	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { 
		argw &= 0x3; 
 
		/* Using the cache. */ 
		if (argw == compiler->cache_argw) { 
			if (arg == compiler->cache_arg) 
				return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot); 
 
			if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) { 
				if (arg == next_arg && argw == (next_argw & 0x3)) { 
					compiler->cache_arg = arg; 
					compiler->cache_argw = argw; 
					FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(TMP_REG3), DR(TMP_REG3))); 
					return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot); 
				} 
				FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | DA(tmp_ar), tmp_ar)); 
				return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot); 
			} 
		} 
 
		if (SLJIT_UNLIKELY(argw)) { 
			compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK); 
			compiler->cache_argw = argw; 
			FAIL_IF(push_inst(compiler, SLL_W | T(OFFS_REG(arg)) | D(TMP_REG3) | SH_IMM(argw), DR(TMP_REG3))); 
		} 
 
		if (arg == next_arg && argw == (next_argw & 0x3)) { 
			compiler->cache_arg = arg; 
			compiler->cache_argw = argw; 
			FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? OFFS_REG(arg) : TMP_REG3) | D(TMP_REG3), DR(TMP_REG3))); 
			tmp_ar = DR(TMP_REG3); 
		} 
		else 
			FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? OFFS_REG(arg) : TMP_REG3) | DA(tmp_ar), tmp_ar)); 
		return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot); 
	} 
 
	if (compiler->cache_arg == arg && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) { 
		if (argw != compiler->cache_argw) { 
			FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3))); 
			compiler->cache_argw = argw; 
		} 
		return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot); 
	} 
 
	if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) { 
		if (argw != compiler->cache_argw) 
			FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3))); 
	} 
	else { 
		compiler->cache_arg = SLJIT_MEM; 
		FAIL_IF(load_immediate(compiler, DR(TMP_REG3), argw)); 
	} 
	compiler->cache_argw = argw; 
 
	if (!base) 
		return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot); 
 
	if (arg == next_arg && next_argw - argw <= SIMM_MAX && next_argw - argw >= SIMM_MIN) { 
		compiler->cache_arg = arg; 
		FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(base) | D(TMP_REG3), DR(TMP_REG3))); 
		return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot); 
	} 
 
	FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(base) | DA(tmp_ar), tmp_ar)); 
	return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot); 
} 
 
static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw) 
{ 
	sljit_s32 tmp_ar, base, delay_slot; 
 
	if (getput_arg_fast(compiler, flags, reg_ar, arg, argw)) 
		return compiler->error; 
 
	if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) { 
		tmp_ar = reg_ar; 
		delay_slot = reg_ar; 
	} 
	else { 
		tmp_ar = DR(TMP_REG1); 
		delay_slot = MOVABLE_INS; 
	} 
	base = arg & REG_MASK; 
 
	if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { 
		argw &= 0x3; 
 
		if (SLJIT_UNLIKELY(argw)) { 
			FAIL_IF(push_inst(compiler, SLL_W | T(OFFS_REG(arg)) | DA(tmp_ar) | SH_IMM(argw), tmp_ar)); 
			FAIL_IF(push_inst(compiler, ADDU_W | S(base) | TA(tmp_ar) | DA(tmp_ar), tmp_ar)); 
		} 
		else 
			FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(OFFS_REG(arg)) | DA(tmp_ar), tmp_ar)); 
		return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot); 
	} 
 
	FAIL_IF(load_immediate(compiler, tmp_ar, argw)); 
 
	if (base != 0) 
		FAIL_IF(push_inst(compiler, ADDU_W | S(base) | TA(tmp_ar) | DA(tmp_ar), tmp_ar)); 
 
	return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot); 
} 
 
static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w) 
{ 
	if (getput_arg_fast(compiler, flags, reg, arg1, arg1w)) 
		return compiler->error; 
	return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w); 
} 
 
static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, 
	sljit_s32 dst, sljit_sw dstw, 
	sljit_s32 src1, sljit_sw src1w, 
	sljit_s32 src2, sljit_sw src2w) 
{ 
	/* arg1 goes to TMP_REG1 or src reg 
	   arg2 goes to TMP_REG2, imm or src reg 
	   TMP_REG3 can be used for caching 
	   result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */ 
	sljit_s32 dst_r = TMP_REG2; 
	sljit_s32 src1_r; 
	sljit_sw src2_r = 0; 
	sljit_s32 sugg_src2_r = TMP_REG2; 
 
	if (!(flags & ALT_KEEP_CACHE)) { 
		compiler->cache_arg = 0; 
		compiler->cache_argw = 0; 
	} 
 
	if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) { 
		SLJIT_ASSERT(HAS_FLAGS(op)); 
		flags |= UNUSED_DEST; 
	} 
	else if (FAST_IS_REG(dst)) { 
		dst_r = dst; 
		flags |= REG_DEST; 
		if (op >= SLJIT_MOV && op <= SLJIT_MOV_P) 
			sugg_src2_r = dst_r; 
	} 
	else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, DR(TMP_REG1), dst, dstw)) 
		flags |= SLOW_DEST; 
 
	if (flags & IMM_OP) { 
		if ((src2 & SLJIT_IMM) && src2w) { 
			if ((!(flags & LOGICAL_OP) && (src2w <= SIMM_MAX && src2w >= SIMM_MIN)) 
				|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_MAX))) { 
				flags |= SRC2_IMM; 
				src2_r = src2w; 
			} 
		} 
		if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) { 
			if ((!(flags & LOGICAL_OP) && (src1w <= SIMM_MAX && src1w >= SIMM_MIN)) 
				|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_MAX))) { 
				flags |= SRC2_IMM; 
				src2_r = src1w; 
 
				/* And swap arguments. */ 
				src1 = src2; 
				src1w = src2w; 
				src2 = SLJIT_IMM; 
				/* src2w = src2_r unneeded. */ 
			} 
		} 
	} 
 
	/* Source 1. */ 
	if (FAST_IS_REG(src1)) { 
		src1_r = src1; 
		flags |= REG1_SOURCE; 
	} 
	else if (src1 & SLJIT_IMM) { 
		if (src1w) { 
			FAIL_IF(load_immediate(compiler, DR(TMP_REG1), src1w)); 
			src1_r = TMP_REG1; 
		} 
		else 
			src1_r = 0; 
	} 
	else { 
		if (getput_arg_fast(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w)) 
			FAIL_IF(compiler->error); 
		else 
			flags |= SLOW_SRC1; 
		src1_r = TMP_REG1; 
	} 
 
	/* Source 2. */ 
	if (FAST_IS_REG(src2)) { 
		src2_r = src2; 
		flags |= REG2_SOURCE; 
		if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOV_P) 
			dst_r = src2_r; 
	} 
	else if (src2 & SLJIT_IMM) { 
		if (!(flags & SRC2_IMM)) { 
			if (src2w) { 
				FAIL_IF(load_immediate(compiler, DR(sugg_src2_r), src2w)); 
				src2_r = sugg_src2_r; 
			} 
			else { 
				src2_r = 0; 
				if ((op >= SLJIT_MOV && op <= SLJIT_MOV_P) && (dst & SLJIT_MEM)) 
					dst_r = 0; 
			} 
		} 
	} 
	else { 
		if (getput_arg_fast(compiler, flags | LOAD_DATA, DR(sugg_src2_r), src2, src2w)) 
			FAIL_IF(compiler->error); 
		else 
			flags |= SLOW_SRC2; 
		src2_r = sugg_src2_r; 
	} 
 
	if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) { 
		SLJIT_ASSERT(src2_r == TMP_REG2); 
		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) { 
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG2), src2, src2w, src1, src1w)); 
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, dst, dstw)); 
		} 
		else { 
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, src2, src2w)); 
			FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG2), src2, src2w, dst, dstw)); 
		} 
	} 
	else if (flags & SLOW_SRC1) 
		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, dst, dstw)); 
	else if (flags & SLOW_SRC2) 
		FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(sugg_src2_r), src2, src2w, dst, dstw)); 
 
	FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r)); 
 
	if (dst & SLJIT_MEM) { 
		if (!(flags & SLOW_DEST)) { 
			getput_arg_fast(compiler, flags, DR(dst_r), dst, dstw); 
			return compiler->error; 
		} 
		return getput_arg(compiler, flags, DR(dst_r), dst, dstw, 0, 0); 
	} 
 
	return SLJIT_SUCCESS; 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) 
{ 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
	sljit_s32 int_op = op & SLJIT_I32_OP; 
#endif 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_op0(compiler, op)); 
 
	op = GET_OPCODE(op); 
	switch (op) { 
	case SLJIT_BREAKPOINT: 
		return push_inst(compiler, BREAK, UNMOVABLE_INS); 
	case SLJIT_NOP: 
		return push_inst(compiler, NOP, UNMOVABLE_INS); 
	case SLJIT_LMUL_UW: 
	case SLJIT_LMUL_SW: 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
		FAIL_IF(push_inst(compiler, (op == SLJIT_LMUL_UW ? DMULU : DMUL) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG3), DR(TMP_REG3))); 
		FAIL_IF(push_inst(compiler, (op == SLJIT_LMUL_UW ? DMUHU : DMUH) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG1), DR(TMP_REG1))); 
#else /* !SLJIT_CONFIG_MIPS_64 */ 
		FAIL_IF(push_inst(compiler, (op == SLJIT_LMUL_UW ? MULU : MUL) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG3), DR(TMP_REG3))); 
		FAIL_IF(push_inst(compiler, (op == SLJIT_LMUL_UW ? MUHU : MUH) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG1), DR(TMP_REG1))); 
#endif /* SLJIT_CONFIG_MIPS_64 */ 
		FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | TA(0) | D(SLJIT_R0), DR(SLJIT_R0))); 
		return push_inst(compiler, ADDU_W | S(TMP_REG1) | TA(0) | D(SLJIT_R1), DR(SLJIT_R1)); 
#else /* !SLJIT_MIPS_R6 */ 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
		FAIL_IF(push_inst(compiler, (op == SLJIT_LMUL_UW ? DMULTU : DMULT) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS)); 
#else /* !SLJIT_CONFIG_MIPS_64 */ 
		FAIL_IF(push_inst(compiler, (op == SLJIT_LMUL_UW ? MULTU : MULT) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS)); 
#endif /* SLJIT_CONFIG_MIPS_64 */ 
		FAIL_IF(push_inst(compiler, MFLO | D(SLJIT_R0), DR(SLJIT_R0))); 
		return push_inst(compiler, MFHI | D(SLJIT_R1), DR(SLJIT_R1)); 
#endif /* SLJIT_MIPS_R6 */ 
	case SLJIT_DIVMOD_UW: 
	case SLJIT_DIVMOD_SW: 
	case SLJIT_DIV_UW: 
	case SLJIT_DIV_SW: 
		SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments); 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
		if (int_op) { 
			FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? DIVU : DIV) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG3), DR(TMP_REG3))); 
			FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? MODU : MOD) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG1), DR(TMP_REG1))); 
		} 
		else { 
			FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? DDIVU : DDIV) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG3), DR(TMP_REG3))); 
			FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? DMODU : DMOD) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG1), DR(TMP_REG1))); 
		} 
#else /* !SLJIT_CONFIG_MIPS_64 */ 
		FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? DIVU : DIV) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG3), DR(TMP_REG3))); 
		FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? MODU : MOD) | S(SLJIT_R0) | T(SLJIT_R1) | D(TMP_REG1), DR(TMP_REG1))); 
#endif /* SLJIT_CONFIG_MIPS_64 */ 
		FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | TA(0) | D(SLJIT_R0), DR(SLJIT_R0))); 
		return (op >= SLJIT_DIV_UW) ? SLJIT_SUCCESS : push_inst(compiler, ADDU_W | S(TMP_REG1) | TA(0) | D(SLJIT_R1), DR(SLJIT_R1)); 
#else /* !SLJIT_MIPS_R6 */ 
#if !(defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1) 
		FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS)); 
		FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS)); 
#endif /* !SLJIT_MIPS_R1 */ 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
		if (int_op) 
			FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? DIVU : DIV) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS)); 
		else 
			FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? DDIVU : DDIV) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS)); 
#else /* !SLJIT_CONFIG_MIPS_64 */ 
		FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_DIV_UW ? DIVU : DIV) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS)); 
#endif /* SLJIT_CONFIG_MIPS_64 */ 
		FAIL_IF(push_inst(compiler, MFLO | D(SLJIT_R0), DR(SLJIT_R0))); 
		return (op >= SLJIT_DIV_UW) ? SLJIT_SUCCESS : push_inst(compiler, MFHI | D(SLJIT_R1), DR(SLJIT_R1)); 
#endif /* SLJIT_MIPS_R6 */ 
	} 
 
	return SLJIT_SUCCESS; 
} 
 
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1) 
static sljit_s32 emit_prefetch(struct sljit_compiler *compiler, 
        sljit_s32 src, sljit_sw srcw) 
{ 
	if (!(src & OFFS_REG_MASK)) { 
		if (srcw <= SIMM_MAX && srcw >= SIMM_MIN) 
			return push_inst(compiler, PREF | S(src & REG_MASK) | IMM(srcw), MOVABLE_INS); 
 
		FAIL_IF(load_immediate(compiler, DR(TMP_REG1), srcw)); 
		return push_inst(compiler, PREFX | S(src & REG_MASK) | T(TMP_REG1), MOVABLE_INS); 
	} 
 
	srcw &= 0x3; 
 
	if (SLJIT_UNLIKELY(srcw != 0)) { 
		FAIL_IF(push_inst(compiler, SLL_W | T(OFFS_REG(src)) | D(TMP_REG1) | SH_IMM(srcw), DR(TMP_REG1))); 
		return push_inst(compiler, PREFX | S(src & REG_MASK) | T(TMP_REG1), MOVABLE_INS); 
	} 
 
	return push_inst(compiler, PREFX | S(src & REG_MASK) | T(OFFS_REG(src)), MOVABLE_INS); 
} 
#endif 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, 
	sljit_s32 dst, sljit_sw dstw, 
	sljit_s32 src, sljit_sw srcw) 
{ 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#	define flags 0 
#else 
	sljit_s32 flags = 0; 
#endif 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw)); 
	ADJUST_LOCAL_OFFSET(dst, dstw); 
	ADJUST_LOCAL_OFFSET(src, srcw); 
 
	if (dst == SLJIT_UNUSED && !HAS_FLAGS(op)) { 
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1) 
		if (op <= SLJIT_MOV_P && (src & SLJIT_MEM)) 
			return emit_prefetch(compiler, src, srcw); 
#endif 
		return SLJIT_SUCCESS; 
	} 
 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
	if ((op & SLJIT_I32_OP) && GET_OPCODE(op) >= SLJIT_NOT) 
		flags |= INT_DATA | SIGNED_DATA; 
#endif 
 
	switch (GET_OPCODE(op)) { 
	case SLJIT_MOV: 
	case SLJIT_MOV_P: 
		return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw); 
 
	case SLJIT_MOV_U32: 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
		return emit_op(compiler, SLJIT_MOV_U32, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw); 
#else 
		return emit_op(compiler, SLJIT_MOV_U32, INT_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u32)srcw : srcw); 
#endif 
 
	case SLJIT_MOV_S32: 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
		return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw); 
#else 
		return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s32)srcw : srcw); 
#endif 
 
	case SLJIT_MOV_U8: 
		return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8)srcw : srcw); 
 
	case SLJIT_MOV_S8: 
		return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8)srcw : srcw); 
 
	case SLJIT_MOV_U16: 
		return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16)srcw : srcw); 
 
	case SLJIT_MOV_S16: 
		return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16)srcw : srcw); 
 
	case SLJIT_NOT: 
		return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw); 
 
	case SLJIT_NEG: 
		return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), flags | IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw); 
 
	case SLJIT_CLZ: 
		return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw); 
	} 
 
	SLJIT_UNREACHABLE(); 
	return SLJIT_SUCCESS; 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#	undef flags 
#endif 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, 
	sljit_s32 dst, sljit_sw dstw, 
	sljit_s32 src1, sljit_sw src1w, 
	sljit_s32 src2, sljit_sw src2w) 
{ 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#	define flags 0 
#else 
	sljit_s32 flags = 0; 
#endif 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); 
	ADJUST_LOCAL_OFFSET(dst, dstw); 
	ADJUST_LOCAL_OFFSET(src1, src1w); 
	ADJUST_LOCAL_OFFSET(src2, src2w); 
 
	if (dst == SLJIT_UNUSED && !HAS_FLAGS(op)) 
		return SLJIT_SUCCESS; 
 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
	if (op & SLJIT_I32_OP) { 
		flags |= INT_DATA | SIGNED_DATA; 
		if (src1 & SLJIT_IMM) 
			src1w = (sljit_s32)src1w; 
		if (src2 & SLJIT_IMM) 
			src2w = (sljit_s32)src2w; 
	} 
#endif 
 
	switch (GET_OPCODE(op)) { 
	case SLJIT_ADD: 
	case SLJIT_ADDC: 
		return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w); 
 
	case SLJIT_SUB: 
	case SLJIT_SUBC: 
		return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w); 
 
	case SLJIT_MUL: 
		return emit_op(compiler, op, flags | CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w); 
 
	case SLJIT_AND: 
	case SLJIT_OR: 
	case SLJIT_XOR: 
		return emit_op(compiler, op, flags | CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w); 
 
	case SLJIT_SHL: 
	case SLJIT_LSHR: 
	case SLJIT_ASHR: 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
		if (src2 & SLJIT_IMM) 
			src2w &= 0x1f; 
#else 
		if (src2 & SLJIT_IMM) { 
			if (op & SLJIT_I32_OP) 
				src2w &= 0x1f; 
			else 
				src2w &= 0x3f; 
		} 
#endif 
		return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w); 
	} 
 
	SLJIT_UNREACHABLE(); 
	return SLJIT_SUCCESS; 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#	undef flags 
#endif 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg) 
{ 
	CHECK_REG_INDEX(check_sljit_get_register_index(reg)); 
	return reg_map[reg]; 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg) 
{ 
	CHECK_REG_INDEX(check_sljit_get_float_register_index(reg)); 
	return FR(reg); 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler, 
	void *instruction, sljit_s32 size) 
{ 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_op_custom(compiler, instruction, size)); 
 
	return push_inst(compiler, *(sljit_ins*)instruction, UNMOVABLE_INS); 
} 
 
/* --------------------------------------------------------------------- */ 
/*  Floating point operators                                             */ 
/* --------------------------------------------------------------------- */ 
 
#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_F32_OP) >> 7)) 
#define FMT(op) (((op & SLJIT_F32_OP) ^ SLJIT_F32_OP) << (21 - 8)) 
 
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op, 
	sljit_s32 dst, sljit_sw dstw, 
	sljit_s32 src, sljit_sw srcw) 
{ 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#	define flags 0 
#else 
	sljit_s32 flags = (GET_OPCODE(op) == SLJIT_CONV_SW_FROM_F64) << 21; 
#endif 
 
	if (src & SLJIT_MEM) { 
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG1), src, srcw, dst, dstw)); 
		src = TMP_FREG1; 
	} 
 
	FAIL_IF(push_inst(compiler, (TRUNC_W_S ^ (flags >> 19)) | FMT(op) | FS(src) | FD(TMP_FREG1), MOVABLE_INS)); 
 
	if (FAST_IS_REG(dst)) 
		return push_inst(compiler, MFC1 | flags | T(dst) | FS(TMP_FREG1), MOVABLE_INS); 
 
	/* Store the integer value from a VFP register. */ 
	return emit_op_mem2(compiler, flags ? DOUBLE_DATA : SINGLE_DATA, FR(TMP_FREG1), dst, dstw, 0, 0); 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#	undef is_long 
#endif 
} 
 
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op, 
	sljit_s32 dst, sljit_sw dstw, 
	sljit_s32 src, sljit_sw srcw) 
{ 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#	define flags 0 
#else 
	sljit_s32 flags = (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_SW) << 21; 
#endif 
 
	sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; 
 
	if (FAST_IS_REG(src)) 
		FAIL_IF(push_inst(compiler, MTC1 | flags | T(src) | FS(TMP_FREG1), MOVABLE_INS)); 
	else if (src & SLJIT_MEM) { 
		/* Load the integer value into a VFP register. */ 
		FAIL_IF(emit_op_mem2(compiler, ((flags) ? DOUBLE_DATA : SINGLE_DATA) | LOAD_DATA, FR(TMP_FREG1), src, srcw, dst, dstw)); 
	} 
	else { 
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) 
		if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32) 
			srcw = (sljit_s32)srcw; 
#endif 
		FAIL_IF(load_immediate(compiler, DR(TMP_REG1), srcw)); 
		FAIL_IF(push_inst(compiler, MTC1 | flags | T(TMP_REG1) | FS(TMP_FREG1), MOVABLE_INS)); 
	} 
 
	FAIL_IF(push_inst(compiler, CVT_S_S | flags | (4 << 21) | (((op & SLJIT_F32_OP) ^ SLJIT_F32_OP) >> 8) | FS(TMP_FREG1) | FD(dst_r), MOVABLE_INS)); 
 
	if (dst & SLJIT_MEM) 
		return emit_op_mem2(compiler, FLOAT_DATA(op), FR(TMP_FREG1), dst, dstw, 0, 0); 
	return SLJIT_SUCCESS; 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#	undef flags 
#endif 
} 
 
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op, 
	sljit_s32 src1, sljit_sw src1w, 
	sljit_s32 src2, sljit_sw src2w) 
{ 
	sljit_ins inst; 
 
	if (src1 & SLJIT_MEM) { 
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG1), src1, src1w, src2, src2w)); 
		src1 = TMP_FREG1; 
	} 
 
	if (src2 & SLJIT_MEM) { 
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG2), src2, src2w, 0, 0)); 
		src2 = TMP_FREG2; 
	} 
 
	switch (GET_FLAG_TYPE(op)) { 
	case SLJIT_EQUAL_F64: 
	case SLJIT_NOT_EQUAL_F64: 
		inst = C_UEQ_S; 
		break; 
	case SLJIT_LESS_F64: 
	case SLJIT_GREATER_EQUAL_F64: 
		inst = C_ULT_S; 
		break; 
	case SLJIT_GREATER_F64: 
	case SLJIT_LESS_EQUAL_F64: 
		inst = C_ULE_S; 
		break; 
	default: 
		SLJIT_ASSERT(GET_FLAG_TYPE(op) == SLJIT_UNORDERED_F64 || GET_FLAG_TYPE(op) == SLJIT_ORDERED_F64); 
		inst = C_UN_S; 
		break; 
	} 
	return push_inst(compiler, inst | FMT(op) | FT(src2) | FS(src1) | C_FD, UNMOVABLE_INS); 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, 
	sljit_s32 dst, sljit_sw dstw, 
	sljit_s32 src, sljit_sw srcw) 
{ 
	sljit_s32 dst_r; 
 
	CHECK_ERROR(); 
	compiler->cache_arg = 0; 
	compiler->cache_argw = 0; 
 
	SLJIT_COMPILE_ASSERT((SLJIT_F32_OP == 0x100) && !(DOUBLE_DATA & 0x2), float_transfer_bit_error); 
	SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw); 
 
	if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_F32) 
		op ^= SLJIT_F32_OP; 
 
	dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; 
 
	if (src & SLJIT_MEM) { 
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(dst_r), src, srcw, dst, dstw)); 
		src = dst_r; 
	} 
 
	switch (GET_OPCODE(op)) { 
	case SLJIT_MOV_F64: 
		if (src != dst_r) { 
			if (dst_r != TMP_FREG1) 
				FAIL_IF(push_inst(compiler, MOV_S | FMT(op) | FS(src) | FD(dst_r), MOVABLE_INS)); 
			else 
				dst_r = src; 
		} 
		break; 
	case SLJIT_NEG_F64: 
		FAIL_IF(push_inst(compiler, NEG_S | FMT(op) | FS(src) | FD(dst_r), MOVABLE_INS)); 
		break; 
	case SLJIT_ABS_F64: 
		FAIL_IF(push_inst(compiler, ABS_S | FMT(op) | FS(src) | FD(dst_r), MOVABLE_INS)); 
		break; 
	case SLJIT_CONV_F64_FROM_F32: 
		FAIL_IF(push_inst(compiler, CVT_S_S | ((op & SLJIT_F32_OP) ? 1 : (1 << 21)) | FS(src) | FD(dst_r), MOVABLE_INS)); 
		op ^= SLJIT_F32_OP; 
		break; 
	} 
 
	if (dst & SLJIT_MEM) 
		return emit_op_mem2(compiler, FLOAT_DATA(op), FR(dst_r), dst, dstw, 0, 0); 
	return SLJIT_SUCCESS; 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, 
	sljit_s32 dst, sljit_sw dstw, 
	sljit_s32 src1, sljit_sw src1w, 
	sljit_s32 src2, sljit_sw src2w) 
{ 
	sljit_s32 dst_r, flags = 0; 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); 
	ADJUST_LOCAL_OFFSET(dst, dstw); 
	ADJUST_LOCAL_OFFSET(src1, src1w); 
	ADJUST_LOCAL_OFFSET(src2, src2w); 
 
	compiler->cache_arg = 0; 
	compiler->cache_argw = 0; 
 
	dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG2; 
 
	if (src1 & SLJIT_MEM) { 
		if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG1), src1, src1w)) { 
			FAIL_IF(compiler->error); 
			src1 = TMP_FREG1; 
		} else 
			flags |= SLOW_SRC1; 
	} 
 
	if (src2 & SLJIT_MEM) { 
		if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG2), src2, src2w)) { 
			FAIL_IF(compiler->error); 
			src2 = TMP_FREG2; 
		} else 
			flags |= SLOW_SRC2; 
	} 
 
	if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) { 
		if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) { 
			FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG2), src2, src2w, src1, src1w)); 
			FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG1), src1, src1w, dst, dstw)); 
		} 
		else { 
			FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG1), src1, src1w, src2, src2w)); 
			FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG2), src2, src2w, dst, dstw)); 
		} 
	} 
	else if (flags & SLOW_SRC1) 
		FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG1), src1, src1w, dst, dstw)); 
	else if (flags & SLOW_SRC2) 
		FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, FR(TMP_FREG2), src2, src2w, dst, dstw)); 
 
	if (flags & SLOW_SRC1) 
		src1 = TMP_FREG1; 
	if (flags & SLOW_SRC2) 
		src2 = TMP_FREG2; 
 
	switch (GET_OPCODE(op)) { 
	case SLJIT_ADD_F64: 
		FAIL_IF(push_inst(compiler, ADD_S | FMT(op) | FT(src2) | FS(src1) | FD(dst_r), MOVABLE_INS)); 
		break; 
 
	case SLJIT_SUB_F64: 
		FAIL_IF(push_inst(compiler, SUB_S | FMT(op) | FT(src2) | FS(src1) | FD(dst_r), MOVABLE_INS)); 
		break; 
 
	case SLJIT_MUL_F64: 
		FAIL_IF(push_inst(compiler, MUL_S | FMT(op) | FT(src2) | FS(src1) | FD(dst_r), MOVABLE_INS)); 
		break; 
 
	case SLJIT_DIV_F64: 
		FAIL_IF(push_inst(compiler, DIV_S | FMT(op) | FT(src2) | FS(src1) | FD(dst_r), MOVABLE_INS)); 
		break; 
	} 
 
	if (dst_r == TMP_FREG2) 
		FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), FR(TMP_FREG2), dst, dstw, 0, 0)); 
 
	return SLJIT_SUCCESS; 
} 
 
/* --------------------------------------------------------------------- */ 
/*  Other instructions                                                   */ 
/* --------------------------------------------------------------------- */ 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) 
{ 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw)); 
	ADJUST_LOCAL_OFFSET(dst, dstw); 
 
	if (FAST_IS_REG(dst)) 
		return push_inst(compiler, ADDU_W | SA(RETURN_ADDR_REG) | TA(0) | D(dst), DR(dst)); 
 
	/* Memory. */ 
	return emit_op_mem(compiler, WORD_DATA, RETURN_ADDR_REG, dst, dstw); 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw) 
{ 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_fast_return(compiler, src, srcw)); 
	ADJUST_LOCAL_OFFSET(src, srcw); 
 
	if (FAST_IS_REG(src)) 
		FAIL_IF(push_inst(compiler, ADDU_W | S(src) | TA(0) | DA(RETURN_ADDR_REG), RETURN_ADDR_REG)); 
	else 
		FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RETURN_ADDR_REG, src, srcw)); 
 
	FAIL_IF(push_inst(compiler, JR | SA(RETURN_ADDR_REG), UNMOVABLE_INS)); 
	return push_inst(compiler, NOP, UNMOVABLE_INS); 
} 
 
/* --------------------------------------------------------------------- */ 
/*  Conditional instructions                                             */ 
/* --------------------------------------------------------------------- */ 
 
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) 
{ 
	struct sljit_label *label; 
 
	CHECK_ERROR_PTR(); 
	CHECK_PTR(check_sljit_emit_label(compiler)); 
 
	if (compiler->last_label && compiler->last_label->size == compiler->size) 
		return compiler->last_label; 
 
	label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); 
	PTR_FAIL_IF(!label); 
	set_label(label, compiler); 
	compiler->delay_slot = UNMOVABLE_INS; 
	return label; 
} 
 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
#define JUMP_LENGTH	4 
#else 
#define JUMP_LENGTH	8 
#endif 
 
#define BR_Z(src) \ 
	inst = BEQ | SA(src) | TA(0) | JUMP_LENGTH; \ 
	flags = IS_BIT26_COND; \ 
	delay_check = src; 
 
#define BR_NZ(src) \ 
	inst = BNE | SA(src) | TA(0) | JUMP_LENGTH; \ 
	flags = IS_BIT26_COND; \ 
	delay_check = src; 
 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
 
#define BR_T() \ 
	inst = BC1NEZ; \ 
	flags = IS_BIT23_COND; \ 
	delay_check = FCSR_FCC; 
#define BR_F() \ 
	inst = BC1EQZ; \ 
	flags = IS_BIT23_COND; \ 
	delay_check = FCSR_FCC; 
 
#else /* !SLJIT_MIPS_R6 */ 
 
#define BR_T() \ 
	inst = BC1T | JUMP_LENGTH; \ 
	flags = IS_BIT16_COND; \ 
	delay_check = FCSR_FCC; 
#define BR_F() \ 
	inst = BC1F | JUMP_LENGTH; \ 
	flags = IS_BIT16_COND; \ 
	delay_check = FCSR_FCC; 
 
#endif /* SLJIT_MIPS_R6 */ 
 
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type) 
{ 
	struct sljit_jump *jump; 
	sljit_ins inst; 
	sljit_s32 flags = 0; 
	sljit_s32 delay_check = UNMOVABLE_INS; 
 
	CHECK_ERROR_PTR(); 
	CHECK_PTR(check_sljit_emit_jump(compiler, type)); 
 
	jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); 
	PTR_FAIL_IF(!jump); 
	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); 
	type &= 0xff; 
 
	switch (type) { 
	case SLJIT_EQUAL: 
		BR_NZ(EQUAL_FLAG); 
		break; 
	case SLJIT_NOT_EQUAL: 
		BR_Z(EQUAL_FLAG); 
		break; 
	case SLJIT_LESS: 
	case SLJIT_GREATER: 
	case SLJIT_SIG_LESS: 
	case SLJIT_SIG_GREATER: 
	case SLJIT_OVERFLOW: 
	case SLJIT_MUL_OVERFLOW: 
		BR_Z(OTHER_FLAG); 
		break; 
	case SLJIT_GREATER_EQUAL: 
	case SLJIT_LESS_EQUAL: 
	case SLJIT_SIG_GREATER_EQUAL: 
	case SLJIT_SIG_LESS_EQUAL: 
	case SLJIT_NOT_OVERFLOW: 
	case SLJIT_MUL_NOT_OVERFLOW: 
		BR_NZ(OTHER_FLAG); 
		break; 
	case SLJIT_NOT_EQUAL_F64: 
	case SLJIT_GREATER_EQUAL_F64: 
	case SLJIT_GREATER_F64: 
	case SLJIT_ORDERED_F64: 
		BR_T(); 
		break; 
	case SLJIT_EQUAL_F64: 
	case SLJIT_LESS_F64: 
	case SLJIT_LESS_EQUAL_F64: 
	case SLJIT_UNORDERED_F64: 
		BR_F(); 
		break; 
	default: 
		/* Not conditional branch. */ 
		inst = 0; 
		break; 
	} 
 
	jump->flags |= flags; 
	if (compiler->delay_slot == MOVABLE_INS || (compiler->delay_slot != UNMOVABLE_INS && compiler->delay_slot != delay_check)) 
		jump->flags |= IS_MOVABLE; 
 
	if (inst) 
		PTR_FAIL_IF(push_inst(compiler, inst, UNMOVABLE_INS)); 
 
	PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0)); 
 
	if (type <= SLJIT_JUMP) 
		PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS)); 
	else { 
		jump->flags |= IS_JAL; 
		PTR_FAIL_IF(push_inst(compiler, JALR | S(TMP_REG2) | DA(RETURN_ADDR_REG), UNMOVABLE_INS)); 
	} 
 
	jump->addr = compiler->size; 
	PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS)); 
	return jump; 
} 
 
#define RESOLVE_IMM1() \ 
	if (src1 & SLJIT_IMM) { \ 
		if (src1w) { \ 
			PTR_FAIL_IF(load_immediate(compiler, DR(TMP_REG1), src1w)); \ 
			src1 = TMP_REG1; \ 
		} \ 
		else \ 
			src1 = 0; \ 
	} 
 
#define RESOLVE_IMM2() \ 
	if (src2 & SLJIT_IMM) { \ 
		if (src2w) { \ 
			PTR_FAIL_IF(load_immediate(compiler, DR(TMP_REG2), src2w)); \ 
			src2 = TMP_REG2; \ 
		} \ 
		else \ 
			src2 = 0; \ 
	} 
 
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type, 
	sljit_s32 src1, sljit_sw src1w, 
	sljit_s32 src2, sljit_sw src2w) 
{ 
	struct sljit_jump *jump; 
	sljit_s32 flags; 
	sljit_ins inst; 
 
	CHECK_ERROR_PTR(); 
	CHECK_PTR(check_sljit_emit_cmp(compiler, type, src1, src1w, src2, src2w)); 
	ADJUST_LOCAL_OFFSET(src1, src1w); 
	ADJUST_LOCAL_OFFSET(src2, src2w); 
 
	compiler->cache_arg = 0; 
	compiler->cache_argw = 0; 
	flags = ((type & SLJIT_I32_OP) ? INT_DATA : WORD_DATA) | LOAD_DATA; 
	if (src1 & SLJIT_MEM) { 
		PTR_FAIL_IF(emit_op_mem2(compiler, flags, DR(TMP_REG1), src1, src1w, src2, src2w)); 
		src1 = TMP_REG1; 
	} 
	if (src2 & SLJIT_MEM) { 
		PTR_FAIL_IF(emit_op_mem2(compiler, flags, DR(TMP_REG2), src2, src2w, 0, 0)); 
		src2 = TMP_REG2; 
	} 
 
	jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); 
	PTR_FAIL_IF(!jump); 
	set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); 
	type &= 0xff; 
 
	if (type <= SLJIT_NOT_EQUAL) { 
		RESOLVE_IMM1(); 
		RESOLVE_IMM2(); 
		jump->flags |= IS_BIT26_COND; 
		if (compiler->delay_slot == MOVABLE_INS || (compiler->delay_slot != UNMOVABLE_INS && compiler->delay_slot != DR(src1) && compiler->delay_slot != DR(src2))) 
			jump->flags |= IS_MOVABLE; 
		PTR_FAIL_IF(push_inst(compiler, (type == SLJIT_EQUAL ? BNE : BEQ) | S(src1) | T(src2) | JUMP_LENGTH, UNMOVABLE_INS)); 
	} 
	else if (type >= SLJIT_SIG_LESS && (((src1 & SLJIT_IMM) && (src1w == 0)) || ((src2 & SLJIT_IMM) && (src2w == 0)))) { 
		inst = NOP; 
		if ((src1 & SLJIT_IMM) && (src1w == 0)) { 
			RESOLVE_IMM2(); 
			switch (type) { 
			case SLJIT_SIG_LESS: 
				inst = BLEZ; 
				jump->flags |= IS_BIT26_COND; 
				break; 
			case SLJIT_SIG_GREATER_EQUAL: 
				inst = BGTZ; 
				jump->flags |= IS_BIT26_COND; 
				break; 
			case SLJIT_SIG_GREATER: 
				inst = BGEZ; 
				jump->flags |= IS_BIT16_COND; 
				break; 
			case SLJIT_SIG_LESS_EQUAL: 
				inst = BLTZ; 
				jump->flags |= IS_BIT16_COND; 
				break; 
			} 
			src1 = src2; 
		} 
		else { 
			RESOLVE_IMM1(); 
			switch (type) { 
			case SLJIT_SIG_LESS: 
				inst = BGEZ; 
				jump->flags |= IS_BIT16_COND; 
				break; 
			case SLJIT_SIG_GREATER_EQUAL: 
				inst = BLTZ; 
				jump->flags |= IS_BIT16_COND; 
				break; 
			case SLJIT_SIG_GREATER: 
				inst = BLEZ; 
				jump->flags |= IS_BIT26_COND; 
				break; 
			case SLJIT_SIG_LESS_EQUAL: 
				inst = BGTZ; 
				jump->flags |= IS_BIT26_COND; 
				break; 
			} 
		} 
		PTR_FAIL_IF(push_inst(compiler, inst | S(src1) | JUMP_LENGTH, UNMOVABLE_INS)); 
	} 
	else { 
		if (type == SLJIT_LESS || type == SLJIT_GREATER_EQUAL || type == SLJIT_SIG_LESS || type == SLJIT_SIG_GREATER_EQUAL) { 
			RESOLVE_IMM1(); 
			if ((src2 & SLJIT_IMM) && src2w <= SIMM_MAX && src2w >= SIMM_MIN) 
				PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_LESS_EQUAL ? SLTIU : SLTI) | S(src1) | T(TMP_REG1) | IMM(src2w), DR(TMP_REG1))); 
			else { 
				RESOLVE_IMM2(); 
				PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_LESS_EQUAL ? SLTU : SLT) | S(src1) | T(src2) | D(TMP_REG1), DR(TMP_REG1))); 
			} 
			type = (type == SLJIT_LESS || type == SLJIT_SIG_LESS) ? SLJIT_NOT_EQUAL : SLJIT_EQUAL; 
		} 
		else { 
			RESOLVE_IMM2(); 
			if ((src1 & SLJIT_IMM) && src1w <= SIMM_MAX && src1w >= SIMM_MIN) 
				PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_LESS_EQUAL ? SLTIU : SLTI) | S(src2) | T(TMP_REG1) | IMM(src1w), DR(TMP_REG1))); 
			else { 
				RESOLVE_IMM1(); 
				PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_LESS_EQUAL ? SLTU : SLT) | S(src2) | T(src1) | D(TMP_REG1), DR(TMP_REG1))); 
			} 
			type = (type == SLJIT_GREATER || type == SLJIT_SIG_GREATER) ? SLJIT_NOT_EQUAL : SLJIT_EQUAL; 
		} 
 
		jump->flags |= IS_BIT26_COND; 
		PTR_FAIL_IF(push_inst(compiler, (type == SLJIT_EQUAL ? BNE : BEQ) | S(TMP_REG1) | TA(0) | JUMP_LENGTH, UNMOVABLE_INS)); 
	} 
 
	PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0)); 
	PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS)); 
	jump->addr = compiler->size; 
	PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS)); 
	return jump; 
} 
 
#undef RESOLVE_IMM1 
#undef RESOLVE_IMM2 
 
#undef JUMP_LENGTH 
#undef BR_Z 
#undef BR_NZ 
#undef BR_T 
#undef BR_F 
 
#undef FLOAT_DATA 
#undef FMT 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw) 
{ 
	struct sljit_jump *jump = NULL; 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_ijump(compiler, type, src, srcw)); 
	ADJUST_LOCAL_OFFSET(src, srcw); 
 
	if (src & SLJIT_IMM) { 
		jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); 
		FAIL_IF(!jump); 
		set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0)); 
		jump->u.target = srcw; 
 
		if (compiler->delay_slot != UNMOVABLE_INS) 
			jump->flags |= IS_MOVABLE; 
 
		FAIL_IF(emit_const(compiler, TMP_REG2, 0)); 
		src = TMP_REG2; 
	} 
	else if (src & SLJIT_MEM) { 
		FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, DR(TMP_REG2), src, srcw)); 
		src = TMP_REG2; 
	} 
 
	FAIL_IF(push_inst(compiler, JR | S(src), UNMOVABLE_INS)); 
	if (jump) 
		jump->addr = compiler->size; 
	FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS)); 
	return SLJIT_SUCCESS; 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, 
	sljit_s32 dst, sljit_sw dstw, 
	sljit_s32 type) 
{ 
	sljit_s32 src_ar, dst_ar; 
	sljit_s32 saved_op = op; 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
	sljit_s32 mem_type = WORD_DATA; 
#else 
	sljit_s32 mem_type = (op & SLJIT_I32_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA; 
#endif 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type)); 
	ADJUST_LOCAL_OFFSET(dst, dstw); 
 
	op = GET_OPCODE(op); 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
	if (op == SLJIT_MOV_S32) 
		mem_type = INT_DATA | SIGNED_DATA; 
#endif 
	dst_ar = DR((op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2); 
 
	compiler->cache_arg = 0; 
	compiler->cache_argw = 0; 
 
	if (op >= SLJIT_ADD && (dst & SLJIT_MEM)) 
		FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, DR(TMP_REG1), dst, dstw, dst, dstw)); 
 
	switch (type & 0xff) { 
	case SLJIT_EQUAL: 
	case SLJIT_NOT_EQUAL: 
		FAIL_IF(push_inst(compiler, SLTIU | SA(EQUAL_FLAG) | TA(dst_ar) | IMM(1), dst_ar)); 
		src_ar = dst_ar; 
		break; 
	case SLJIT_MUL_OVERFLOW: 
	case SLJIT_MUL_NOT_OVERFLOW: 
		FAIL_IF(push_inst(compiler, SLTIU | SA(OTHER_FLAG) | TA(dst_ar) | IMM(1), dst_ar)); 
		src_ar = dst_ar; 
		type ^= 0x1; /* Flip type bit for the XORI below. */ 
		break; 
	case SLJIT_GREATER_F64: 
	case SLJIT_LESS_EQUAL_F64: 
		type ^= 0x1; /* Flip type bit for the XORI below. */ 
	case SLJIT_EQUAL_F64: 
	case SLJIT_NOT_EQUAL_F64: 
	case SLJIT_LESS_F64: 
	case SLJIT_GREATER_EQUAL_F64: 
	case SLJIT_UNORDERED_F64: 
	case SLJIT_ORDERED_F64: 
#if (defined SLJIT_MIPS_R6 && SLJIT_MIPS_R6) 
		FAIL_IF(push_inst(compiler, MFC1 | TA(dst_ar) | FS(TMP_FREG3), dst_ar)); 
#else /* !SLJIT_MIPS_R6 */ 
		FAIL_IF(push_inst(compiler, CFC1 | TA(dst_ar) | DA(FCSR_REG), dst_ar)); 
#endif /* SLJIT_MIPS_R6 */ 
		FAIL_IF(push_inst(compiler, SRL | TA(dst_ar) | DA(dst_ar) | SH_IMM(23), dst_ar)); 
		FAIL_IF(push_inst(compiler, ANDI | SA(dst_ar) | TA(dst_ar) | IMM(1), dst_ar)); 
		src_ar = dst_ar; 
		break; 
 
	default: 
		src_ar = OTHER_FLAG; 
		break; 
	} 
 
	if (type & 0x1) { 
		FAIL_IF(push_inst(compiler, XORI | SA(src_ar) | TA(dst_ar) | IMM(1), dst_ar)); 
		src_ar = dst_ar; 
	} 
 
	if (op < SLJIT_ADD) { 
		if (dst & SLJIT_MEM) 
			return emit_op_mem(compiler, mem_type, src_ar, dst, dstw); 
 
		if (src_ar != dst_ar) 
			return push_inst(compiler, ADDU_W | SA(src_ar) | TA(0) | DA(dst_ar), dst_ar); 
		return SLJIT_SUCCESS; 
	} 
 
	/* OTHER_FLAG cannot be specified as src2 argument at the moment. */ 
	if (DR(TMP_REG2) != src_ar) 
		FAIL_IF(push_inst(compiler, ADDU_W | SA(src_ar) | TA(0) | D(TMP_REG2), DR(TMP_REG2))); 
 
	mem_type |= CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE; 
 
	if (dst & SLJIT_MEM) 
		return emit_op(compiler, saved_op, mem_type, dst, dstw, TMP_REG1, 0, TMP_REG2, 0); 
	return emit_op(compiler, saved_op, mem_type, dst, dstw, dst, dstw, TMP_REG2, 0); 
} 
 
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type, 
	sljit_s32 dst_reg, 
	sljit_s32 src, sljit_sw srcw) 
{ 
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1) 
	sljit_ins ins; 
#endif 
 
	CHECK_ERROR(); 
	CHECK(check_sljit_emit_cmov(compiler, type, dst_reg, src, srcw)); 
 
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1) 
 
	if (SLJIT_UNLIKELY(src & SLJIT_IMM)) { 
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64) 
		if (dst_reg & SLJIT_I32_OP) 
			srcw = (sljit_s32)srcw; 
#endif 
		FAIL_IF(load_immediate(compiler, DR(TMP_REG1), srcw)); 
		src = TMP_REG1; 
		srcw = 0; 
	} 
 
	dst_reg &= ~SLJIT_I32_OP; 
 
	switch (type & 0xff) { 
	case SLJIT_EQUAL: 
		ins = MOVZ | TA(EQUAL_FLAG); 
		break; 
	case SLJIT_NOT_EQUAL: 
		ins = MOVN | TA(EQUAL_FLAG); 
		break; 
	case SLJIT_LESS: 
	case SLJIT_GREATER: 
	case SLJIT_SIG_LESS: 
	case SLJIT_SIG_GREATER: 
	case SLJIT_OVERFLOW: 
	case SLJIT_MUL_OVERFLOW: 
		ins = MOVN | TA(OTHER_FLAG); 
		break; 
	case SLJIT_GREATER_EQUAL: 
	case SLJIT_LESS_EQUAL: 
	case SLJIT_SIG_GREATER_EQUAL: 
	case SLJIT_SIG_LESS_EQUAL: 
	case SLJIT_NOT_OVERFLOW: 
	case SLJIT_MUL_NOT_OVERFLOW: 
		ins = MOVZ | TA(OTHER_FLAG); 
		break; 
	case SLJIT_EQUAL_F64: 
	case SLJIT_LESS_F64: 
	case SLJIT_LESS_EQUAL_F64: 
	case SLJIT_UNORDERED_F64: 
		ins = MOVT; 
		break; 
	case SLJIT_NOT_EQUAL_F64: 
	case SLJIT_GREATER_EQUAL_F64: 
	case SLJIT_GREATER_F64: 
	case SLJIT_ORDERED_F64: 
		ins = MOVF; 
		break; 
	default: 
		ins = MOVZ | TA(OTHER_FLAG); 
		SLJIT_UNREACHABLE(); 
		break; 
	} 
 
	return push_inst(compiler, ins | S(src) | D(dst_reg), DR(dst_reg)); 
 
#else 
	return sljit_emit_cmov_generic(compiler, type, dst_reg, src, srcw); 
#endif 
} 
 
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value) 
{ 
	struct sljit_const *const_; 
	sljit_s32 dst_r; 
 
	CHECK_ERROR_PTR(); 
	CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value)); 
	ADJUST_LOCAL_OFFSET(dst, dstw); 
 
	const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); 
	PTR_FAIL_IF(!const_); 
	set_const(const_, compiler); 
 
	dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2; 
	PTR_FAIL_IF(emit_const(compiler, dst_r, init_value)); 
 
	if (dst & SLJIT_MEM) 
		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0)); 
 
	return const_; 
} 
 
SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) 
{ 
	struct sljit_put_label *put_label; 
	sljit_s32 dst_r; 
 
	CHECK_ERROR_PTR(); 
	CHECK_PTR(check_sljit_emit_put_label(compiler, dst, dstw)); 
	ADJUST_LOCAL_OFFSET(dst, dstw); 
 
	put_label = (struct sljit_put_label*)ensure_abuf(compiler, sizeof(struct sljit_put_label)); 
	PTR_FAIL_IF(!put_label); 
	set_put_label(put_label, compiler, 0); 
 
	dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2; 
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32) 
	PTR_FAIL_IF(emit_const(compiler, dst_r, 0)); 
#else 
	PTR_FAIL_IF(push_inst(compiler, dst_r, UNMOVABLE_INS)); 
	compiler->size += 5; 
#endif 
 
	if (dst & SLJIT_MEM) 
		PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0)); 
 
	return put_label; 
}