aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Utils/LoopUtils.cpp
blob: 3aeb7d1e0272968b56feb7943a67d64456303595 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

using namespace llvm;
using namespace llvm::PatternMatch;

static cl::opt<bool> ForceReductionIntrinsic(
    "force-reduction-intrinsics", cl::Hidden,
    cl::desc("Force creating reduction intrinsics for testing."),
    cl::init(false));

#define DEBUG_TYPE "loop-utils"

static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; 

bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
                                   MemorySSAUpdater *MSSAU,
                                   bool PreserveLCSSA) {
  bool Changed = false;

  // We re-use a vector for the in-loop predecesosrs.
  SmallVector<BasicBlock *, 4> InLoopPredecessors;

  auto RewriteExit = [&](BasicBlock *BB) {
    assert(InLoopPredecessors.empty() &&
           "Must start with an empty predecessors list!");
    auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });

    // See if there are any non-loop predecessors of this exit block and
    // keep track of the in-loop predecessors.
    bool IsDedicatedExit = true;
    for (auto *PredBB : predecessors(BB))
      if (L->contains(PredBB)) {
        if (isa<IndirectBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from an indirectbr.
          return false;
        if (isa<CallBrInst>(PredBB->getTerminator()))
          // We cannot rewrite exiting edges from a callbr.
          return false;

        InLoopPredecessors.push_back(PredBB);
      } else {
        IsDedicatedExit = false;
      }

    assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");

    // Nothing to do if this is already a dedicated exit.
    if (IsDedicatedExit)
      return false;

    auto *NewExitBB = SplitBlockPredecessors(
        BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);

    if (!NewExitBB)
      LLVM_DEBUG(
          dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
                 << *L << "\n");
    else
      LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
                        << NewExitBB->getName() << "\n");
    return true;
  };

  // Walk the exit blocks directly rather than building up a data structure for
  // them, but only visit each one once.
  SmallPtrSet<BasicBlock *, 4> Visited;
  for (auto *BB : L->blocks())
    for (auto *SuccBB : successors(BB)) {
      // We're looking for exit blocks so skip in-loop successors.
      if (L->contains(SuccBB))
        continue;

      // Visit each exit block exactly once.
      if (!Visited.insert(SuccBB).second)
        continue;

      Changed |= RewriteExit(SuccBB);
    }

  return Changed;
}

/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
  SmallVector<Instruction *, 8> UsedOutside;

  for (auto *Block : L->getBlocks())
    // FIXME: I believe that this could use copy_if if the Inst reference could
    // be adapted into a pointer.
    for (auto &Inst : *Block) {
      auto Users = Inst.users();
      if (any_of(Users, [&](User *U) {
            auto *Use = cast<Instruction>(U);
            return !L->contains(Use->getParent());
          }))
        UsedOutside.push_back(&Inst);
    }

  return UsedOutside;
}

void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
  // By definition, all loop passes need the LoopInfo analysis and the
  // Dominator tree it depends on. Because they all participate in the loop
  // pass manager, they must also preserve these.
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addPreserved<LoopInfoWrapperPass>();

  // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
  // here because users shouldn't directly get them from this header.
  extern char &LoopSimplifyID;
  extern char &LCSSAID;
  AU.addRequiredID(LoopSimplifyID);
  AU.addPreservedID(LoopSimplifyID);
  AU.addRequiredID(LCSSAID);
  AU.addPreservedID(LCSSAID);
  // This is used in the LPPassManager to perform LCSSA verification on passes
  // which preserve lcssa form
  AU.addRequired<LCSSAVerificationPass>();
  AU.addPreserved<LCSSAVerificationPass>();

  // Loop passes are designed to run inside of a loop pass manager which means
  // that any function analyses they require must be required by the first loop
  // pass in the manager (so that it is computed before the loop pass manager
  // runs) and preserved by all loop pasess in the manager. To make this
  // reasonably robust, the set needed for most loop passes is maintained here.
  // If your loop pass requires an analysis not listed here, you will need to
  // carefully audit the loop pass manager nesting structure that results.
  AU.addRequired<AAResultsWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
  AU.addPreserved<SCEVAAWrapperPass>();
  AU.addRequired<ScalarEvolutionWrapperPass>();
  AU.addPreserved<ScalarEvolutionWrapperPass>();
  // FIXME: When all loop passes preserve MemorySSA, it can be required and
  // preserved here instead of the individual handling in each pass.
}

/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
  INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
  INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
}

/// Create MDNode for input string.
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
  LLVMContext &Context = TheLoop->getHeader()->getContext();
  Metadata *MDs[] = {
      MDString::get(Context, Name),
      ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
  return MDNode::get(Context, MDs);
}

/// Set input string into loop metadata by keeping other values intact.
/// If the string is already in loop metadata update value if it is
/// different.
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
                                   unsigned V) {
  SmallVector<Metadata *, 4> MDs(1);
  // If the loop already has metadata, retain it.
  MDNode *LoopID = TheLoop->getLoopID();
  if (LoopID) {
    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
      MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
      // If it is of form key = value, try to parse it.
      if (Node->getNumOperands() == 2) {
        MDString *S = dyn_cast<MDString>(Node->getOperand(0));
        if (S && S->getString().equals(StringMD)) {
          ConstantInt *IntMD =
              mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
          if (IntMD && IntMD->getSExtValue() == V)
            // It is already in place. Do nothing.
            return;
          // We need to update the value, so just skip it here and it will
          // be added after copying other existed nodes.
          continue;
        }
      }
      MDs.push_back(Node);
    }
  }
  // Add new metadata.
  MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
  // Replace current metadata node with new one.
  LLVMContext &Context = TheLoop->getHeader()->getContext();
  MDNode *NewLoopID = MDNode::get(Context, MDs);
  // Set operand 0 to refer to the loop id itself.
  NewLoopID->replaceOperandWith(0, NewLoopID);
  TheLoop->setLoopID(NewLoopID);
}

/// Find string metadata for loop
///
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
/// operand or null otherwise.  If the string metadata is not found return
/// Optional's not-a-value.
Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
                                                            StringRef Name) {
  MDNode *MD = findOptionMDForLoop(TheLoop, Name);
  if (!MD)
    return None;
  switch (MD->getNumOperands()) {
  case 1:
    return nullptr;
  case 2:
    return &MD->getOperand(1);
  default:
    llvm_unreachable("loop metadata has 0 or 1 operand");
  }
}

static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
                                                   StringRef Name) {
  MDNode *MD = findOptionMDForLoop(TheLoop, Name);
  if (!MD)
    return None;
  switch (MD->getNumOperands()) {
  case 1:
    // When the value is absent it is interpreted as 'attribute set'.
    return true;
  case 2:
    if (ConstantInt *IntMD =
            mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
      return IntMD->getZExtValue();
    return true;
  }
  llvm_unreachable("unexpected number of options");
}

bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 
  return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
}

Optional<ElementCount> 
llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) { 
  Optional<int> Width = 
      getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width"); 
 
  if (Width.hasValue()) { 
    Optional<int> IsScalable = getOptionalIntLoopAttribute( 
        TheLoop, "llvm.loop.vectorize.scalable.enable"); 
    return ElementCount::get(*Width, IsScalable.getValueOr(false)); 
  } 
 
  return None; 
} 
 
llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
                                                      StringRef Name) {
  const MDOperand *AttrMD =
      findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
  if (!AttrMD)
    return None;

  ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
  if (!IntMD)
    return None;

  return IntMD->getSExtValue();
}

Optional<MDNode *> llvm::makeFollowupLoopID(
    MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
    const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
  if (!OrigLoopID) {
    if (AlwaysNew)
      return nullptr;
    return None;
  }

  assert(OrigLoopID->getOperand(0) == OrigLoopID);

  bool InheritAllAttrs = !InheritOptionsExceptPrefix;
  bool InheritSomeAttrs =
      InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
  SmallVector<Metadata *, 8> MDs;
  MDs.push_back(nullptr);

  bool Changed = false;
  if (InheritAllAttrs || InheritSomeAttrs) {
    for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) { 
      MDNode *Op = cast<MDNode>(Existing.get());

      auto InheritThisAttribute = [InheritSomeAttrs,
                                   InheritOptionsExceptPrefix](MDNode *Op) {
        if (!InheritSomeAttrs)
          return false;

        // Skip malformatted attribute metadata nodes.
        if (Op->getNumOperands() == 0)
          return true;
        Metadata *NameMD = Op->getOperand(0).get();
        if (!isa<MDString>(NameMD))
          return true;
        StringRef AttrName = cast<MDString>(NameMD)->getString();

        // Do not inherit excluded attributes.
        return !AttrName.startswith(InheritOptionsExceptPrefix);
      };

      if (InheritThisAttribute(Op))
        MDs.push_back(Op);
      else
        Changed = true;
    }
  } else {
    // Modified if we dropped at least one attribute.
    Changed = OrigLoopID->getNumOperands() > 1;
  }

  bool HasAnyFollowup = false;
  for (StringRef OptionName : FollowupOptions) {
    MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
    if (!FollowupNode)
      continue;

    HasAnyFollowup = true;
    for (const MDOperand &Option : drop_begin(FollowupNode->operands())) { 
      MDs.push_back(Option.get());
      Changed = true;
    }
  }

  // Attributes of the followup loop not specified explicity, so signal to the
  // transformation pass to add suitable attributes.
  if (!AlwaysNew && !HasAnyFollowup)
    return None;

  // If no attributes were added or remove, the previous loop Id can be reused.
  if (!AlwaysNew && !Changed)
    return OrigLoopID;

  // No attributes is equivalent to having no !llvm.loop metadata at all.
  if (MDs.size() == 1)
    return nullptr;

  // Build the new loop ID.
  MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
  FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
  return FollowupLoopID;
}

bool llvm::hasDisableAllTransformsHint(const Loop *L) {
  return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
}

bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
  return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
}

bool llvm::hasMustProgress(const Loop *L) { 
  return getBooleanLoopAttribute(L, LLVMLoopMustProgress); 
} 
 
TransformationMode llvm::hasUnrollTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
    return TM_SuppressedByUser;

  Optional<int> Count =
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
  if (Count.hasValue())
    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
    return TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
    return TM_SuppressedByUser;

  Optional<int> Count =
      getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
  if (Count.hasValue())
    return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
  Optional<bool> Enable =
      getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");

  if (Enable == false)
    return TM_SuppressedByUser;

  Optional<ElementCount> VectorizeWidth = 
      getOptionalElementCountLoopAttribute(L); 
  Optional<int> InterleaveCount =
      getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");

  // 'Forcing' vector width and interleave count to one effectively disables
  // this tranformation.
  if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() && 
      InterleaveCount == 1) 
    return TM_SuppressedByUser;

  if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
    return TM_Disable;

  if (Enable == true)
    return TM_ForcedByUser;

  if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1) 
    return TM_Disable;

  if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1) 
    return TM_Enable;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasDistributeTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
    return TM_ForcedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
  if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
    return TM_SuppressedByUser;

  if (hasDisableAllTransformsHint(L))
    return TM_Disable;

  return TM_Unspecified;
}

/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
  SmallVector<DomTreeNode *, 16> Worklist;
  auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
    // Only include subregions in the top level loop.
    BasicBlock *BB = DTN->getBlock();
    if (CurLoop->contains(BB))
      Worklist.push_back(DTN);
  };

  AddRegionToWorklist(N);

  for (size_t I = 0; I < Worklist.size(); I++) {
    for (DomTreeNode *Child : Worklist[I]->children())
      AddRegionToWorklist(Child);
  }

  return Worklist;
}

void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
                          LoopInfo *LI, MemorySSA *MSSA) {
  assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
  auto *Preheader = L->getLoopPreheader();
  assert(Preheader && "Preheader should exist!");

  std::unique_ptr<MemorySSAUpdater> MSSAU;
  if (MSSA)
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);

  // Now that we know the removal is safe, remove the loop by changing the
  // branch from the preheader to go to the single exit block.
  //
  // Because we're deleting a large chunk of code at once, the sequence in which
  // we remove things is very important to avoid invalidation issues.

  // Tell ScalarEvolution that the loop is deleted. Do this before
  // deleting the loop so that ScalarEvolution can look at the loop
  // to determine what it needs to clean up.
  if (SE)
    SE->forgetLoop(L);

  auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
  assert(OldBr && "Preheader must end with a branch");
  assert(OldBr->isUnconditional() && "Preheader must have a single successor");
  // Connect the preheader to the exit block. Keep the old edge to the header
  // around to perform the dominator tree update in two separate steps
  // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
  // preheader -> header.
  //
  //
  // 0.  Preheader          1.  Preheader           2.  Preheader
  //        |                    |   |                   |
  //        V                    |   V                   |
  //      Header <--\            | Header <--\           | Header <--\
  //       |  |     |            |  |  |     |           |  |  |     |
  //       |  V     |            |  |  V     |           |  |  V     |
  //       | Body --/            |  | Body --/           |  | Body --/
  //       V                     V  V                    V  V
  //      Exit                   Exit                    Exit
  //
  // By doing this is two separate steps we can perform the dominator tree
  // update without using the batch update API.
  //
  // Even when the loop is never executed, we cannot remove the edge from the
  // source block to the exit block. Consider the case where the unexecuted loop
  // branches back to an outer loop. If we deleted the loop and removed the edge
  // coming to this inner loop, this will break the outer loop structure (by
  // deleting the backedge of the outer loop). If the outer loop is indeed a
  // non-loop, it will be deleted in a future iteration of loop deletion pass.
  IRBuilder<> Builder(OldBr);

  auto *ExitBlock = L->getUniqueExitBlock(); 
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 
  if (ExitBlock) { 
    assert(ExitBlock && "Should have a unique exit block!"); 
    assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); 

    Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); 
    // Remove the old branch. The conditional branch becomes a new terminator. 
    OldBr->eraseFromParent(); 

    // Rewrite phis in the exit block to get their inputs from the Preheader 
    // instead of the exiting block. 
    for (PHINode &P : ExitBlock->phis()) { 
      // Set the zero'th element of Phi to be from the preheader and remove all 
      // other incoming values. Given the loop has dedicated exits, all other 
      // incoming values must be from the exiting blocks. 
      int PredIndex = 0; 
      P.setIncomingBlock(PredIndex, Preheader); 
      // Removes all incoming values from all other exiting blocks (including 
      // duplicate values from an exiting block). 
      // Nuke all entries except the zero'th entry which is the preheader entry. 
      // NOTE! We need to remove Incoming Values in the reverse order as done 
      // below, to keep the indices valid for deletion (removeIncomingValues 
      // updates getNumIncomingValues and shifts all values down into the 
      // operand being deleted). 
      for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) 
        P.removeIncomingValue(e - i, false); 
 
      assert((P.getNumIncomingValues() == 1 && 
              P.getIncomingBlock(PredIndex) == Preheader) && 
             "Should have exactly one value and that's from the preheader!"); 
    }
 
    if (DT) { 
      DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}); 
      if (MSSA) { 
        MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, 
                            *DT); 
        if (VerifyMemorySSA) 
          MSSA->verifyMemorySSA(); 
      } 
    } 
 
    // Disconnect the loop body by branching directly to its exit. 
    Builder.SetInsertPoint(Preheader->getTerminator()); 
    Builder.CreateBr(ExitBlock); 
    // Remove the old branch. 
    Preheader->getTerminator()->eraseFromParent(); 
  } else { 
    assert(L->hasNoExitBlocks() && 
           "Loop should have either zero or one exit blocks."); 
 
    Builder.SetInsertPoint(OldBr); 
    Builder.CreateUnreachable(); 
    Preheader->getTerminator()->eraseFromParent(); 
  }

  if (DT) {
    DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
    if (MSSA) {
      MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
                          *DT);
      SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
                                                   L->block_end());
      MSSAU->removeBlocks(DeadBlockSet);
      if (VerifyMemorySSA)
        MSSA->verifyMemorySSA();
    }
  }

  // Use a map to unique and a vector to guarantee deterministic ordering.
  llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
  llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;

  if (ExitBlock) { 
    // Given LCSSA form is satisfied, we should not have users of instructions 
    // within the dead loop outside of the loop. However, LCSSA doesn't take 
    // unreachable uses into account. We handle them here. 
    // We could do it after drop all references (in this case all users in the 
    // loop will be already eliminated and we have less work to do but according 
    // to API doc of User::dropAllReferences only valid operation after dropping 
    // references, is deletion. So let's substitute all usages of 
    // instruction from the loop with undef value of corresponding type first. 
    for (auto *Block : L->blocks()) 
      for (Instruction &I : *Block) { 
        auto *Undef = UndefValue::get(I.getType()); 
        for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); 
             UI != E;) { 
          Use &U = *UI; 
          ++UI; 
          if (auto *Usr = dyn_cast<Instruction>(U.getUser())) 
            if (L->contains(Usr->getParent())) 
              continue; 
          // If we have a DT then we can check that uses outside a loop only in 
          // unreachable block. 
          if (DT) 
            assert(!DT->isReachableFromEntry(U) && 
                   "Unexpected user in reachable block"); 
          U.set(Undef); 
        } 
        auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 
        if (!DVI) 
          continue; 
        auto Key = 
            DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); 
        if (Key != DeadDebugSet.end()) 
          continue; 
        DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); 
        DeadDebugInst.push_back(DVI); 
      }

    // After the loop has been deleted all the values defined and modified 
    // inside the loop are going to be unavailable. 
    // Since debug values in the loop have been deleted, inserting an undef 
    // dbg.value truncates the range of any dbg.value before the loop where the 
    // loop used to be. This is particularly important for constant values. 
    DIBuilder DIB(*ExitBlock->getModule()); 
    Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI(); 
    assert(InsertDbgValueBefore && 
           "There should be a non-PHI instruction in exit block, else these " 
           "instructions will have no parent."); 
    for (auto *DVI : DeadDebugInst) 
      DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()), 
                                  DVI->getVariable(), DVI->getExpression(), 
                                  DVI->getDebugLoc(), InsertDbgValueBefore); 
  } 

  // Remove the block from the reference counting scheme, so that we can
  // delete it freely later.
  for (auto *Block : L->blocks())
    Block->dropAllReferences();

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  if (LI) {
    // Erase the instructions and the blocks without having to worry
    // about ordering because we already dropped the references.
    // NOTE: This iteration is safe because erasing the block does not remove
    // its entry from the loop's block list.  We do that in the next section.
    for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
         LpI != LpE; ++LpI)
      (*LpI)->eraseFromParent();

    // Finally, the blocks from loopinfo.  This has to happen late because
    // otherwise our loop iterators won't work.

    SmallPtrSet<BasicBlock *, 8> blocks;
    blocks.insert(L->block_begin(), L->block_end());
    for (BasicBlock *BB : blocks)
      LI->removeBlock(BB);

    // The last step is to update LoopInfo now that we've eliminated this loop.
    // Note: LoopInfo::erase remove the given loop and relink its subloops with
    // its parent. While removeLoop/removeChildLoop remove the given loop but
    // not relink its subloops, which is what we want.
    if (Loop *ParentLoop = L->getParentLoop()) {
      Loop::iterator I = find(*ParentLoop, L);
      assert(I != ParentLoop->end() && "Couldn't find loop");
      ParentLoop->removeChildLoop(I);
    } else {
      Loop::iterator I = find(*LI, L);
      assert(I != LI->end() && "Couldn't find loop");
      LI->removeLoop(I);
    }
    LI->destroy(L);
  }
}

static Loop *getOutermostLoop(Loop *L) { 
  while (Loop *Parent = L->getParentLoop()) 
    L = Parent; 
  return L; 
} 
 
void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, 
                             LoopInfo &LI, MemorySSA *MSSA) { 
  auto *Latch = L->getLoopLatch(); 
  assert(Latch && "multiple latches not yet supported"); 
  auto *Header = L->getHeader(); 
  Loop *OutermostLoop = getOutermostLoop(L); 
 
  SE.forgetLoop(L); 
 
  // Note: By splitting the backedge, and then explicitly making it unreachable 
  // we gracefully handle corner cases such as non-bottom tested loops and the 
  // like.  We also have the benefit of being able to reuse existing well tested 
  // code.  It might be worth special casing the common bottom tested case at 
  // some point to avoid code churn. 
 
  std::unique_ptr<MemorySSAUpdater> MSSAU; 
  if (MSSA) 
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 
 
  auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get()); 
 
  DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager); 
  (void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false, 
                            /*PreserveLCSSA*/true, &DTU, MSSAU.get()); 
 
  // Erase (and destroy) this loop instance.  Handles relinking sub-loops 
  // and blocks within the loop as needed. 
  LI.erase(L); 
 
  // If the loop we broke had a parent, then changeToUnreachable might have 
  // caused a block to be removed from the parent loop (see loop_nest_lcssa 
  // test case in zero-btc.ll for an example), thus changing the parent's 
  // exit blocks.  If that happened, we need to rebuild LCSSA on the outermost 
  // loop which might have a had a block removed. 
  if (OutermostLoop != L) 
    formLCSSARecursively(*OutermostLoop, DT, &LI, &SE); 
} 
 
 
/// Checks if \p L has single exit through latch block except possibly
/// "deoptimizing" exits. Returns branch instruction terminating the loop
/// latch if above check is successful, nullptr otherwise.
static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
  BasicBlock *Latch = L->getLoopLatch();
  if (!Latch)
    return nullptr;

  BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
  if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
    return nullptr;

  assert((LatchBR->getSuccessor(0) == L->getHeader() ||
          LatchBR->getSuccessor(1) == L->getHeader()) &&
         "At least one edge out of the latch must go to the header");

  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getUniqueNonLatchExitBlocks(ExitBlocks);
  if (any_of(ExitBlocks, [](const BasicBlock *EB) {
        return !EB->getTerminatingDeoptimizeCall();
      }))
    return nullptr;

  return LatchBR;
}

Optional<unsigned>
llvm::getLoopEstimatedTripCount(Loop *L,
                                unsigned *EstimatedLoopInvocationWeight) {
  // Support loops with an exiting latch and other existing exists only
  // deoptimize.
  BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
  if (!LatchBranch)
    return None;

  // To estimate the number of times the loop body was executed, we want to
  // know the number of times the backedge was taken, vs. the number of times
  // we exited the loop.
  uint64_t BackedgeTakenWeight, LatchExitWeight;
  if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
    return None;

  if (LatchBranch->getSuccessor(0) != L->getHeader())
    std::swap(BackedgeTakenWeight, LatchExitWeight);

  if (!LatchExitWeight)
    return None;

  if (EstimatedLoopInvocationWeight)
    *EstimatedLoopInvocationWeight = LatchExitWeight;

  // Estimated backedge taken count is a ratio of the backedge taken weight by
  // the weight of the edge exiting the loop, rounded to nearest.
  uint64_t BackedgeTakenCount =
      llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
  // Estimated trip count is one plus estimated backedge taken count.
  return BackedgeTakenCount + 1;
}

bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
                                     unsigned EstimatedloopInvocationWeight) {
  // Support loops with an exiting latch and other existing exists only
  // deoptimize.
  BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
  if (!LatchBranch)
    return false;

  // Calculate taken and exit weights.
  unsigned LatchExitWeight = 0;
  unsigned BackedgeTakenWeight = 0;

  if (EstimatedTripCount > 0) {
    LatchExitWeight = EstimatedloopInvocationWeight;
    BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
  }

  // Make a swap if back edge is taken when condition is "false".
  if (LatchBranch->getSuccessor(0) != L->getHeader())
    std::swap(BackedgeTakenWeight, LatchExitWeight);

  MDBuilder MDB(LatchBranch->getContext());

  // Set/Update profile metadata.
  LatchBranch->setMetadata(
      LLVMContext::MD_prof,
      MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));

  return true;
}

bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
                                              ScalarEvolution &SE) {
  Loop *OuterL = InnerLoop->getParentLoop();
  if (!OuterL)
    return true;

  // Get the backedge taken count for the inner loop
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
  const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
  if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
      !InnerLoopBECountSC->getType()->isIntegerTy())
    return false;

  // Get whether count is invariant to the outer loop
  ScalarEvolution::LoopDisposition LD =
      SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
  if (LD != ScalarEvolution::LoopInvariant)
    return false;

  return true;
}

Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, 
                            Value *Right) { 
  CmpInst::Predicate Pred; 
  switch (RK) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case RecurKind::UMin: 
    Pred = CmpInst::ICMP_ULT; 
    break;
  case RecurKind::UMax: 
    Pred = CmpInst::ICMP_UGT; 
    break;
  case RecurKind::SMin: 
    Pred = CmpInst::ICMP_SLT; 
    break;
  case RecurKind::SMax: 
    Pred = CmpInst::ICMP_SGT; 
    break;
  case RecurKind::FMin: 
    Pred = CmpInst::FCMP_OLT; 
    break;
  case RecurKind::FMax: 
    Pred = CmpInst::FCMP_OGT; 
    break;
  }

  // We only match FP sequences that are 'fast', so we can unconditionally
  // set it on any generated instructions.
  IRBuilderBase::FastMathFlagGuard FMFG(Builder);
  FastMathFlags FMF;
  FMF.setFast();
  Builder.setFastMathFlags(FMF);
  Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp"); 
  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
  return Select;
}

// Helper to generate an ordered reduction.
Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, 
                                 unsigned Op, RecurKind RdxKind, 
                                 ArrayRef<Value *> RedOps) { 
  unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();

  // Extract and apply reduction ops in ascending order:
  // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
  Value *Result = Acc;
  for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
    Value *Ext =
        Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
                                   "bin.rdx");
    } else {
      assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 
             "Invalid min/max");
      Result = createMinMaxOp(Builder, RdxKind, Result, Ext); 
    }

    if (!RedOps.empty())
      propagateIRFlags(Result, RedOps);
  }

  return Result;
}

// Helper to generate a log2 shuffle reduction.
Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, 
                                 unsigned Op, RecurKind RdxKind, 
                                 ArrayRef<Value *> RedOps) { 
  unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
  // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
  // and vector ops, reducing the set of values being computed by half each
  // round.
  assert(isPowerOf2_32(VF) &&
         "Reduction emission only supported for pow2 vectors!");
  Value *TmpVec = Src;
  SmallVector<int, 32> ShuffleMask(VF);
  for (unsigned i = VF; i != 1; i >>= 1) {
    // Move the upper half of the vector to the lower half.
    for (unsigned j = 0; j != i / 2; ++j)
      ShuffleMask[j] = i / 2 + j;

    // Fill the rest of the mask with undef.
    std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);

    Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf"); 

    if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
      // The builder propagates its fast-math-flags setting.
      TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
                                   "bin.rdx");
    } else {
      assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) && 
             "Invalid min/max");
      TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf); 
    }
    if (!RedOps.empty())
      propagateIRFlags(TmpVec, RedOps);

    // We may compute the reassociated scalar ops in a way that does not
    // preserve nsw/nuw etc. Conservatively, drop those flags.
    if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
      ReductionInst->dropPoisonGeneratingFlags();
  }
  // The result is in the first element of the vector.
  return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}

Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder, 
                                         const TargetTransformInfo *TTI, 
                                         Value *Src, RecurKind RdxKind, 
                                         ArrayRef<Value *> RedOps) { 
  unsigned Opcode = RecurrenceDescriptor::getOpcode(RdxKind); 
  TargetTransformInfo::ReductionFlags RdxFlags; 
  RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax || 
                     RdxKind == RecurKind::FMax; 
  RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin; 
  if (!ForceReductionIntrinsic && 
      !TTI->useReductionIntrinsic(Opcode, Src->getType(), RdxFlags)) 
    return getShuffleReduction(Builder, Src, Opcode, RdxKind, RedOps); 

  auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType(); 
  switch (RdxKind) { 
  case RecurKind::Add: 
    return Builder.CreateAddReduce(Src); 
  case RecurKind::Mul: 
    return Builder.CreateMulReduce(Src); 
  case RecurKind::And: 
    return Builder.CreateAndReduce(Src); 
  case RecurKind::Or: 
    return Builder.CreateOrReduce(Src); 
  case RecurKind::Xor: 
    return Builder.CreateXorReduce(Src); 
  case RecurKind::FAdd: 
    return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy), 
                                    Src); 
  case RecurKind::FMul: 
    return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src); 
  case RecurKind::SMax: 
    return Builder.CreateIntMaxReduce(Src, true); 
  case RecurKind::SMin: 
    return Builder.CreateIntMinReduce(Src, true); 
  case RecurKind::UMax: 
    return Builder.CreateIntMaxReduce(Src, false); 
  case RecurKind::UMin: 
    return Builder.CreateIntMinReduce(Src, false); 
  case RecurKind::FMax: 
    return Builder.CreateFPMaxReduce(Src); 
  case RecurKind::FMin: 
    return Builder.CreateFPMinReduce(Src); 
  default:
    llvm_unreachable("Unhandled opcode");
  }
}

Value *llvm::createTargetReduction(IRBuilderBase &B,
                                   const TargetTransformInfo *TTI,
                                   RecurrenceDescriptor &Desc, Value *Src) { 
  // TODO: Support in-order reductions based on the recurrence descriptor.
  // All ops in the reduction inherit fast-math-flags from the recurrence
  // descriptor.
  IRBuilderBase::FastMathFlagGuard FMFGuard(B);
  B.setFastMathFlags(Desc.getFastMathFlags());
  return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind()); 
}

void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
  auto *VecOp = dyn_cast<Instruction>(I);
  if (!VecOp)
    return;
  auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
                                            : dyn_cast<Instruction>(OpValue);
  if (!Intersection)
    return;
  const unsigned Opcode = Intersection->getOpcode();
  VecOp->copyIRFlags(Intersection);
  for (auto *V : VL) {
    auto *Instr = dyn_cast<Instruction>(V);
    if (!Instr)
      continue;
    if (OpValue == nullptr || Opcode == Instr->getOpcode())
      VecOp->andIRFlags(V);
  }
}

bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
                                 ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
}

bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
                                    ScalarEvolution &SE) {
  const SCEV *Zero = SE.getZero(S->getType());
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
}

bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
    APInt::getMinValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Min));
}

bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
                             bool Signed) {
  unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
  APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
    APInt::getMaxValue(BitWidth);
  auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
  return SE.isAvailableAtLoopEntry(S, L) &&
         SE.isLoopEntryGuardedByCond(L, Predicate, S,
                                     SE.getConstant(Max));
}

//===----------------------------------------------------------------------===//
// rewriteLoopExitValues - Optimize IV users outside the loop.
// As a side effect, reduces the amount of IV processing within the loop.
//===----------------------------------------------------------------------===//

// Return true if the SCEV expansion generated by the rewriter can replace the
// original value. SCEV guarantees that it produces the same value, but the way
// it is produced may be illegal IR.  Ideally, this function will only be
// called for verification.
static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
  // If an SCEV expression subsumed multiple pointers, its expansion could
  // reassociate the GEP changing the base pointer. This is illegal because the
  // final address produced by a GEP chain must be inbounds relative to its
  // underlying object. Otherwise basic alias analysis, among other things,
  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
  // producing an expression involving multiple pointers. Until then, we must
  // bail out here.
  //
  // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject 
  // because it understands lcssa phis while SCEV does not.
  Value *FromPtr = FromVal;
  Value *ToPtr = ToVal;
  if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
    FromPtr = GEP->getPointerOperand();

  if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
    ToPtr = GEP->getPointerOperand();

  if (FromPtr != FromVal || ToPtr != ToVal) {
    // Quickly check the common case
    if (FromPtr == ToPtr)
      return true;

    // SCEV may have rewritten an expression that produces the GEP's pointer
    // operand. That's ok as long as the pointer operand has the same base
    // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the 
    // base of a recurrence. This handles the case in which SCEV expansion
    // converts a pointer type recurrence into a nonrecurrent pointer base
    // indexed by an integer recurrence.

    // If the GEP base pointer is a vector of pointers, abort.
    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
      return false;

    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
    if (FromBase == ToBase)
      return true;

    LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
                      << *FromBase << " != " << *ToBase << "\n");

    return false;
  }
  return true;
}

static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
  SmallPtrSet<const Instruction *, 8> Visited;
  SmallVector<const Instruction *, 8> WorkList;
  Visited.insert(I);
  WorkList.push_back(I);
  while (!WorkList.empty()) {
    const Instruction *Curr = WorkList.pop_back_val();
    // This use is outside the loop, nothing to do.
    if (!L->contains(Curr))
      continue;
    // Do we assume it is a "hard" use which will not be eliminated easily?
    if (Curr->mayHaveSideEffects())
      return true;
    // Otherwise, add all its users to worklist.
    for (auto U : Curr->users()) {
      auto *UI = cast<Instruction>(U);
      if (Visited.insert(UI).second)
        WorkList.push_back(UI);
    }
  }
  return false;
}

// Collect information about PHI nodes which can be transformed in
// rewriteLoopExitValues.
struct RewritePhi {
  PHINode *PN;               // For which PHI node is this replacement?
  unsigned Ith;              // For which incoming value?
  const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
  Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
  bool HighCost;               // Is this expansion a high-cost?

  Value *Expansion = nullptr;
  bool ValidRewrite = false;

  RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
             bool H)
      : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
        HighCost(H) {}
};

// Check whether it is possible to delete the loop after rewriting exit
// value. If it is possible, ignore ReplaceExitValue and do rewriting
// aggressively.
static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
  BasicBlock *Preheader = L->getLoopPreheader();
  // If there is no preheader, the loop will not be deleted.
  if (!Preheader)
    return false;

  // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
  // We obviate multiple ExitingBlocks case for simplicity.
  // TODO: If we see testcase with multiple ExitingBlocks can be deleted
  // after exit value rewriting, we can enhance the logic here.
  SmallVector<BasicBlock *, 4> ExitingBlocks;
  L->getExitingBlocks(ExitingBlocks);
  SmallVector<BasicBlock *, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);
  if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
    return false;

  BasicBlock *ExitBlock = ExitBlocks[0];
  BasicBlock::iterator BI = ExitBlock->begin();
  while (PHINode *P = dyn_cast<PHINode>(BI)) {
    Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);

    // If the Incoming value of P is found in RewritePhiSet, we know it
    // could be rewritten to use a loop invariant value in transformation
    // phase later. Skip it in the loop invariant check below.
    bool found = false;
    for (const RewritePhi &Phi : RewritePhiSet) {
      if (!Phi.ValidRewrite)
        continue;
      unsigned i = Phi.Ith;
      if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
        found = true;
        break;
      }
    }

    Instruction *I;
    if (!found && (I = dyn_cast<Instruction>(Incoming)))
      if (!L->hasLoopInvariantOperands(I))
        return false;

    ++BI;
  }

  for (auto *BB : L->blocks())
    if (llvm::any_of(*BB, [](Instruction &I) {
          return I.mayHaveSideEffects();
        }))
      return false;

  return true;
}

int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
                                ScalarEvolution *SE,
                                const TargetTransformInfo *TTI,
                                SCEVExpander &Rewriter, DominatorTree *DT,
                                ReplaceExitVal ReplaceExitValue,
                                SmallVector<WeakTrackingVH, 16> &DeadInsts) {
  // Check a pre-condition.
  assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
         "Indvars did not preserve LCSSA!");

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  SmallVector<RewritePhi, 8> RewritePhiSet;
  // Find all values that are computed inside the loop, but used outside of it.
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
  // the exit blocks of the loop to find them.
  for (BasicBlock *ExitBB : ExitBlocks) {
    // If there are no PHI nodes in this exit block, then no values defined
    // inside the loop are used on this path, skip it.
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    if (!PN) continue;

    unsigned NumPreds = PN->getNumIncomingValues();

    // Iterate over all of the PHI nodes.
    BasicBlock::iterator BBI = ExitBB->begin();
    while ((PN = dyn_cast<PHINode>(BBI++))) {
      if (PN->use_empty())
        continue; // dead use, don't replace it

      if (!SE->isSCEVable(PN->getType()))
        continue;

      // It's necessary to tell ScalarEvolution about this explicitly so that
      // it can walk the def-use list and forget all SCEVs, as it may not be
      // watching the PHI itself. Once the new exit value is in place, there
      // may not be a def-use connection between the loop and every instruction
      // which got a SCEVAddRecExpr for that loop.
      SE->forgetValue(PN);

      // Iterate over all of the values in all the PHI nodes.
      for (unsigned i = 0; i != NumPreds; ++i) {
        // If the value being merged in is not integer or is not defined
        // in the loop, skip it.
        Value *InVal = PN->getIncomingValue(i);
        if (!isa<Instruction>(InVal))
          continue;

        // If this pred is for a subloop, not L itself, skip it.
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
          continue; // The Block is in a subloop, skip it.

        // Check that InVal is defined in the loop.
        Instruction *Inst = cast<Instruction>(InVal);
        if (!L->contains(Inst))
          continue;

        // Okay, this instruction has a user outside of the current loop
        // and varies predictably *inside* the loop.  Evaluate the value it
        // contains when the loop exits, if possible.  We prefer to start with
        // expressions which are true for all exits (so as to maximize
        // expression reuse by the SCEVExpander), but resort to per-exit
        // evaluation if that fails.
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
        if (isa<SCEVCouldNotCompute>(ExitValue) ||
            !SE->isLoopInvariant(ExitValue, L) ||
            !isSafeToExpand(ExitValue, *SE)) {
          // TODO: This should probably be sunk into SCEV in some way; maybe a
          // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
          // most SCEV expressions and other recurrence types (e.g. shift
          // recurrences).  Is there existing code we can reuse?
          const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
          if (isa<SCEVCouldNotCompute>(ExitCount))
            continue;
          if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
            if (AddRec->getLoop() == L)
              ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
          if (isa<SCEVCouldNotCompute>(ExitValue) ||
              !SE->isLoopInvariant(ExitValue, L) ||
              !isSafeToExpand(ExitValue, *SE))
            continue;
        }

        // Computing the value outside of the loop brings no benefit if it is
        // definitely used inside the loop in a way which can not be optimized
        // away. Avoid doing so unless we know we have a value which computes
        // the ExitValue already. TODO: This should be merged into SCEV
        // expander to leverage its knowledge of existing expressions.
        if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
            !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
          continue;

        // Check if expansions of this SCEV would count as being high cost.
        bool HighCost = Rewriter.isHighCostExpansion(
            ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);

        // Note that we must not perform expansions until after
        // we query *all* the costs, because if we perform temporary expansion
        // inbetween, one that we might not intend to keep, said expansion
        // *may* affect cost calculation of the the next SCEV's we'll query,
        // and next SCEV may errneously get smaller cost.

        // Collect all the candidate PHINodes to be rewritten.
        RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
      }
    }
  }

  // Now that we've done preliminary filtering and billed all the SCEV's,
  // we can perform the last sanity check - the expansion must be valid.
  for (RewritePhi &Phi : RewritePhiSet) {
    Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
                                           Phi.ExpansionPoint);

    LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
                      << *(Phi.Expansion) << '\n'
                      << "  LoopVal = " << *(Phi.ExpansionPoint) << "\n");

    // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
    Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
    if (!Phi.ValidRewrite) {
      DeadInsts.push_back(Phi.Expansion);
      continue;
    }

#ifndef NDEBUG
    // If we reuse an instruction from a loop which is neither L nor one of
    // its containing loops, we end up breaking LCSSA form for this loop by
    // creating a new use of its instruction.
    if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
      if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
        if (EVL != L)
          assert(EVL->contains(L) && "LCSSA breach detected!");
#endif
  }

  // TODO: after isValidRewrite() is an assertion, evaluate whether
  // it is beneficial to change how we calculate high-cost:
  // if we have SCEV 'A' which we know we will expand, should we calculate
  // the cost of other SCEV's after expanding SCEV 'A',
  // thus potentially giving cost bonus to those other SCEV's?

  bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
  int NumReplaced = 0;

  // Transformation.
  for (const RewritePhi &Phi : RewritePhiSet) {
    if (!Phi.ValidRewrite)
      continue;

    PHINode *PN = Phi.PN;
    Value *ExitVal = Phi.Expansion;

    // Only do the rewrite when the ExitValue can be expanded cheaply.
    // If LoopCanBeDel is true, rewrite exit value aggressively.
    if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
      DeadInsts.push_back(ExitVal);
      continue;
    }

    NumReplaced++;
    Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
    PN->setIncomingValue(Phi.Ith, ExitVal);

    // If this instruction is dead now, delete it. Don't do it now to avoid
    // invalidating iterators.
    if (isInstructionTriviallyDead(Inst, TLI))
      DeadInsts.push_back(Inst);

    // Replace PN with ExitVal if that is legal and does not break LCSSA.
    if (PN->getNumIncomingValues() == 1 &&
        LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
      PN->replaceAllUsesWith(ExitVal);
      PN->eraseFromParent();
    }
  }

  // The insertion point instruction may have been deleted; clear it out
  // so that the rewriter doesn't trip over it later.
  Rewriter.clearInsertPoint();
  return NumReplaced;
}

/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
/// \p OrigLoop.
void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
                                        Loop *RemainderLoop, uint64_t UF) {
  assert(UF > 0 && "Zero unrolled factor is not supported");
  assert(UnrolledLoop != RemainderLoop &&
         "Unrolled and Remainder loops are expected to distinct");

  // Get number of iterations in the original scalar loop.
  unsigned OrigLoopInvocationWeight = 0;
  Optional<unsigned> OrigAverageTripCount =
      getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
  if (!OrigAverageTripCount)
    return;

  // Calculate number of iterations in unrolled loop.
  unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
  // Calculate number of iterations for remainder loop.
  unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;

  setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
                            OrigLoopInvocationWeight);
  setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
                            OrigLoopInvocationWeight);
}

/// Utility that implements appending of loops onto a worklist.
/// Loops are added in preorder (analogous for reverse postorder for trees),
/// and the worklist is processed LIFO.
template <typename RangeT>
void llvm::appendReversedLoopsToWorklist(
    RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
  // We use an internal worklist to build up the preorder traversal without
  // recursion.
  SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;

  // We walk the initial sequence of loops in reverse because we generally want
  // to visit defs before uses and the worklist is LIFO.
  for (Loop *RootL : Loops) {
    assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
    assert(PreOrderWorklist.empty() &&
           "Must start with an empty preorder walk worklist.");
    PreOrderWorklist.push_back(RootL);
    do {
      Loop *L = PreOrderWorklist.pop_back_val();
      PreOrderWorklist.append(L->begin(), L->end());
      PreOrderLoops.push_back(L);
    } while (!PreOrderWorklist.empty());

    Worklist.insert(std::move(PreOrderLoops));
    PreOrderLoops.clear();
  }
}

template <typename RangeT>
void llvm::appendLoopsToWorklist(RangeT &&Loops,
                                 SmallPriorityWorklist<Loop *, 4> &Worklist) {
  appendReversedLoopsToWorklist(reverse(Loops), Worklist);
}

template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
    ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);

template void
llvm::appendLoopsToWorklist<Loop &>(Loop &L,
                                    SmallPriorityWorklist<Loop *, 4> &Worklist);

void llvm::appendLoopsToWorklist(LoopInfo &LI,
                                 SmallPriorityWorklist<Loop *, 4> &Worklist) {
  appendReversedLoopsToWorklist(LI, Worklist);
}

Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
                      LoopInfo *LI, LPPassManager *LPM) {
  Loop &New = *LI->AllocateLoop();
  if (PL)
    PL->addChildLoop(&New);
  else
    LI->addTopLevelLoop(&New);

  if (LPM)
    LPM->addLoop(New);

  // Add all of the blocks in L to the new loop.
  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
       I != E; ++I)
    if (LI->getLoopFor(*I) == L)
      New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);

  // Add all of the subloops to the new loop.
  for (Loop *I : *L)
    cloneLoop(I, &New, VM, LI, LPM);

  return &New;
}

/// IR Values for the lower and upper bounds of a pointer evolution.  We
/// need to use value-handles because SCEV expansion can invalidate previously
/// expanded values.  Thus expansion of a pointer can invalidate the bounds for
/// a previous one.
struct PointerBounds {
  TrackingVH<Value> Start;
  TrackingVH<Value> End;
};

/// Expand code for the lower and upper bound of the pointer group \p CG
/// in \p TheLoop.  \return the values for the bounds.
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
                                  Loop *TheLoop, Instruction *Loc,
                                  SCEVExpander &Exp, ScalarEvolution *SE) {
  // TODO: Add helper to retrieve pointers to CG.
  Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
  const SCEV *Sc = SE->getSCEV(Ptr);

  unsigned AS = Ptr->getType()->getPointerAddressSpace();
  LLVMContext &Ctx = Loc->getContext();

  // Use this type for pointer arithmetic.
  Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);

  if (SE->isLoopInvariant(Sc, TheLoop)) {
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
                      << *Ptr << "\n");
    // Ptr could be in the loop body. If so, expand a new one at the correct
    // location.
    Instruction *Inst = dyn_cast<Instruction>(Ptr);
    Value *NewPtr = (Inst && TheLoop->contains(Inst))
                        ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
                        : Ptr;
    // We must return a half-open range, which means incrementing Sc.
    const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
    Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
    return {NewPtr, NewPtrPlusOne};
  } else {
    Value *Start = nullptr, *End = nullptr;
    LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
    Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
    End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
    LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
                      << "\n");
    return {Start, End};
  }
}

/// Turns a collection of checks into a collection of expanded upper and
/// lower bounds for both pointers in the check.
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
             Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
  SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;

  // Here we're relying on the SCEV Expander's cache to only emit code for the
  // same bounds once.
  transform(PointerChecks, std::back_inserter(ChecksWithBounds),
            [&](const RuntimePointerCheck &Check) {
              PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
                            Second =
                                expandBounds(Check.second, L, Loc, Exp, SE);
              return std::make_pair(First, Second);
            });

  return ChecksWithBounds;
}

std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
    Instruction *Loc, Loop *TheLoop,
    const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
    ScalarEvolution *SE) {
  // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
  // TODO: Pass  RtPtrChecking instead of PointerChecks and SE separately, if possible
  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
  SCEVExpander Exp(*SE, DL, "induction");
  auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);

  LLVMContext &Ctx = Loc->getContext();
  Instruction *FirstInst = nullptr;
  IRBuilder<> ChkBuilder(Loc);
  // Our instructions might fold to a constant.
  Value *MemoryRuntimeCheck = nullptr;

  // FIXME: this helper is currently a duplicate of the one in
  // LoopVectorize.cpp.
  auto GetFirstInst = [](Instruction *FirstInst, Value *V,
                         Instruction *Loc) -> Instruction * {
    if (FirstInst)
      return FirstInst;
    if (Instruction *I = dyn_cast<Instruction>(V))
      return I->getParent() == Loc->getParent() ? I : nullptr;
    return nullptr;
  };

  for (const auto &Check : ExpandedChecks) {
    const PointerBounds &A = Check.first, &B = Check.second;
    // Check if two pointers (A and B) conflict where conflict is computed as:
    // start(A) <= end(B) && start(B) <= end(A)
    unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
    unsigned AS1 = B.Start->getType()->getPointerAddressSpace();

    assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
           (AS1 == A.End->getType()->getPointerAddressSpace()) &&
           "Trying to bounds check pointers with different address spaces");

    Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
    Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);

    Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
    Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
    Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
    Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");

    // [A|B].Start points to the first accessed byte under base [A|B].
    // [A|B].End points to the last accessed byte, plus one.
    // There is no conflict when the intervals are disjoint:
    // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
    //
    // bound0 = (B.Start < A.End)
    // bound1 = (A.Start < B.End)
    //  IsConflict = bound0 & bound1
    Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
    FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
    Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
    FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
    Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
    FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
    if (MemoryRuntimeCheck) {
      IsConflict =
          ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
      FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
    }
    MemoryRuntimeCheck = IsConflict;
  }

  if (!MemoryRuntimeCheck)
    return std::make_pair(nullptr, nullptr);

  // We have to do this trickery because the IRBuilder might fold the check to a
  // constant expression in which case there is no Instruction anchored in a
  // the block.
  Instruction *Check =
      BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
  ChkBuilder.Insert(Check, "memcheck.conflict");
  FirstInst = GetFirstInst(FirstInst, Check, Loc);
  return std::make_pair(FirstInst, Check);
}