aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Utils/LoopUnrollAndJam.cpp
blob: daa298e0f715935c95aea9e6a68d16ea54a269aa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
//===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop unroll and jam as a routine, much like
// LoopUnroll.cpp implements loop unroll.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <assert.h>
#include <memory>
#include <type_traits>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-unroll-and-jam"

STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed");
STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed");

typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet;

// Partition blocks in an outer/inner loop pair into blocks before and after
// the loop
static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks,
                                BasicBlockSet &AftBlocks, DominatorTree &DT) {
  Loop *SubLoop = L.getSubLoops()[0];
  BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();

  for (BasicBlock *BB : L.blocks()) {
    if (!SubLoop->contains(BB)) {
      if (DT.dominates(SubLoopLatch, BB))
        AftBlocks.insert(BB);
      else
        ForeBlocks.insert(BB);
    }
  }

  // Check that all blocks in ForeBlocks together dominate the subloop
  // TODO: This might ideally be done better with a dominator/postdominators.
  BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader();
  for (BasicBlock *BB : ForeBlocks) {
    if (BB == SubLoopPreHeader)
      continue;
    Instruction *TI = BB->getTerminator();
    for (BasicBlock *Succ : successors(TI))
      if (!ForeBlocks.count(Succ))
        return false;
  }

  return true;
}

/// Partition blocks in a loop nest into blocks before and after each inner
/// loop.
static bool partitionOuterLoopBlocks(
    Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks,
    DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap,
    DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, DominatorTree &DT) {
  JamLoopBlocks.insert(JamLoop.block_begin(), JamLoop.block_end());

  for (Loop *L : Root.getLoopsInPreorder()) {
    if (L == &JamLoop)
      break;

    if (!partitionLoopBlocks(*L, ForeBlocksMap[L], AftBlocksMap[L], DT))
      return false;
  }

  return true;
}

// TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more
// than 2 levels loop.
static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop,
                                     BasicBlockSet &ForeBlocks,
                                     BasicBlockSet &SubLoopBlocks,
                                     BasicBlockSet &AftBlocks,
                                     DominatorTree *DT) {
  SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end());
  return partitionLoopBlocks(*L, ForeBlocks, AftBlocks, *DT);
}

// Looks at the phi nodes in Header for values coming from Latch. For these
// instructions and all their operands calls Visit on them, keeping going for
// all the operands in AftBlocks. Returns false if Visit returns false,
// otherwise returns true. This is used to process the instructions in the
// Aft blocks that need to be moved before the subloop. It is used in two
// places. One to check that the required set of instructions can be moved
// before the loop. Then to collect the instructions to actually move in
// moveHeaderPhiOperandsToForeBlocks.
template <typename T>
static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch,
                                     BasicBlockSet &AftBlocks, T Visit) {
  SmallVector<Instruction *, 8> Worklist;
  for (auto &Phi : Header->phis()) {
    Value *V = Phi.getIncomingValueForBlock(Latch);
    if (Instruction *I = dyn_cast<Instruction>(V))
      Worklist.push_back(I);
  }

  while (!Worklist.empty()) {
    Instruction *I = Worklist.pop_back_val(); 
    if (!Visit(I))
      return false;

    if (AftBlocks.count(I->getParent()))
      for (auto &U : I->operands())
        if (Instruction *II = dyn_cast<Instruction>(U))
          Worklist.push_back(II);
  }

  return true;
}

// Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header,
                                              BasicBlock *Latch,
                                              Instruction *InsertLoc,
                                              BasicBlockSet &AftBlocks) {
  // We need to ensure we move the instructions in the correct order,
  // starting with the earliest required instruction and moving forward.
  std::vector<Instruction *> Visited;
  processHeaderPhiOperands(Header, Latch, AftBlocks,
                           [&Visited, &AftBlocks](Instruction *I) {
                             if (AftBlocks.count(I->getParent()))
                               Visited.push_back(I);
                             return true;
                           });

  // Move all instructions in program order to before the InsertLoc
  BasicBlock *InsertLocBB = InsertLoc->getParent();
  for (Instruction *I : reverse(Visited)) {
    if (I->getParent() != InsertLocBB)
      I->moveBefore(InsertLoc);
  }
}

/*
  This method performs Unroll and Jam. For a simple loop like:
  for (i = ..)
    Fore(i)
    for (j = ..)
      SubLoop(i, j)
    Aft(i)

  Instead of doing normal inner or outer unrolling, we do:
  for (i = .., i+=2)
    Fore(i)
    Fore(i+1)
    for (j = ..)
      SubLoop(i, j)
      SubLoop(i+1, j)
    Aft(i)
    Aft(i+1)

  So the outer loop is essetially unrolled and then the inner loops are fused
  ("jammed") together into a single loop. This can increase speed when there
  are loads in SubLoop that are invariant to i, as they become shared between
  the now jammed inner loops.

  We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
  Fore blocks are those before the inner loop, Aft are those after. Normal
  Unroll code is used to copy each of these sets of blocks and the results are
  combined together into the final form above.

  isSafeToUnrollAndJam should be used prior to calling this to make sure the
  unrolling will be valid. Checking profitablility is also advisable.

  If EpilogueLoop is non-null, it receives the epilogue loop (if it was
  necessary to create one and not fully unrolled).
*/
LoopUnrollResult
llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount,
                       unsigned TripMultiple, bool UnrollRemainder,
                       LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
                       AssumptionCache *AC, const TargetTransformInfo *TTI,
                       OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) {

  // When we enter here we should have already checked that it is safe
  BasicBlock *Header = L->getHeader();
  assert(Header && "No header.");
  assert(L->getSubLoops().size() == 1);
  Loop *SubLoop = *L->begin();

  // Don't enter the unroll code if there is nothing to do.
  if (TripCount == 0 && Count < 2) {
    LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
    return LoopUnrollResult::Unmodified;
  }

  assert(Count > 0);
  assert(TripMultiple > 0);
  assert(TripCount == 0 || TripCount % TripMultiple == 0);

  // Are we eliminating the loop control altogether?
  bool CompletelyUnroll = (Count == TripCount);

  // We use the runtime remainder in cases where we don't know trip multiple
  if (TripMultiple == 1 || TripMultiple % Count != 0) {
    if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
                                    /*UseEpilogRemainder*/ true,
                                    UnrollRemainder, /*ForgetAllSCEV*/ false,
                                    LI, SE, DT, AC, TTI, true, EpilogueLoop)) {
      LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
                           "generated when assuming runtime trip count\n");
      return LoopUnrollResult::Unmodified;
    }
  }

  // Notify ScalarEvolution that the loop will be substantially changed,
  // if not outright eliminated.
  if (SE) {
    SE->forgetLoop(L);
    SE->forgetLoop(SubLoop);
  }

  using namespace ore;
  // Report the unrolling decision.
  if (CompletelyUnroll) {
    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
                      << Header->getName() << " with trip count " << TripCount
                      << "!\n");
    ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
                                 L->getHeader())
              << "completely unroll and jammed loop with "
              << NV("UnrollCount", TripCount) << " iterations");
  } else {
    auto DiagBuilder = [&]() {
      OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
                              L->getHeader());
      return Diag << "unroll and jammed loop by a factor of "
                  << NV("UnrollCount", Count);
    };

    LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
                      << " by " << Count);
    if (TripMultiple != 1) {
      LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
      ORE->emit([&]() {
        return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
                             << " trips per branch";
      });
    } else {
      LLVM_DEBUG(dbgs() << " with run-time trip count");
      ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
    }
    LLVM_DEBUG(dbgs() << "!\n");
  }

  BasicBlock *Preheader = L->getLoopPreheader();
  BasicBlock *LatchBlock = L->getLoopLatch();
  assert(Preheader && "No preheader");
  assert(LatchBlock && "No latch block");
  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
  assert(BI && !BI->isUnconditional());
  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
  bool SubLoopContinueOnTrue = SubLoop->contains(
      SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));

  // Partition blocks in an outer/inner loop pair into blocks before and after
  // the loop
  BasicBlockSet SubLoopBlocks;
  BasicBlockSet ForeBlocks;
  BasicBlockSet AftBlocks;
  partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
                           DT);

  // We keep track of the entering/first and exiting/last block of each of
  // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
  // blocks easier.
  std::vector<BasicBlock *> ForeBlocksFirst;
  std::vector<BasicBlock *> ForeBlocksLast;
  std::vector<BasicBlock *> SubLoopBlocksFirst;
  std::vector<BasicBlock *> SubLoopBlocksLast;
  std::vector<BasicBlock *> AftBlocksFirst;
  std::vector<BasicBlock *> AftBlocksLast;
  ForeBlocksFirst.push_back(Header);
  ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
  SubLoopBlocksFirst.push_back(SubLoop->getHeader());
  SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
  AftBlocksFirst.push_back(SubLoop->getExitBlock());
  AftBlocksLast.push_back(L->getExitingBlock());
  // Maps Blocks[0] -> Blocks[It]
  ValueToValueMapTy LastValueMap;

  // Move any instructions from fore phi operands from AftBlocks into Fore.
  moveHeaderPhiOperandsToForeBlocks(
      Header, LatchBlock, ForeBlocksLast[0]->getTerminator(), AftBlocks);

  // The current on-the-fly SSA update requires blocks to be processed in
  // reverse postorder so that LastValueMap contains the correct value at each
  // exit.
  LoopBlocksDFS DFS(L);
  DFS.perform(LI);
  // Stash the DFS iterators before adding blocks to the loop.
  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();

  if (Header->getParent()->isDebugInfoForProfiling())
    for (BasicBlock *BB : L->getBlocks())
      for (Instruction &I : *BB)
        if (!isa<DbgInfoIntrinsic>(&I))
          if (const DILocation *DIL = I.getDebugLoc()) {
            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(Count);
            if (NewDIL)
              I.setDebugLoc(NewDIL.getValue());
            else
              LLVM_DEBUG(dbgs()
                         << "Failed to create new discriminator: "
                         << DIL->getFilename() << " Line: " << DIL->getLine());
          }

  // Copy all blocks
  for (unsigned It = 1; It != Count; ++It) {
    SmallVector<BasicBlock *, 8> NewBlocks;
    // Maps Blocks[It] -> Blocks[It-1]
    DenseMap<Value *, Value *> PrevItValueMap;
    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
    NewLoops[L] = L;
    NewLoops[SubLoop] = SubLoop;

    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
      ValueToValueMapTy VMap;
      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
      Header->getParent()->getBasicBlockList().push_back(New);

      // Tell LI about New.
      addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);

      if (ForeBlocks.count(*BB)) {
        if (*BB == ForeBlocksFirst[0])
          ForeBlocksFirst.push_back(New);
        if (*BB == ForeBlocksLast[0])
          ForeBlocksLast.push_back(New);
      } else if (SubLoopBlocks.count(*BB)) {
        if (*BB == SubLoopBlocksFirst[0])
          SubLoopBlocksFirst.push_back(New);
        if (*BB == SubLoopBlocksLast[0])
          SubLoopBlocksLast.push_back(New);
      } else if (AftBlocks.count(*BB)) {
        if (*BB == AftBlocksFirst[0])
          AftBlocksFirst.push_back(New);
        if (*BB == AftBlocksLast[0])
          AftBlocksLast.push_back(New);
      } else {
        llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
      }

      // Update our running maps of newest clones
      PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
      LastValueMap[*BB] = New;
      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
           VI != VE; ++VI) {
        PrevItValueMap[VI->second] =
            const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
        LastValueMap[VI->first] = VI->second;
      }

      NewBlocks.push_back(New);

      // Update DomTree:
      if (*BB == ForeBlocksFirst[0])
        DT->addNewBlock(New, ForeBlocksLast[It - 1]);
      else if (*BB == SubLoopBlocksFirst[0])
        DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
      else if (*BB == AftBlocksFirst[0])
        DT->addNewBlock(New, AftBlocksLast[It - 1]);
      else {
        // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
        // structure.
        auto BBDomNode = DT->getNode(*BB);
        auto BBIDom = BBDomNode->getIDom();
        BasicBlock *OriginalBBIDom = BBIDom->getBlock();
        assert(OriginalBBIDom);
        assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
        DT->addNewBlock(
            New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
      }
    }

    // Remap all instructions in the most recent iteration
    remapInstructionsInBlocks(NewBlocks, LastValueMap);
    for (BasicBlock *NewBlock : NewBlocks) {
      for (Instruction &I : *NewBlock) {
        if (auto *II = dyn_cast<IntrinsicInst>(&I))
          if (II->getIntrinsicID() == Intrinsic::assume)
            AC->registerAssumption(II);
      }
    }

    // Alter the ForeBlocks phi's, pointing them at the latest version of the
    // value from the previous iteration's phis
    for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
      Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
      assert(OldValue && "should have incoming edge from Aft[It]");
      Value *NewValue = OldValue;
      if (Value *PrevValue = PrevItValueMap[OldValue])
        NewValue = PrevValue;

      assert(Phi.getNumOperands() == 2);
      Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
      Phi.setIncomingValue(0, NewValue);
      Phi.removeIncomingValue(1);
    }
  }

  // Now that all the basic blocks for the unrolled iterations are in place,
  // finish up connecting the blocks and phi nodes. At this point LastValueMap
  // is the last unrolled iterations values.

  // Update Phis in BB from OldBB to point to NewBB and use the latest value
  // from LastValueMap
  auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
                                     BasicBlock *NewBB,
                                     ValueToValueMapTy &LastValueMap) {
    for (PHINode &Phi : BB->phis()) {
      for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
        if (Phi.getIncomingBlock(b) == OldBB) {
          Value *OldValue = Phi.getIncomingValue(b);
          if (Value *LastValue = LastValueMap[OldValue])
            Phi.setIncomingValue(b, LastValue);
          Phi.setIncomingBlock(b, NewBB);
          break;
        }
      }
    }
  };
  // Move all the phis from Src into Dest
  auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
    Instruction *insertPoint = Dest->getFirstNonPHI();
    while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
      Phi->moveBefore(insertPoint);
  };

  // Update the PHI values outside the loop to point to the last block
  updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
                           LastValueMap);

  // Update ForeBlocks successors and phi nodes
  BranchInst *ForeTerm =
      cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
  assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor");
  ForeTerm->setSuccessor(0, SubLoopBlocksFirst[0]);

  if (CompletelyUnroll) {
    while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
      Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
      Phi->getParent()->getInstList().erase(Phi);
    }
  } else {
    // Update the PHI values to point to the last aft block
    updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
                             AftBlocksLast.back(), LastValueMap);
  }

  for (unsigned It = 1; It != Count; It++) {
    // Remap ForeBlock successors from previous iteration to this
    BranchInst *ForeTerm =
        cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
    assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor");
    ForeTerm->setSuccessor(0, ForeBlocksFirst[It]);
  }

  // Subloop successors and phis
  BranchInst *SubTerm =
      cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
  SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
  SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
  SubLoopBlocksFirst[0]->replacePhiUsesWith(ForeBlocksLast[0], 
                                            ForeBlocksLast.back()); 
  SubLoopBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0], 
                                            SubLoopBlocksLast.back()); 

  for (unsigned It = 1; It != Count; It++) {
    // Replace the conditional branch of the previous iteration subloop with an
    // unconditional one to this one
    BranchInst *SubTerm =
        cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
    BranchInst::Create(SubLoopBlocksFirst[It], SubTerm);
    SubTerm->eraseFromParent();

    SubLoopBlocksFirst[It]->replacePhiUsesWith(ForeBlocksLast[It], 
                                               ForeBlocksLast.back()); 
    SubLoopBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It], 
                                               SubLoopBlocksLast.back()); 
    movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
  }

  // Aft blocks successors and phis
  BranchInst *AftTerm = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
  if (CompletelyUnroll) {
    BranchInst::Create(LoopExit, AftTerm);
    AftTerm->eraseFromParent();
  } else {
    AftTerm->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
    assert(AftTerm->getSuccessor(ContinueOnTrue) == LoopExit &&
           "Expecting the ContinueOnTrue successor of AftTerm to be LoopExit");
  }
  AftBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0], 
                                        SubLoopBlocksLast.back()); 

  for (unsigned It = 1; It != Count; It++) {
    // Replace the conditional branch of the previous iteration subloop with an
    // unconditional one to this one
    BranchInst *AftTerm =
        cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
    BranchInst::Create(AftBlocksFirst[It], AftTerm);
    AftTerm->eraseFromParent();

    AftBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It], 
                                           SubLoopBlocksLast.back()); 
    movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
  }

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
  // new ones required.
  if (Count != 1) {
    SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
    DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
                           SubLoopBlocksFirst[0]);
    DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
                           SubLoopBlocksLast[0], AftBlocksFirst[0]);

    DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
                           ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
    DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
                           SubLoopBlocksLast.back(), AftBlocksFirst[0]);
    DTU.applyUpdatesPermissive(DTUpdates);
  }

  // Merge adjacent basic blocks, if possible.
  SmallPtrSet<BasicBlock *, 16> MergeBlocks;
  MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
  MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
  MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());

  MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks, L, &DTU, LI);

  // Apply updates to the DomTree.
  DT = &DTU.getDomTree();

  // At this point, the code is well formed.  We now do a quick sweep over the
  // inserted code, doing constant propagation and dead code elimination as we
  // go.
  simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC, TTI);
  simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC,
                          TTI);

  NumCompletelyUnrolledAndJammed += CompletelyUnroll;
  ++NumUnrolledAndJammed;

  // Update LoopInfo if the loop is completely removed.
  if (CompletelyUnroll)
    LI->erase(L);

#ifndef NDEBUG
  // We shouldn't have done anything to break loop simplify form or LCSSA.
  Loop *OutestLoop = SubLoop->getParentLoop()
                         ? SubLoop->getParentLoop()->getParentLoop()
                               ? SubLoop->getParentLoop()->getParentLoop()
                               : SubLoop->getParentLoop()
                         : SubLoop;
  assert(DT->verify());
  LI->verify(*DT);
  assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
  if (!CompletelyUnroll)
    assert(L->isLoopSimplifyForm());
  assert(SubLoop->isLoopSimplifyForm());
  SE->verify();
#endif

  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
                          : LoopUnrollResult::PartiallyUnrolled;
}

static bool getLoadsAndStores(BasicBlockSet &Blocks,
                              SmallVector<Instruction *, 4> &MemInstr) {
  // Scan the BBs and collect legal loads and stores.
  // Returns false if non-simple loads/stores are found.
  for (BasicBlock *BB : Blocks) {
    for (Instruction &I : *BB) {
      if (auto *Ld = dyn_cast<LoadInst>(&I)) {
        if (!Ld->isSimple())
          return false;
        MemInstr.push_back(&I);
      } else if (auto *St = dyn_cast<StoreInst>(&I)) {
        if (!St->isSimple())
          return false;
        MemInstr.push_back(&I);
      } else if (I.mayReadOrWriteMemory()) {
        return false;
      }
    }
  }
  return true;
}

static bool preservesForwardDependence(Instruction *Src, Instruction *Dst,
                                       unsigned UnrollLevel, unsigned JamLevel,
                                       bool Sequentialized, Dependence *D) {
  // UnrollLevel might carry the dependency Src --> Dst
  // Does a different loop after unrolling?
  for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel;
       ++CurLoopDepth) {
    auto JammedDir = D->getDirection(CurLoopDepth);
    if (JammedDir == Dependence::DVEntry::LT)
      return true;

    if (JammedDir & Dependence::DVEntry::GT)
      return false;
  }

  return true;
}

static bool preservesBackwardDependence(Instruction *Src, Instruction *Dst,
                                        unsigned UnrollLevel, unsigned JamLevel,
                                        bool Sequentialized, Dependence *D) {
  // UnrollLevel might carry the dependency Dst --> Src
  for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel;
       ++CurLoopDepth) {
    auto JammedDir = D->getDirection(CurLoopDepth);
    if (JammedDir == Dependence::DVEntry::GT)
      return true;

    if (JammedDir & Dependence::DVEntry::LT)
      return false;
  }

  // Backward dependencies are only preserved if not interleaved.
  return Sequentialized;
}

// Check whether it is semantically safe Src and Dst considering any potential
// dependency between them.
//
// @param UnrollLevel The level of the loop being unrolled
// @param JamLevel    The level of the loop being jammed; if Src and Dst are on
// different levels, the outermost common loop counts as jammed level
//
// @return true if is safe and false if there is a dependency violation.
static bool checkDependency(Instruction *Src, Instruction *Dst,
                            unsigned UnrollLevel, unsigned JamLevel,
                            bool Sequentialized, DependenceInfo &DI) {
  assert(UnrollLevel <= JamLevel &&
         "Expecting JamLevel to be at least UnrollLevel");

  if (Src == Dst)
    return true;
  // Ignore Input dependencies.
  if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
    return true;

  // Check whether unroll-and-jam may violate a dependency.
  // By construction, every dependency will be lexicographically non-negative
  // (if it was, it would violate the current execution order), such as
  //   (0,0,>,*,*)
  // Unroll-and-jam changes the GT execution of two executions to the same
  // iteration of the chosen unroll level. That is, a GT dependence becomes a GE
  // dependence (or EQ, if we fully unrolled the loop) at the loop's position:
  //   (0,0,>=,*,*)
  // Now, the dependency is not necessarily non-negative anymore, i.e.
  // unroll-and-jam may violate correctness.
  std::unique_ptr<Dependence> D = DI.depends(Src, Dst, true);
  if (!D)
    return true;
  assert(D->isOrdered() && "Expected an output, flow or anti dep.");

  if (D->isConfused()) {
    LLVM_DEBUG(dbgs() << "  Confused dependency between:\n"
                      << "  " << *Src << "\n"
                      << "  " << *Dst << "\n");
    return false;
  }

  // If outer levels (levels enclosing the loop being unroll-and-jammed) have a
  // non-equal direction, then the locations accessed in the inner levels cannot
  // overlap in memory. We assumes the indexes never overlap into neighboring
  // dimensions.
  for (unsigned CurLoopDepth = 1; CurLoopDepth < UnrollLevel; ++CurLoopDepth)
    if (!(D->getDirection(CurLoopDepth) & Dependence::DVEntry::EQ))
      return true;

  auto UnrollDirection = D->getDirection(UnrollLevel);

  // If the distance carried by the unrolled loop is 0, then after unrolling
  // that distance will become non-zero resulting in non-overlapping accesses in
  // the inner loops.
  if (UnrollDirection == Dependence::DVEntry::EQ)
    return true;

  if (UnrollDirection & Dependence::DVEntry::LT &&
      !preservesForwardDependence(Src, Dst, UnrollLevel, JamLevel,
                                  Sequentialized, D.get()))
    return false;

  if (UnrollDirection & Dependence::DVEntry::GT &&
      !preservesBackwardDependence(Src, Dst, UnrollLevel, JamLevel,
                                   Sequentialized, D.get()))
    return false;

  return true;
}

static bool
checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks,
                  const DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap,
                  const DenseMap<Loop *, BasicBlockSet> &AftBlocksMap,
                  DependenceInfo &DI, LoopInfo &LI) {
  SmallVector<BasicBlockSet, 8> AllBlocks;
  for (Loop *L : Root.getLoopsInPreorder())
    if (ForeBlocksMap.find(L) != ForeBlocksMap.end())
      AllBlocks.push_back(ForeBlocksMap.lookup(L));
  AllBlocks.push_back(SubLoopBlocks);
  for (Loop *L : Root.getLoopsInPreorder())
    if (AftBlocksMap.find(L) != AftBlocksMap.end())
      AllBlocks.push_back(AftBlocksMap.lookup(L));

  unsigned LoopDepth = Root.getLoopDepth();
  SmallVector<Instruction *, 4> EarlierLoadsAndStores;
  SmallVector<Instruction *, 4> CurrentLoadsAndStores;
  for (BasicBlockSet &Blocks : AllBlocks) {
    CurrentLoadsAndStores.clear();
    if (!getLoadsAndStores(Blocks, CurrentLoadsAndStores))
      return false;

    Loop *CurLoop = LI.getLoopFor((*Blocks.begin())->front().getParent());
    unsigned CurLoopDepth = CurLoop->getLoopDepth();

    for (auto *Earlier : EarlierLoadsAndStores) {
      Loop *EarlierLoop = LI.getLoopFor(Earlier->getParent());
      unsigned EarlierDepth = EarlierLoop->getLoopDepth();
      unsigned CommonLoopDepth = std::min(EarlierDepth, CurLoopDepth);
      for (auto *Later : CurrentLoadsAndStores) {
        if (!checkDependency(Earlier, Later, LoopDepth, CommonLoopDepth, false,
                             DI))
          return false;
      }
    }

    size_t NumInsts = CurrentLoadsAndStores.size();
    for (size_t I = 0; I < NumInsts; ++I) {
      for (size_t J = I; J < NumInsts; ++J) {
        if (!checkDependency(CurrentLoadsAndStores[I], CurrentLoadsAndStores[J],
                             LoopDepth, CurLoopDepth, true, DI))
          return false;
      }
    }

    EarlierLoadsAndStores.append(CurrentLoadsAndStores.begin(),
                                 CurrentLoadsAndStores.end());
  }
  return true;
}

static bool isEligibleLoopForm(const Loop &Root) {
  // Root must have a child.
  if (Root.getSubLoops().size() != 1)
    return false;

  const Loop *L = &Root;
  do {
    // All loops in Root need to be in simplify and rotated form.
    if (!L->isLoopSimplifyForm())
      return false;

    if (!L->isRotatedForm())
      return false;

    if (L->getHeader()->hasAddressTaken()) {
      LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
      return false;
    }

    unsigned SubLoopsSize = L->getSubLoops().size();
    if (SubLoopsSize == 0)
      return true;

    // Only one child is allowed.
    if (SubLoopsSize != 1)
      return false;

    L = L->getSubLoops()[0];
  } while (L);

  return true;
}

static Loop *getInnerMostLoop(Loop *L) {
  while (!L->getSubLoops().empty())
    L = L->getSubLoops()[0];
  return L;
}

bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
                                DependenceInfo &DI, LoopInfo &LI) {
  if (!isEligibleLoopForm(*L)) {
    LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n");
    return false;
  }

  /* We currently handle outer loops like this:
        |
    ForeFirst    <------\   }
     Blocks             |   } ForeBlocks of L
    ForeLast            |   }
        |               |
       ...              |
        |               |
    ForeFirst    <----\ |   }
     Blocks           | |   } ForeBlocks of a inner loop of L
    ForeLast          | |   }
        |             | |
    JamLoopFirst  <\  | |   }
     Blocks        |  | |   } JamLoopBlocks of the innermost loop
    JamLoopLast   -/  | |   }
        |             | |
    AftFirst          | |   }
     Blocks           | |   } AftBlocks of a inner loop of L
    AftLast     ------/ |   }
        |               |
       ...              |
        |               |
    AftFirst            |   }
     Blocks             |   } AftBlocks of L
    AftLast     --------/   }
        |

    There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
    and AftBlocks, providing that there is one edge from Fores to SubLoops,
    one edge from SubLoops to Afts and a single outer loop exit (from Afts).
    In practice we currently limit Aft blocks to a single block, and limit
    things further in the profitablility checks of the unroll and jam pass.

    Because of the way we rearrange basic blocks, we also require that
    the Fore blocks of L on all unrolled iterations are safe to move before the
    blocks of the direct child of L of all iterations. So we require that the
    phi node looping operands of ForeHeader can be moved to at least the end of
    ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and
    match up Phi's correctly.

    i.e. The old order of blocks used to be
           (F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2.
         It needs to be safe to transform this to
           (F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2.

    There are then a number of checks along the lines of no calls, no
    exceptions, inner loop IV is consistent, etc. Note that for loops requiring
    runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
    UnrollAndJamLoop if the trip count cannot be easily calculated.
  */

  // Split blocks into Fore/SubLoop/Aft based on dominators
  Loop *JamLoop = getInnerMostLoop(L);
  BasicBlockSet SubLoopBlocks;
  DenseMap<Loop *, BasicBlockSet> ForeBlocksMap;
  DenseMap<Loop *, BasicBlockSet> AftBlocksMap;
  if (!partitionOuterLoopBlocks(*L, *JamLoop, SubLoopBlocks, ForeBlocksMap,
                                AftBlocksMap, DT)) {
    LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
    return false;
  }

  // Aft blocks may need to move instructions to fore blocks, which becomes more
  // difficult if there are multiple (potentially conditionally executed)
  // blocks. For now we just exclude loops with multiple aft blocks.
  if (AftBlocksMap[L].size() != 1) {
    LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
                         "multiple blocks after the loop\n");
    return false;
  }

  // Check inner loop backedge count is consistent on all iterations of the
  // outer loop
  if (any_of(L->getLoopsInPreorder(), [&SE](Loop *SubLoop) {
        return !hasIterationCountInvariantInParent(SubLoop, SE);
      })) {
    LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
                         "not consistent on each iteration\n");
    return false;
  }

  // Check the loop safety info for exceptions.
  SimpleLoopSafetyInfo LSI;
  LSI.computeLoopSafetyInfo(L);
  if (LSI.anyBlockMayThrow()) {
    LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
    return false;
  }

  // We've ruled out the easy stuff and now need to check that there are no
  // interdependencies which may prevent us from moving the:
  //  ForeBlocks before Subloop and AftBlocks.
  //  Subloop before AftBlocks.
  //  ForeBlock phi operands before the subloop

  // Make sure we can move all instructions we need to before the subloop
  BasicBlock *Header = L->getHeader();
  BasicBlock *Latch = L->getLoopLatch();
  BasicBlockSet AftBlocks = AftBlocksMap[L];
  Loop *SubLoop = L->getSubLoops()[0];
  if (!processHeaderPhiOperands(
          Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) {
            if (SubLoop->contains(I->getParent()))
              return false;
            if (AftBlocks.count(I->getParent())) {
              // If we hit a phi node in afts we know we are done (probably
              // LCSSA)
              if (isa<PHINode>(I))
                return false;
              // Can't move instructions with side effects or memory
              // reads/writes
              if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
                return false;
            }
            // Keep going
            return true;
          })) {
    LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
                         "instructions after subloop to before it\n");
    return false;
  }

  // Check for memory dependencies which prohibit the unrolling we are doing.
  // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
  // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
  if (!checkDependencies(*L, SubLoopBlocks, ForeBlocksMap, AftBlocksMap, DI,
                         LI)) {
    LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");
    return false;
  }

  return true;
}