aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/utils/TableGen/X86FoldTablesEmitter.cpp
blob: f6e80751f62957ba2444b890bb0572eb26e1372f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting the memory fold tables of
// the X86 backend instructions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTarget.h"
#include "X86RecognizableInstr.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/TableGenBackend.h"

using namespace llvm;

namespace {

// 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the
// manual added entries.
enum UnfoldStrategy {
  UNFOLD,     // Allow unfolding
  NO_UNFOLD,  // Prevent unfolding
  NO_STRATEGY // Make decision according to operands' sizes
};

// Represents an entry in the manual mapped instructions set.
struct ManualMapEntry {
  const char *RegInstStr;
  const char *MemInstStr;
  UnfoldStrategy Strategy;

  ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
                 UnfoldStrategy Strategy = NO_STRATEGY)
      : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
};

class IsMatch;

// List of instructions requiring explicitly aligned memory.
const char *ExplicitAlign[] = {"MOVDQA",  "MOVAPS",  "MOVAPD",  "MOVNTPS",
                               "MOVNTPD", "MOVNTDQ", "MOVNTDQA"};

// List of instructions NOT requiring explicit memory alignment.
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
                                 "PCMPESTRM", "PCMPESTRI",
                                 "PCMPISTRM", "PCMPISTRI" };

// For manually mapping instructions that do not match by their encoding.
const ManualMapEntry ManualMapSet[] = {
    { "ADD16ri_DB",       "ADD16mi",         NO_UNFOLD  },
    { "ADD16ri8_DB",      "ADD16mi8",        NO_UNFOLD  },
    { "ADD16rr_DB",       "ADD16mr",         NO_UNFOLD  },
    { "ADD32ri_DB",       "ADD32mi",         NO_UNFOLD  },
    { "ADD32ri8_DB",      "ADD32mi8",        NO_UNFOLD  },
    { "ADD32rr_DB",       "ADD32mr",         NO_UNFOLD  },
    { "ADD64ri32_DB",     "ADD64mi32",       NO_UNFOLD  },
    { "ADD64ri8_DB",      "ADD64mi8",        NO_UNFOLD  },
    { "ADD64rr_DB",       "ADD64mr",         NO_UNFOLD  },
    { "ADD8ri_DB",        "ADD8mi",          NO_UNFOLD  },
    { "ADD8rr_DB",        "ADD8mr",          NO_UNFOLD  },
    { "ADD16rr_DB",       "ADD16rm",         NO_UNFOLD  },
    { "ADD32rr_DB",       "ADD32rm",         NO_UNFOLD  },
    { "ADD64rr_DB",       "ADD64rm",         NO_UNFOLD  },
    { "ADD8rr_DB",        "ADD8rm",          NO_UNFOLD  },
    { "PUSH16r",          "PUSH16rmm",       UNFOLD },
    { "PUSH32r",          "PUSH32rmm",       UNFOLD },
    { "PUSH64r",          "PUSH64rmm",       UNFOLD },
    { "TAILJMPr",         "TAILJMPm",        UNFOLD },
    { "TAILJMPr64",       "TAILJMPm64",      UNFOLD },
    { "TAILJMPr64_REX",   "TAILJMPm64_REX",  UNFOLD },
};


static bool isExplicitAlign(const CodeGenInstruction *Inst) {
  return any_of(ExplicitAlign, [Inst](const char *InstStr) {
    return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
  });
}

static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
  return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
    return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
  });
}

class X86FoldTablesEmitter {
  RecordKeeper &Records;
  CodeGenTarget Target;

  // Represents an entry in the folding table
  class X86FoldTableEntry {
    const CodeGenInstruction *RegInst;
    const CodeGenInstruction *MemInst;

  public:
    bool CannotUnfold = false;
    bool IsLoad = false;
    bool IsStore = false;
    bool IsAligned = false;
    unsigned int Alignment = 0;

    X86FoldTableEntry(const CodeGenInstruction *RegInst,
                      const CodeGenInstruction *MemInst)
        : RegInst(RegInst), MemInst(MemInst) {}

    void print(formatted_raw_ostream &OS) const {
      OS.indent(2);
      OS << "{ X86::" << RegInst->TheDef->getName() << ",";
      OS.PadToColumn(40);
      OS  << "X86::" << MemInst->TheDef->getName() << ",";
      OS.PadToColumn(75);

      if (IsLoad)
        OS << "TB_FOLDED_LOAD | ";
      if (IsStore)
        OS << "TB_FOLDED_STORE | ";
      if (CannotUnfold)
        OS << "TB_NO_REVERSE | ";
      if (IsAligned)
        OS << "TB_ALIGN_" << Alignment << " | ";

      OS << "0 },\n";
    }
 
    bool operator<(const X86FoldTableEntry &RHS) const { 
      bool LHSpseudo = RegInst->TheDef->getValueAsBit("isPseudo"); 
      bool RHSpseudo = RHS.RegInst->TheDef->getValueAsBit("isPseudo"); 
      if (LHSpseudo != RHSpseudo) 
        return LHSpseudo; 
 
      return RegInst->TheDef->getName() < RHS.RegInst->TheDef->getName(); 
    } 
  };

  typedef std::vector<X86FoldTableEntry> FoldTable;
  // std::vector for each folding table.
  // Table2Addr - Holds instructions which their memory form performs load+store
  // Table#i - Holds instructions which the their memory form perform a load OR
  //           a store,  and their #i'th operand is folded.
  FoldTable Table2Addr;
  FoldTable Table0;
  FoldTable Table1;
  FoldTable Table2;
  FoldTable Table3;
  FoldTable Table4;

public:
  X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}

  // run - Generate the 6 X86 memory fold tables.
  void run(formatted_raw_ostream &OS);

private:
  // Decides to which table to add the entry with the given instructions.
  // S sets the strategy of adding the TB_NO_REVERSE flag.
  void updateTables(const CodeGenInstruction *RegInstr,
                    const CodeGenInstruction *MemInstr,
                    const UnfoldStrategy S = NO_STRATEGY);

  // Generates X86FoldTableEntry with the given instructions and fill it with
  // the appropriate flags - then adds it to Table.
  void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
                         const CodeGenInstruction *MemInstr,
                         const UnfoldStrategy S, const unsigned int FoldedInd);

  // Print the given table as a static const C++ array of type
  // X86MemoryFoldTableEntry.
  void printTable(const FoldTable &Table, StringRef TableName,
                  formatted_raw_ostream &OS) {
    OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName
       << "[] = {\n";

    for (const X86FoldTableEntry &E : Table)
      E.print(OS);

    OS << "};\n\n";
  }
};

// Return true if one of the instruction's operands is a RST register class
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
  return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
    return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
  });
}

// Return true if one of the instruction's operands is a ptr_rc_tailcall
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
  return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
    return OpIn.Rec->getName() == "ptr_rc_tailcall";
  });
}

// Calculates the integer value representing the BitsInit object
static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
  assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!");

  uint64_t Value = 0;
  for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
    BitInit *Bit = cast<BitInit>(B->getBit(i));
    Value |= uint64_t(Bit->getValue()) << i;
  }
  return Value;
}

// Returns true if the two given BitsInits represent the same integer value
static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
  if (B1->getNumBits() != B2->getNumBits())
    PrintFatalError("Comparing two BitsInits with different sizes!");

  for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
    BitInit *Bit1 = cast<BitInit>(B1->getBit(i));
    BitInit *Bit2 = cast<BitInit>(B2->getBit(i));
    if (Bit1->getValue() != Bit2->getValue())
      return false;
  }
  return true;
}

// Return the size of the register operand
static inline unsigned int getRegOperandSize(const Record *RegRec) {
  if (RegRec->isSubClassOf("RegisterOperand"))
    RegRec = RegRec->getValueAsDef("RegClass");
  if (RegRec->isSubClassOf("RegisterClass"))
    return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size");

  llvm_unreachable("Register operand's size not known!");
}

// Return the size of the memory operand
static inline unsigned getMemOperandSize(const Record *MemRec) { 
  if (MemRec->isSubClassOf("Operand")) {
    StringRef Name =
        MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name");
    if (Name == "Mem8")
      return 8;
    if (Name == "Mem16")
      return 16;
    if (Name == "Mem32")
      return 32;
    if (Name == "Mem64")
      return 64;
    if (Name == "Mem80")
      return 80;
    if (Name == "Mem128")
      return 128;
    if (Name == "Mem256")
      return 256;
    if (Name == "Mem512")
      return 512;
  }

  llvm_unreachable("Memory operand's size not known!");
}

// Return true if the instruction defined as a register flavor.
static inline bool hasRegisterFormat(const Record *Inst) {
  const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
  uint64_t FormBitsNum = getValueFromBitsInit(FormBits);

  // Values from X86Local namespace defined in X86RecognizableInstr.cpp
  return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
}

// Return true if the instruction defined as a memory flavor.
static inline bool hasMemoryFormat(const Record *Inst) {
  const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
  uint64_t FormBitsNum = getValueFromBitsInit(FormBits);

  // Values from X86Local namespace defined in X86RecognizableInstr.cpp
  return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
}

static inline bool isNOREXRegClass(const Record *Op) {
  return Op->getName().find("_NOREX") != StringRef::npos;
}

static inline bool isRegisterOperand(const Record *Rec) {
  return Rec->isSubClassOf("RegisterClass") ||
         Rec->isSubClassOf("RegisterOperand") ||
         Rec->isSubClassOf("PointerLikeRegClass");
}

static inline bool isMemoryOperand(const Record *Rec) {
  return Rec->isSubClassOf("Operand") &&
         Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
}

static inline bool isImmediateOperand(const Record *Rec) {
  return Rec->isSubClassOf("Operand") &&
         Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
}

// Get the alternative instruction pointed by "FoldGenRegForm" field.
static inline const CodeGenInstruction *
getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
              const CodeGenTarget &Target) {

  StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
  Record *AltRegInstRec = Records.getDef(AltRegInstStr);
  assert(AltRegInstRec &&
         "Alternative register form instruction def not found");
  CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
  return &AltRegInst;
}

// Function object - Operator() returns true if the given VEX instruction
// matches the EVEX instruction of this object.
class IsMatch {
  const CodeGenInstruction *MemInst;

public:
  IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records)
      : MemInst(Inst) {}

  bool operator()(const CodeGenInstruction *RegInst) {
    Record *MemRec = MemInst->TheDef;
    Record *RegRec = RegInst->TheDef;

    // Return false if one (at least) of the encoding fields of both
    // instructions do not match.
    if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") ||
        !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"),
                        MemRec->getValueAsBitsInit("Opcode")) ||
        // VEX/EVEX fields
        RegRec->getValueAsDef("OpPrefix") !=
            MemRec->getValueAsDef("OpPrefix") ||
        RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") ||
        RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") ||
        RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") ||
        RegRec->getValueAsBit("hasVEX_4V") !=
            MemRec->getValueAsBit("hasVEX_4V") ||
        RegRec->getValueAsBit("hasEVEX_K") !=
            MemRec->getValueAsBit("hasEVEX_K") ||
        RegRec->getValueAsBit("hasEVEX_Z") !=
            MemRec->getValueAsBit("hasEVEX_Z") ||
        // EVEX_B means different things for memory and register forms.
        RegRec->getValueAsBit("hasEVEX_B") != 0 ||
        MemRec->getValueAsBit("hasEVEX_B") != 0 ||
        RegRec->getValueAsBit("hasEVEX_RC") !=
            MemRec->getValueAsBit("hasEVEX_RC") ||
        RegRec->getValueAsBit("hasREX_WPrefix") !=
            MemRec->getValueAsBit("hasREX_WPrefix") ||
        RegRec->getValueAsBit("hasLockPrefix") !=
            MemRec->getValueAsBit("hasLockPrefix") ||
        RegRec->getValueAsBit("hasNoTrackPrefix") !=
            MemRec->getValueAsBit("hasNoTrackPrefix") ||
        RegRec->getValueAsBit("hasVEX_L") !=
            MemRec->getValueAsBit("hasVEX_L") ||
        RegRec->getValueAsBit("hasEVEX_L2") !=
            MemRec->getValueAsBit("hasEVEX_L2") ||
        RegRec->getValueAsBit("ignoresVEX_L") !=
            MemRec->getValueAsBit("ignoresVEX_L") ||
        RegRec->getValueAsBit("HasVEX_W") !=
            MemRec->getValueAsBit("HasVEX_W") ||
        RegRec->getValueAsBit("IgnoresVEX_W") !=
            MemRec->getValueAsBit("IgnoresVEX_W") ||
        RegRec->getValueAsBit("EVEX_W1_VEX_W0") !=
            MemRec->getValueAsBit("EVEX_W1_VEX_W0") ||
        // Instruction's format - The register form's "Form" field should be
        // the opposite of the memory form's "Form" field.
        !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"),
                          MemRec->getValueAsBitsInit("FormBits")) ||
        RegRec->getValueAsBit("isAsmParserOnly") !=
            MemRec->getValueAsBit("isAsmParserOnly"))
      return false;

    // Make sure the sizes of the operands of both instructions suit each other.
    // This is needed for instructions with intrinsic version (_Int).
    // Where the only difference is the size of the operands.
    // For example: VUCOMISDZrm and Int_VUCOMISDrm
    // Also for instructions that their EVEX version was upgraded to work with
    // k-registers. For example VPCMPEQBrm (xmm output register) and
    // VPCMPEQBZ128rm (k register output register).
    bool ArgFolded = false;
    unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
    unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
    unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
    unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();

    // Instructions with one output in their memory form use the memory folded
    // operand as source and destination (Read-Modify-Write).
    unsigned RegStartIdx =
        (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;

    for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
      Record *MemOpRec = MemInst->Operands[i].Rec;
      Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;

      if (MemOpRec == RegOpRec)
        continue;

      if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
        if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
            isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
          return false;
      } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
        if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
          return false;
      } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
        if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
          return false;
      } else {
        // Only one operand can be folded.
        if (ArgFolded)
          return false;

        assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
        ArgFolded = true;
      }
    }

    return true;
  }

private:
  // Return true of the 2 given forms are the opposite of each other.
  bool areOppositeForms(const BitsInit *RegFormBits,
                        const BitsInit *MemFormBits) {
    uint64_t MemFormNum = getValueFromBitsInit(MemFormBits);
    uint64_t RegFormNum = getValueFromBitsInit(RegFormBits);

    if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) ||
        (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) ||
        (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) ||
        (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) ||
        (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) ||
        (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) ||
        (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) ||
        (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) ||
        (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) ||
        (MemFormNum == X86Local::MRMXmCC && RegFormNum == X86Local::MRMXrCC) ||
        (MemFormNum == X86Local::MRMDestMem &&
         RegFormNum == X86Local::MRMDestReg) ||
        (MemFormNum == X86Local::MRMSrcMem &&
         RegFormNum == X86Local::MRMSrcReg) ||
        (MemFormNum == X86Local::MRMSrcMem4VOp3 &&
         RegFormNum == X86Local::MRMSrcReg4VOp3) ||
        (MemFormNum == X86Local::MRMSrcMemOp4 &&
         RegFormNum == X86Local::MRMSrcRegOp4) ||
        (MemFormNum == X86Local::MRMSrcMemCC &&
         RegFormNum == X86Local::MRMSrcRegCC))
      return true;

    return false;
  }
};

} // end anonymous namespace

void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
                                             const CodeGenInstruction *RegInstr,
                                             const CodeGenInstruction *MemInstr,
                                             const UnfoldStrategy S,
                                             const unsigned int FoldedInd) {

  X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
  Record *RegRec = RegInstr->TheDef;
  Record *MemRec = MemInstr->TheDef;

  // Only table0 entries should explicitly specify a load or store flag.
  if (&Table == &Table0) {
    unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
    unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
    // If the instruction writes to the folded operand, it will appear as an
    // output in the register form instruction and as an input in the memory
    // form instruction.
    // If the instruction reads from the folded operand, it well appear as in
    // input in both forms.
    if (MemInOpsNum == RegInOpsNum)
      Result.IsLoad = true;
    else
      Result.IsStore = true;
  }

  Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
  Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;

  // Unfolding code generates a load/store instruction according to the size of
  // the register in the register form instruction.
  // If the register's size is greater than the memory's operand size, do not
  // allow unfolding.
  if (S == UNFOLD)
    Result.CannotUnfold = false;
  else if (S == NO_UNFOLD)
    Result.CannotUnfold = true;
  else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
    Result.CannotUnfold = true; // S == NO_STRATEGY

  uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
  if (isExplicitAlign(RegInstr)) {
    // The instruction require explicitly aligned memory.
    BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
    uint64_t Value = getValueFromBitsInit(VectSize);
    Result.IsAligned = true;
    Result.Alignment = Value;
  } else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
             Enc != X86Local::EVEX) {
    // Instructions with VEX encoding do not require alignment.
    if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
      // SSE packed vector instructions require a 16 byte alignment.
      Result.IsAligned = true;
      Result.Alignment = 16;
    }
  }

  Table.push_back(Result);
}

void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
                                        const CodeGenInstruction *MemInstr,
                                        const UnfoldStrategy S) {

  Record *RegRec = RegInstr->TheDef;
  Record *MemRec = MemInstr->TheDef;
  unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
  unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
  unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
  unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();

  // Instructions which Read-Modify-Write should be added to Table2Addr.
  if (MemOutSize != RegOutSize && MemInSize == RegInSize) {
    addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0);
    return;
  }

  if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
    // Load-Folding cases.
    // If the i'th register form operand is a register and the i'th memory form
    // operand is a memory operand, add instructions to Table#i.
    for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
      Record *RegOpRec = RegInstr->Operands[i].Rec;
      Record *MemOpRec = MemInstr->Operands[i].Rec;
      if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) {
        switch (i) {
        case 0:
          addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
          return;
        case 1:
          addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1);
          return;
        case 2:
          addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2);
          return;
        case 3:
          addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3);
          return;
        case 4:
          addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4);
          return;
        }
      }
    }
  } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
    // Store-Folding cases.
    // If the memory form instruction performs a store, the *output*
    // register of the register form instructions disappear and instead a
    // memory *input* operand appears in the memory form instruction.
    // For example:
    //   MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
    //   MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
    Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
    Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
    if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
        getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec))
      addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
  }
}

void X86FoldTablesEmitter::run(formatted_raw_ostream &OS) {
  emitSourceFileHeader("X86 fold tables", OS);

  // Holds all memory instructions
  std::vector<const CodeGenInstruction *> MemInsts;
  // Holds all register instructions - divided according to opcode.
  std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;

  ArrayRef<const CodeGenInstruction *> NumberedInstructions =
      Target.getInstructionsByEnumValue();

  for (const CodeGenInstruction *Inst : NumberedInstructions) {
    if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst"))
      continue;

    const Record *Rec = Inst->TheDef;

    // - Do not proceed if the instruction is marked as notMemoryFoldable.
    // - Instructions including RST register class operands are not relevant
    //   for memory folding (for further details check the explanation in
    //   lib/Target/X86/X86InstrFPStack.td file).
    // - Some instructions (listed in the manual map above) use the register
    //   class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
    //   safe mapping of these instruction we manually map them and exclude
    //   them from the automation.
    if (Rec->getValueAsBit("isMemoryFoldable") == false ||
        hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
      continue;

    // Add all the memory form instructions to MemInsts, and all the register
    // form instructions to RegInsts[Opc], where Opc in the opcode of each
    // instructions. this helps reducing the runtime of the backend.
    if (hasMemoryFormat(Rec))
      MemInsts.push_back(Inst);
    else if (hasRegisterFormat(Rec)) {
      uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
      RegInsts[Opc].push_back(Inst);
    }
  }

  // For each memory form instruction, try to find its register form
  // instruction.
  for (const CodeGenInstruction *MemInst : MemInsts) {
    uint8_t Opc =
        getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));

    auto RegInstsIt = RegInsts.find(Opc);
    if (RegInstsIt == RegInsts.end())
      continue;

    // Two forms (memory & register) of the same instruction must have the same
    // opcode. try matching only with register form instructions with the same
    // opcode.
    std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;

    auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records));
    if (Match != OpcRegInsts.end()) {
      const CodeGenInstruction *RegInst = *Match;
      // If the matched instruction has it's "FoldGenRegForm" set, map the
      // memory form instruction to the register form instruction pointed by
      // this field
      if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
        updateTables(RegInst, MemInst);
      } else {
        const CodeGenInstruction *AltRegInst =
            getAltRegInst(RegInst, Records, Target);
        updateTables(AltRegInst, MemInst);
      }
      OpcRegInsts.erase(Match);
    }
  }

  // Add the manually mapped instructions listed above.
  for (const ManualMapEntry &Entry : ManualMapSet) {
    Record *RegInstIter = Records.getDef(Entry.RegInstStr);
    Record *MemInstIter = Records.getDef(Entry.MemInstStr);

    updateTables(&(Target.getInstruction(RegInstIter)),
                 &(Target.getInstruction(MemInstIter)), Entry.Strategy);
  }

  // Sort the tables before printing. 
  llvm::sort(Table2Addr); 
  llvm::sort(Table0); 
  llvm::sort(Table1); 
  llvm::sort(Table2); 
  llvm::sort(Table3); 
  llvm::sort(Table4); 
 
  // Print all tables.
  printTable(Table2Addr, "Table2Addr", OS);
  printTable(Table0, "Table0", OS);
  printTable(Table1, "Table1", OS);
  printTable(Table2, "Table2", OS);
  printTable(Table3, "Table3", OS);
  printTable(Table4, "Table4", OS);
}

namespace llvm {

void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &o) {
  formatted_raw_ostream OS(o);
  X86FoldTablesEmitter(RK).run(OS);
}
} // namespace llvm