aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/openssl/crypto/rsa/rsa_oaep.c
blob: ca728930532ea625439010deed7fb75b331ce8d0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */

/*
 * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL:
 * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security
 * proof for the original OAEP scheme, which EME-OAEP is based on. A new
 * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern,
 * "RSA-OEAP is Still Alive!", Dec. 2000, <URL:
 * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements
 * for the underlying permutation: "partial-one-wayness" instead of
 * one-wayness.  For the RSA function, this is an equivalent notion.
 */

#include "internal/constant_time.h" 

#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/bn.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include "rsa_local.h" 

int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
                               const unsigned char *from, int flen,
                               const unsigned char *param, int plen)
{
    return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen,
                                           param, plen, NULL, NULL);
}

int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
                                    const unsigned char *from, int flen,
                                    const unsigned char *param, int plen,
                                    const EVP_MD *md, const EVP_MD *mgf1md)
{
    int rv = 0;
    int i, emlen = tlen - 1;
    unsigned char *db, *seed;
    unsigned char *dbmask = NULL;
    unsigned char seedmask[EVP_MAX_MD_SIZE];
    int mdlen, dbmask_len = 0;

    if (md == NULL)
        md = EVP_sha1();
    if (mgf1md == NULL)
        mgf1md = md;

    mdlen = EVP_MD_size(md);

    if (flen > emlen - 2 * mdlen - 1) {
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
               RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
        return 0;
    }

    if (emlen < 2 * mdlen + 1) {
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1,
               RSA_R_KEY_SIZE_TOO_SMALL);
        return 0;
    }

    to[0] = 0;
    seed = to + 1;
    db = to + mdlen + 1;

    if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL))
        goto err;
    memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
    db[emlen - flen - mdlen - 1] = 0x01;
    memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
    if (RAND_bytes(seed, mdlen) <= 0)
        goto err;

    dbmask_len = emlen - mdlen;
    dbmask = OPENSSL_malloc(dbmask_len);
    if (dbmask == NULL) {
        RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0)
        goto err;
    for (i = 0; i < dbmask_len; i++)
        db[i] ^= dbmask[i];

    if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0)
        goto err;
    for (i = 0; i < mdlen; i++)
        seed[i] ^= seedmask[i];
    rv = 1;

 err:
    OPENSSL_cleanse(seedmask, sizeof(seedmask));
    OPENSSL_clear_free(dbmask, dbmask_len);
    return rv;
}

int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
                                 const unsigned char *from, int flen, int num,
                                 const unsigned char *param, int plen)
{
    return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num,
                                             param, plen, NULL, NULL);
}

int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen,
                                      const unsigned char *from, int flen,
                                      int num, const unsigned char *param,
                                      int plen, const EVP_MD *md,
                                      const EVP_MD *mgf1md)
{
    int i, dblen = 0, mlen = -1, one_index = 0, msg_index;
    unsigned int good = 0, found_one_byte, mask;
    const unsigned char *maskedseed, *maskeddb;
    /*
     * |em| is the encoded message, zero-padded to exactly |num| bytes: em =
     * Y || maskedSeed || maskedDB
     */
    unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE],
        phash[EVP_MAX_MD_SIZE];
    int mdlen;

    if (md == NULL)
        md = EVP_sha1();
    if (mgf1md == NULL)
        mgf1md = md;

    mdlen = EVP_MD_size(md);

    if (tlen <= 0 || flen <= 0)
        return -1;
    /*
     * |num| is the length of the modulus; |flen| is the length of the
     * encoded message. Therefore, for any |from| that was obtained by
     * decrypting a ciphertext, we must have |flen| <= |num|. Similarly,
     * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of
     * the ciphertext, see PKCS #1 v2.2, section 7.1.2.
     * This does not leak any side-channel information.
     */
    if (num < flen || num < 2 * mdlen + 2) {
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
               RSA_R_OAEP_DECODING_ERROR);
        return -1;
    }

    dblen = num - mdlen - 1;
    db = OPENSSL_malloc(dblen);
    if (db == NULL) {
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE);
        goto cleanup;
    }

    em = OPENSSL_malloc(num);
    if (em == NULL) {
        RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
               ERR_R_MALLOC_FAILURE);
        goto cleanup;
    }

    /*
     * Caller is encouraged to pass zero-padded message created with
     * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
     * bounds, it's impossible to have an invariant memory access pattern
     * in case |from| was not zero-padded in advance.
     */
    for (from += flen, em += num, i = 0; i < num; i++) {
        mask = ~constant_time_is_zero(flen);
        flen -= 1 & mask;
        from -= 1 & mask;
        *--em = *from & mask;
    }

    /*
     * The first byte must be zero, however we must not leak if this is
     * true. See James H. Manger, "A Chosen Ciphertext  Attack on RSA
     * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001).
     */
    good = constant_time_is_zero(em[0]);

    maskedseed = em + 1;
    maskeddb = em + 1 + mdlen;

    if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md))
        goto cleanup;
    for (i = 0; i < mdlen; i++)
        seed[i] ^= maskedseed[i];

    if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md))
        goto cleanup;
    for (i = 0; i < dblen; i++)
        db[i] ^= maskeddb[i];

    if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL))
        goto cleanup;

    good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen));

    found_one_byte = 0;
    for (i = mdlen; i < dblen; i++) {
        /*
         * Padding consists of a number of 0-bytes, followed by a 1.
         */
        unsigned int equals1 = constant_time_eq(db[i], 1);
        unsigned int equals0 = constant_time_is_zero(db[i]);
        one_index = constant_time_select_int(~found_one_byte & equals1,
                                             i, one_index);
        found_one_byte |= equals1;
        good &= (found_one_byte | equals0);
    }

    good &= found_one_byte;

    /*
     * At this point |good| is zero unless the plaintext was valid,
     * so plaintext-awareness ensures timing side-channels are no longer a
     * concern.
     */
    msg_index = one_index + 1;
    mlen = dblen - msg_index;

    /*
     * For good measure, do this check in constant time as well.
     */
    good &= constant_time_ge(tlen, mlen);

    /*
     * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left.
     * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|.
     * Otherwise leave |to| unchanged.
     * Copy the memory back in a way that does not reveal the size of
     * the data being copied via a timing side channel. This requires copying
     * parts of the buffer multiple times based on the bits set in the real
     * length. Clear bits do a non-copy with identical access pattern.
     * The loop below has overall complexity of O(N*log(N)).
     */
    tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen),
                                    dblen - mdlen - 1, tlen);
    for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) {
        mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0);
        for (i = mdlen + 1; i < dblen - msg_index; i++)
            db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]);
    }
    for (i = 0; i < tlen; i++) {
        mask = good & constant_time_lt(i, mlen);
        to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]);
    }

    /*
     * To avoid chosen ciphertext attacks, the error message should not
     * reveal which kind of decoding error happened.
     */
    RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1,
           RSA_R_OAEP_DECODING_ERROR);
    err_clear_last_constant_time(1 & good);
 cleanup:
    OPENSSL_cleanse(seed, sizeof(seed));
    OPENSSL_clear_free(db, dblen);
    OPENSSL_clear_free(em, num);

    return constant_time_select_int(good, mlen, -1);
}

int PKCS1_MGF1(unsigned char *mask, long len,
               const unsigned char *seed, long seedlen, const EVP_MD *dgst)
{
    long i, outlen = 0;
    unsigned char cnt[4];
    EVP_MD_CTX *c = EVP_MD_CTX_new();
    unsigned char md[EVP_MAX_MD_SIZE];
    int mdlen;
    int rv = -1;

    if (c == NULL)
        goto err;
    mdlen = EVP_MD_size(dgst);
    if (mdlen < 0)
        goto err;
    for (i = 0; outlen < len; i++) {
        cnt[0] = (unsigned char)((i >> 24) & 255);
        cnt[1] = (unsigned char)((i >> 16) & 255);
        cnt[2] = (unsigned char)((i >> 8)) & 255;
        cnt[3] = (unsigned char)(i & 255);
        if (!EVP_DigestInit_ex(c, dgst, NULL)
            || !EVP_DigestUpdate(c, seed, seedlen)
            || !EVP_DigestUpdate(c, cnt, 4))
            goto err;
        if (outlen + mdlen <= len) {
            if (!EVP_DigestFinal_ex(c, mask + outlen, NULL))
                goto err;
            outlen += mdlen;
        } else {
            if (!EVP_DigestFinal_ex(c, md, NULL))
                goto err;
            memcpy(mask + outlen, md, len - outlen);
            outlen = len;
        }
    }
    rv = 0;
 err:
    OPENSSL_cleanse(md, sizeof(md));
    EVP_MD_CTX_free(c);
    return rv;
}