aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/openssl/crypto/asn1/a_int.c
blob: 319ce054f44b937bcd3bf91ebdae0168dad87f22 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/*
 * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include "internal/cryptlib.h"
#include "internal/numbers.h"
#include <limits.h>
#include <openssl/asn1.h>
#include <openssl/bn.h>
#include "asn1_local.h" 

ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
{
    return ASN1_STRING_dup(x);
}

int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
{
    int neg, ret;
    /* Compare signs */
    neg = x->type & V_ASN1_NEG;
    if (neg != (y->type & V_ASN1_NEG)) {
        if (neg)
            return -1;
        else
            return 1;
    }

    ret = ASN1_STRING_cmp(x, y);

    if (neg)
        return -ret;
    else
        return ret;
}

/*-
 * This converts a big endian buffer and sign into its content encoding.
 * This is used for INTEGER and ENUMERATED types.
 * The internal representation is an ASN1_STRING whose data is a big endian
 * representation of the value, ignoring the sign. The sign is determined by
 * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
 *
 * Positive integers are no problem: they are almost the same as the DER
 * encoding, except if the first byte is >= 0x80 we need to add a zero pad.
 *
 * Negative integers are a bit trickier...
 * The DER representation of negative integers is in 2s complement form.
 * The internal form is converted by complementing each octet and finally
 * adding one to the result. This can be done less messily with a little trick.
 * If the internal form has trailing zeroes then they will become FF by the
 * complement and 0 by the add one (due to carry) so just copy as many trailing
 * zeros to the destination as there are in the source. The carry will add one
 * to the last none zero octet: so complement this octet and add one and finally
 * complement any left over until you get to the start of the string.
 *
 * Padding is a little trickier too. If the first bytes is > 0x80 then we pad
 * with 0xff. However if the first byte is 0x80 and one of the following bytes
 * is non-zero we pad with 0xff. The reason for this distinction is that 0x80
 * followed by optional zeros isn't padded.
 */

/*
 * If |pad| is zero, the operation is effectively reduced to memcpy,
 * and if |pad| is 0xff, then it performs two's complement, ~dst + 1.
 * Note that in latter case sequence of zeros yields itself, and so
 * does 0x80 followed by any number of zeros. These properties are
 * used elsewhere below...
 */
static void twos_complement(unsigned char *dst, const unsigned char *src,
                            size_t len, unsigned char pad)
{
    unsigned int carry = pad & 1;

    /* Begin at the end of the encoding */
    dst += len;
    src += len;
    /* two's complement value: ~value + 1 */
    while (len-- != 0) {
        *(--dst) = (unsigned char)(carry += *(--src) ^ pad);
        carry >>= 8;
    }
}

static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
                       unsigned char **pp)
{
    unsigned int pad = 0;
    size_t ret, i;
    unsigned char *p, pb = 0;

    if (b != NULL && blen) {
        ret = blen;
        i = b[0];
        if (!neg && (i > 127)) {
            pad = 1;
            pb = 0;
        } else if (neg) {
            pb = 0xFF;
            if (i > 128) {
                pad = 1;
            } else if (i == 128) {
                /*
                 * Special case [of minimal negative for given length]:
                 * if any other bytes non zero we pad, otherwise we don't.
                 */
                for (pad = 0, i = 1; i < blen; i++)
                    pad |= b[i];
                pb = pad != 0 ? 0xffU : 0;
                pad = pb & 1;
            }
        }
        ret += pad;
    } else {
        ret = 1;
        blen = 0;   /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */
    }

    if (pp == NULL || (p = *pp) == NULL)
        return ret;

    /*
     * This magically handles all corner cases, such as '(b == NULL ||
     * blen == 0)', non-negative value, "negative" zero, 0x80 followed
     * by any number of zeros...
     */
    *p = pb;
    p += pad;       /* yes, p[0] can be written twice, but it's little
                     * price to pay for eliminated branches */
    twos_complement(p, b, blen, pb);

    *pp += ret;
    return ret;
}

/*
 * convert content octets into a big endian buffer. Returns the length
 * of buffer or 0 on error: for malformed INTEGER. If output buffer is
 * NULL just return length.
 */

static size_t c2i_ibuf(unsigned char *b, int *pneg,
                       const unsigned char *p, size_t plen)
{
    int neg, pad;
    /* Zero content length is illegal */
    if (plen == 0) {
        ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
        return 0;
    }
    neg = p[0] & 0x80;
    if (pneg)
        *pneg = neg;
    /* Handle common case where length is 1 octet separately */
    if (plen == 1) {
        if (b != NULL) {
            if (neg)
                b[0] = (p[0] ^ 0xFF) + 1;
            else
                b[0] = p[0];
        }
        return 1;
    }

    pad = 0;
    if (p[0] == 0) {
        pad = 1;
    } else if (p[0] == 0xFF) {
        size_t i;

        /*
         * Special case [of "one less minimal negative" for given length]:
         * if any other bytes non zero it was padded, otherwise not.
         */
        for (pad = 0, i = 1; i < plen; i++)
            pad |= p[i];
        pad = pad != 0 ? 1 : 0;
    }
    /* reject illegal padding: first two octets MSB can't match */
    if (pad && (neg == (p[1] & 0x80))) {
        ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
        return 0;
    }

    /* skip over pad */
    p += pad;
    plen -= pad;

    if (b != NULL)
        twos_complement(b, p, plen, neg ? 0xffU : 0);

    return plen;
}

int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
{
    return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
}

/* Convert big endian buffer into uint64_t, return 0 on error */
static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
{
    size_t i;
    uint64_t r;

    if (blen > sizeof(*pr)) {
        ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
        return 0;
    }
    if (b == NULL)
        return 0;
    for (r = 0, i = 0; i < blen; i++) {
        r <<= 8;
        r |= b[i];
    }
    *pr = r;
    return 1;
}

/*
 * Write uint64_t to big endian buffer and return offset to first
 * written octet. In other words it returns offset in range from 0
 * to 7, with 0 denoting 8 written octets and 7 - one.
 */
static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r)
{
    size_t off = sizeof(uint64_t);

    do {
        b[--off] = (unsigned char)r;
    } while (r >>= 8);

    return off;
}

/*
 * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces
 * overflow warnings.
 */
#define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX)))

/* signed version of asn1_get_uint64 */
static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
                          int neg)
{
    uint64_t r;
    if (asn1_get_uint64(&r, b, blen) == 0)
        return 0;
    if (neg) {
        if (r <= INT64_MAX) {
            /* Most significant bit is guaranteed to be clear, negation
             * is guaranteed to be meaningful in platform-neutral sense. */
            *pr = -(int64_t)r;
        } else if (r == ABS_INT64_MIN) {
            /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g.
             * on ones'-complement system. */
            *pr = (int64_t)(0 - r);
        } else {
            ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
            return 0;
        }
    } else {
        if (r <= INT64_MAX) {
            *pr = (int64_t)r;
        } else {
            ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
            return 0;
        }
    }
    return 1;
}

/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
                               long len)
{
    ASN1_INTEGER *ret = NULL;
    size_t r;
    int neg;

    r = c2i_ibuf(NULL, NULL, *pp, len);

    if (r == 0)
        return NULL;

    if ((a == NULL) || ((*a) == NULL)) {
        ret = ASN1_INTEGER_new();
        if (ret == NULL)
            return NULL;
        ret->type = V_ASN1_INTEGER;
    } else
        ret = *a;

    if (ASN1_STRING_set(ret, NULL, r) == 0)
        goto err;

    c2i_ibuf(ret->data, &neg, *pp, len);

    if (neg)
        ret->type |= V_ASN1_NEG;

    *pp += len;
    if (a != NULL)
        (*a) = ret;
    return ret;
 err:
    ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
    if ((a == NULL) || (*a != ret))
        ASN1_INTEGER_free(ret);
    return NULL;
}

static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
{
    if (a == NULL) {
        ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
        return 0;
    }
    if ((a->type & ~V_ASN1_NEG) != itype) {
        ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
        return 0;
    }
    return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
}

static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
{
    unsigned char tbuf[sizeof(r)];
    size_t off;

    a->type = itype;
    if (r < 0) {
        /* Most obvious '-r' triggers undefined behaviour for most
         * common INT64_MIN. Even though below '0 - (uint64_t)r' can
         * appear two's-complement centric, it does produce correct/
         * expected result even on one's-complement. This is because
         * cast to unsigned has to change bit pattern... */
        off = asn1_put_uint64(tbuf, 0 - (uint64_t)r);
        a->type |= V_ASN1_NEG;
    } else {
        off = asn1_put_uint64(tbuf, r);
        a->type &= ~V_ASN1_NEG;
    }
    return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
}

static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
                                  int itype)
{
    if (a == NULL) {
        ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER);
        return 0;
    }
    if ((a->type & ~V_ASN1_NEG) != itype) {
        ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE);
        return 0;
    }
    if (a->type & V_ASN1_NEG) {
        ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
        return 0;
    }
    return asn1_get_uint64(pr, a->data, a->length);
}

static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
{
    unsigned char tbuf[sizeof(r)];
    size_t off;

    a->type = itype;
    off = asn1_put_uint64(tbuf, r);
    return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
}

/*
 * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
 * integers: some broken software can encode a positive INTEGER with its MSB
 * set as negative (it doesn't add a padding zero).
 */

ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
                                long length)
{
    ASN1_INTEGER *ret = NULL;
    const unsigned char *p;
    unsigned char *s;
    long len;
    int inf, tag, xclass;
    int i;

    if ((a == NULL) || ((*a) == NULL)) {
        if ((ret = ASN1_INTEGER_new()) == NULL)
            return NULL;
        ret->type = V_ASN1_INTEGER;
    } else
        ret = (*a);

    p = *pp;
    inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
    if (inf & 0x80) {
        i = ASN1_R_BAD_OBJECT_HEADER;
        goto err;
    }

    if (tag != V_ASN1_INTEGER) {
        i = ASN1_R_EXPECTING_AN_INTEGER;
        goto err;
    }

    /*
     * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
     * a missing NULL parameter.
     */
    s = OPENSSL_malloc((int)len + 1);
    if (s == NULL) {
        i = ERR_R_MALLOC_FAILURE;
        goto err;
    }
    ret->type = V_ASN1_INTEGER;
    if (len) {
        if ((*p == 0) && (len != 1)) {
            p++;
            len--;
        }
        memcpy(s, p, (int)len);
        p += len;
    }

    OPENSSL_free(ret->data);
    ret->data = s;
    ret->length = (int)len;
    if (a != NULL)
        (*a) = ret;
    *pp = p;
    return ret;
 err:
    ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i);
    if ((a == NULL) || (*a != ret))
        ASN1_INTEGER_free(ret);
    return NULL;
}

static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
                                      int atype)
{
    ASN1_INTEGER *ret;
    int len;

    if (ai == NULL) {
        ret = ASN1_STRING_type_new(atype);
    } else {
        ret = ai;
        ret->type = atype;
    }

    if (ret == NULL) {
        ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
        goto err;
    }

    if (BN_is_negative(bn) && !BN_is_zero(bn))
        ret->type |= V_ASN1_NEG_INTEGER;

    len = BN_num_bytes(bn);

    if (len == 0)
        len = 1;

    if (ASN1_STRING_set(ret, NULL, len) == 0) {
        ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
        goto err;
    }

    /* Correct zero case */
    if (BN_is_zero(bn))
        ret->data[0] = 0;
    else
        len = BN_bn2bin(bn, ret->data);
    ret->length = len;
    return ret;
 err:
    if (ret != ai)
        ASN1_INTEGER_free(ret);
    return NULL;
}

static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
                                 int itype)
{
    BIGNUM *ret;

    if ((ai->type & ~V_ASN1_NEG) != itype) {
        ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
        return NULL;
    }

    ret = BN_bin2bn(ai->data, ai->length, bn);
    if (ret == NULL) {
        ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
        return NULL;
    }
    if (ai->type & V_ASN1_NEG)
        BN_set_negative(ret, 1);
    return ret;
}

int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
{
    return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
}

int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
{
    return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
}

int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
{
    return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
}

int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
{
    return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
}

int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
{
    return ASN1_INTEGER_set_int64(a, v);
}

long ASN1_INTEGER_get(const ASN1_INTEGER *a)
{
    int i;
    int64_t r;
    if (a == NULL)
        return 0;
    i = ASN1_INTEGER_get_int64(&r, a);
    if (i == 0)
        return -1;
    if (r > LONG_MAX || r < LONG_MIN)
        return -1;
    return (long)r;
}

ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
{
    return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
}

BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
{
    return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
}

int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
{
    return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
}

int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
{
    return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
}

int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
{
    return ASN1_ENUMERATED_set_int64(a, v);
}

long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a)
{
    int i;
    int64_t r;
    if (a == NULL)
        return 0;
    if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
        return -1;
    if (a->length > (int)sizeof(long))
        return 0xffffffffL;
    i = ASN1_ENUMERATED_get_int64(&r, a);
    if (i == 0)
        return -1;
    if (r > LONG_MAX || r < LONG_MIN)
        return -1;
    return (long)r;
}

ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
{
    return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
}

BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
{
    return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
}

/* Internal functions used by x_int64.c */
int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len)
{
    unsigned char buf[sizeof(uint64_t)];
    size_t buflen;

    buflen = c2i_ibuf(NULL, NULL, *pp, len);
    if (buflen == 0)
        return 0;
    if (buflen > sizeof(uint64_t)) {
        ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE);
        return 0;
    }
    (void)c2i_ibuf(buf, neg, *pp, len);
    return asn1_get_uint64(ret, buf, buflen);
}

int i2c_uint64_int(unsigned char *p, uint64_t r, int neg)
{
    unsigned char buf[sizeof(uint64_t)];
    size_t off;

    off = asn1_put_uint64(buf, r);
    return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p);
}