aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Utils/LoopUnroll.cpp
blob: 6a80eba7a1e50f597e86176adc0212dab615f439 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities. It does not define any
// actual pass or policy, but provides a single function to perform loop
// unrolling.
//
// The process of unrolling can produce extraneous basic blocks linked with
// unconditional branches.  This will be corrected in the future.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist_iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopPeel.h" 
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <assert.h>
#include <type_traits>
#include <vector>

namespace llvm {
class DataLayout;
class Value;
} // namespace llvm

using namespace llvm;

#define DEBUG_TYPE "loop-unroll"

// TODO: Should these be here or in LoopUnroll?
STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
                               "latch (completely or otherwise)");

static cl::opt<bool>
UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
                    cl::desc("Allow runtime unrolled loops to be unrolled "
                             "with epilog instead of prolog."));

static cl::opt<bool>
UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
                    cl::desc("Verify domtree after unrolling"),
#ifdef EXPENSIVE_CHECKS
    cl::init(true)
#else
    cl::init(false)
#endif
                    );

/// Check if unrolling created a situation where we need to insert phi nodes to
/// preserve LCSSA form.
/// \param Blocks is a vector of basic blocks representing unrolled loop.
/// \param L is the outer loop.
/// It's possible that some of the blocks are in L, and some are not. In this
/// case, if there is a use is outside L, and definition is inside L, we need to
/// insert a phi-node, otherwise LCSSA will be broken.
/// The function is just a helper function for llvm::UnrollLoop that returns
/// true if this situation occurs, indicating that LCSSA needs to be fixed.
static bool needToInsertPhisForLCSSA(Loop *L, 
                                     const std::vector<BasicBlock *> &Blocks, 
                                     LoopInfo *LI) {
  for (BasicBlock *BB : Blocks) {
    if (LI->getLoopFor(BB) == L)
      continue;
    for (Instruction &I : *BB) {
      for (Use &U : I.operands()) {
        if (const auto *Def = dyn_cast<Instruction>(U)) { 
          Loop *DefLoop = LI->getLoopFor(Def->getParent());
          if (!DefLoop)
            continue;
          if (DefLoop->contains(L))
            return true;
        }
      }
    }
  }
  return false;
}

/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
/// and adds a mapping from the original loop to the new loop to NewLoops.
/// Returns nullptr if no new loop was created and a pointer to the
/// original loop OriginalBB was part of otherwise.
const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
                                           BasicBlock *ClonedBB, LoopInfo *LI,
                                           NewLoopsMap &NewLoops) {
  // Figure out which loop New is in.
  const Loop *OldLoop = LI->getLoopFor(OriginalBB);
  assert(OldLoop && "Should (at least) be in the loop being unrolled!");

  Loop *&NewLoop = NewLoops[OldLoop];
  if (!NewLoop) {
    // Found a new sub-loop.
    assert(OriginalBB == OldLoop->getHeader() &&
           "Header should be first in RPO");

    NewLoop = LI->AllocateLoop();
    Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());

    if (NewLoopParent)
      NewLoopParent->addChildLoop(NewLoop);
    else
      LI->addTopLevelLoop(NewLoop);

    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
    return OldLoop;
  } else {
    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
    return nullptr;
  }
}

/// The function chooses which type of unroll (epilog or prolog) is more
/// profitabale.
/// Epilog unroll is more profitable when there is PHI that starts from
/// constant.  In this case epilog will leave PHI start from constant,
/// but prolog will convert it to non-constant.
///
/// loop:
///   PN = PHI [I, Latch], [CI, PreHeader]
///   I = foo(PN)
///   ...
///
/// Epilog unroll case.
/// loop:
///   PN = PHI [I2, Latch], [CI, PreHeader]
///   I1 = foo(PN)
///   I2 = foo(I1)
///   ...
/// Prolog unroll case.
///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
/// loop:
///   PN = PHI [I2, Latch], [NewPN, PreHeader]
///   I1 = foo(PN)
///   I2 = foo(I1)
///   ...
///
static bool isEpilogProfitable(Loop *L) {
  BasicBlock *PreHeader = L->getLoopPreheader();
  BasicBlock *Header = L->getHeader();
  assert(PreHeader && Header);
  for (const PHINode &PN : Header->phis()) {
    if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
      return true;
  }
  return false;
}

/// Perform some cleanup and simplifications on loops after unrolling. It is
/// useful to simplify the IV's in the new loop, as well as do a quick
/// simplify/dce pass of the instructions.
void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
                                   ScalarEvolution *SE, DominatorTree *DT,
                                   AssumptionCache *AC,
                                   const TargetTransformInfo *TTI) {
  // Simplify any new induction variables in the partially unrolled loop.
  if (SE && SimplifyIVs) {
    SmallVector<WeakTrackingVH, 16> DeadInsts;
    simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);

    // Aggressively clean up dead instructions that simplifyLoopIVs already
    // identified. Any remaining should be cleaned up below.
    while (!DeadInsts.empty()) {
      Value *V = DeadInsts.pop_back_val();
      if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
        RecursivelyDeleteTriviallyDeadInstructions(Inst);
    }
  }

  // At this point, the code is well formed.  We now do a quick sweep over the
  // inserted code, doing constant propagation and dead code elimination as we
  // go.
  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
  for (BasicBlock *BB : L->getBlocks()) {
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
      Instruction *Inst = &*I++;

      if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
        if (LI->replacementPreservesLCSSAForm(Inst, V))
          Inst->replaceAllUsesWith(V);
      if (isInstructionTriviallyDead(Inst))
        BB->getInstList().erase(Inst);
    }
  }

  // TODO: after peeling or unrolling, previously loop variant conditions are
  // likely to fold to constants, eagerly propagating those here will require
  // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
  // appropriate.
}

/// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
/// can only fail when the loop's latch block is not terminated by a conditional
/// branch instruction. However, if the trip count (and multiple) are not known,
/// loop unrolling will mostly produce more code that is no faster.
///
/// TripCount is the upper bound of the iteration on which control exits
/// LatchBlock. Control may exit the loop prior to TripCount iterations either
/// via an early branch in other loop block or via LatchBlock terminator. This
/// is relaxed from the general definition of trip count which is the number of
/// times the loop header executes. Note that UnrollLoop assumes that the loop
/// counter test is in LatchBlock in order to remove unnecesssary instances of
/// the test.  If control can exit the loop from the LatchBlock's terminator
/// prior to TripCount iterations, flag PreserveCondBr needs to be set.
///
/// PreserveCondBr indicates whether the conditional branch of the LatchBlock
/// needs to be preserved.  It is needed when we use trip count upper bound to
/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
/// conditional branch needs to be preserved.
///
/// Similarly, TripMultiple divides the number of times that the LatchBlock may
/// execute without exiting the loop.
///
/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
/// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
/// iterations before branching into the unrolled loop.  UnrollLoop will not
/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
/// AllowExpensiveTripCount is false.
///
/// If we want to perform PGO-based loop peeling, PeelCount is set to the
/// number of iterations we want to peel off.
///
/// The LoopInfo Analysis that is passed will be kept consistent.
///
/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
/// DominatorTree if they are non-null.
///
/// If RemainderLoop is non-null, it will receive the remainder loop (if
/// required and not fully unrolled).
LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
                                  ScalarEvolution *SE, DominatorTree *DT,
                                  AssumptionCache *AC,
                                  const TargetTransformInfo *TTI,
                                  OptimizationRemarkEmitter *ORE,
                                  bool PreserveLCSSA, Loop **RemainderLoop) {

  if (!L->getLoopPreheader()) { 
    LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
    return LoopUnrollResult::Unmodified;
  }

  if (!L->getLoopLatch()) { 
    LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
    return LoopUnrollResult::Unmodified;
  }

  // Loops with indirectbr cannot be cloned.
  if (!L->isSafeToClone()) {
    LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
    return LoopUnrollResult::Unmodified;
  }

  if (L->getHeader()->hasAddressTaken()) { 
    // The loop-rotate pass can be helpful to avoid this in many cases.
    LLVM_DEBUG(
        dbgs() << "  Won't unroll loop: address of header block is taken.\n");
    return LoopUnrollResult::Unmodified;
  }

  if (ULO.TripCount != 0)
    LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
  if (ULO.TripMultiple != 1)
    LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");

  // Effectively "DCE" unrolled iterations that are beyond the tripcount
  // and will never be executed.
  if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
    ULO.Count = ULO.TripCount;

  // Don't enter the unroll code if there is nothing to do.
  if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
    LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
    return LoopUnrollResult::Unmodified;
  }

  assert(ULO.Count > 0);
  assert(ULO.TripMultiple > 0);
  assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);

  // Are we eliminating the loop control altogether?
  bool CompletelyUnroll = ULO.Count == ULO.TripCount;

  // We assume a run-time trip count if the compiler cannot
  // figure out the loop trip count and the unroll-runtime
  // flag is specified.
  bool RuntimeTripCount =
      (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);

  assert((!RuntimeTripCount || !ULO.PeelCount) &&
         "Did not expect runtime trip-count unrolling "
         "and peeling for the same loop");

  bool Peeled = false;
  if (ULO.PeelCount) {
    Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);

    // Successful peeling may result in a change in the loop preheader/trip
    // counts. If we later unroll the loop, we want these to be updated.
    if (Peeled) {
      // According to our guards and profitability checks the only
      // meaningful exit should be latch block. Other exits go to deopt,
      // so we do not worry about them.
      BasicBlock *ExitingBlock = L->getLoopLatch();
      assert(ExitingBlock && "Loop without exiting block?");
      assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
      ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
      ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
    }
  }

  // All these values should be taken only after peeling because they might have 
  // changed. 
  BasicBlock *Preheader = L->getLoopPreheader(); 
  BasicBlock *Header = L->getHeader(); 
  BasicBlock *LatchBlock = L->getLoopLatch(); 
  SmallVector<BasicBlock *, 4> ExitBlocks; 
  L->getExitBlocks(ExitBlocks); 
  std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks(); 
 
  // Go through all exits of L and see if there are any phi-nodes there. We just 
  // conservatively assume that they're inserted to preserve LCSSA form, which 
  // means that complete unrolling might break this form. We need to either fix 
  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For 
  // now we just recompute LCSSA for the outer loop, but it should be possible 
  // to fix it in-place. 
  bool NeedToFixLCSSA = 
      PreserveLCSSA && CompletelyUnroll && 
      any_of(ExitBlocks, 
             [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); }); 
 
  // The current loop unroll pass can unroll loops that have 
  // (1) single latch; and 
  // (2a) latch is unconditional; or 
  // (2b) latch is conditional and is an exiting block 
  // FIXME: The implementation can be extended to work with more complicated 
  // cases, e.g. loops with multiple latches. 
  BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 
 
  // A conditional branch which exits the loop, which can be optimized to an 
  // unconditional branch in the unrolled loop in some cases. 
  BranchInst *ExitingBI = nullptr; 
  bool LatchIsExiting = L->isLoopExiting(LatchBlock); 
  if (LatchIsExiting) 
    ExitingBI = LatchBI; 
  else if (BasicBlock *ExitingBlock = L->getExitingBlock()) 
    ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 
  if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) { 
    // If the peeling guard is changed this assert may be relaxed or even 
    // deleted. 
    assert(!Peeled && "Peeling guard changed!"); 
    LLVM_DEBUG( 
        dbgs() << "Can't unroll; a conditional latch must exit the loop"); 
    return LoopUnrollResult::Unmodified; 
  } 
  LLVM_DEBUG({ 
    if (ExitingBI) 
      dbgs() << "  Exiting Block = " << ExitingBI->getParent()->getName() 
             << "\n"; 
    else 
      dbgs() << "  No single exiting block\n"; 
  }); 
 
  // Loops containing convergent instructions must have a count that divides
  // their TripMultiple.
  LLVM_DEBUG(
      {
        bool HasConvergent = false;
        for (auto &BB : L->blocks())
          for (auto &I : *BB)
            if (auto *CB = dyn_cast<CallBase>(&I))
              HasConvergent |= CB->isConvergent();
        assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
               "Unroll count must divide trip multiple if loop contains a "
               "convergent operation.");
      });

  bool EpilogProfitability =
      UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
                                              : isEpilogProfitable(L);

  if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
      !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
                                  EpilogProfitability, ULO.UnrollRemainder,
                                  ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
                                  PreserveLCSSA, RemainderLoop)) {
    if (ULO.Force)
      RuntimeTripCount = false;
    else {
      LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
                           "generated when assuming runtime trip count\n");
      return LoopUnrollResult::Unmodified;
    }
  }

  // If we know the trip count, we know the multiple...
  unsigned BreakoutTrip = 0;
  if (ULO.TripCount != 0) {
    BreakoutTrip = ULO.TripCount % ULO.Count;
    ULO.TripMultiple = 0;
  } else {
    // Figure out what multiple to use.
    BreakoutTrip = ULO.TripMultiple =
        (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
  }

  using namespace ore;
  // Report the unrolling decision.
  if (CompletelyUnroll) {
    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
                      << " with trip count " << ULO.TripCount << "!\n");
    if (ORE)
      ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
                                  L->getHeader())
               << "completely unrolled loop with "
               << NV("UnrollCount", ULO.TripCount) << " iterations";
      });
  } else if (ULO.PeelCount) {
    LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
                      << " with iteration count " << ULO.PeelCount << "!\n");
    if (ORE)
      ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
                                  L->getHeader())
               << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
               << " iterations";
      });
  } else {
    auto DiagBuilder = [&]() {
      OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
                              L->getHeader());
      return Diag << "unrolled loop by a factor of "
                  << NV("UnrollCount", ULO.Count);
    };

    LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
                      << ULO.Count);
    if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
      LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
      if (ORE)
        ORE->emit([&]() {
          return DiagBuilder() << " with a breakout at trip "
                               << NV("BreakoutTrip", BreakoutTrip);
        });
    } else if (ULO.TripMultiple != 1) {
      LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
      if (ORE)
        ORE->emit([&]() {
          return DiagBuilder()
                 << " with " << NV("TripMultiple", ULO.TripMultiple)
                 << " trips per branch";
        });
    } else if (RuntimeTripCount) {
      LLVM_DEBUG(dbgs() << " with run-time trip count");
      if (ORE)
        ORE->emit(
            [&]() { return DiagBuilder() << " with run-time trip count"; });
    }
    LLVM_DEBUG(dbgs() << "!\n");
  }

  // We are going to make changes to this loop. SCEV may be keeping cached info
  // about it, in particular about backedge taken count. The changes we make
  // are guaranteed to invalidate this information for our loop. It is tempting
  // to only invalidate the loop being unrolled, but it is incorrect as long as
  // all exiting branches from all inner loops have impact on the outer loops,
  // and if something changes inside them then any of outer loops may also
  // change. When we forget outermost loop, we also forget all contained loops
  // and this is what we need here.
  if (SE) {
    if (ULO.ForgetAllSCEV)
      SE->forgetAllLoops();
    else
      SE->forgetTopmostLoop(L);
  }

  if (!LatchIsExiting)
    ++NumUnrolledNotLatch;
  Optional<bool> ContinueOnTrue = None;
  BasicBlock *LoopExit = nullptr;
  if (ExitingBI) {
    ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0));
    LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue);
  }

  // For the first iteration of the loop, we should use the precloned values for
  // PHI nodes.  Insert associations now.
  ValueToValueMapTy LastValueMap;
  std::vector<PHINode*> OrigPHINode;
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    OrigPHINode.push_back(cast<PHINode>(I));
  }

  std::vector<BasicBlock *> Headers;
  std::vector<BasicBlock *> ExitingBlocks;
  std::vector<BasicBlock *> ExitingSucc;
  std::vector<BasicBlock *> Latches;
  Headers.push_back(Header);
  Latches.push_back(LatchBlock);
  if (ExitingBI) {
    ExitingBlocks.push_back(ExitingBI->getParent());
    ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue)));
  }

  // The current on-the-fly SSA update requires blocks to be processed in
  // reverse postorder so that LastValueMap contains the correct value at each
  // exit.
  LoopBlocksDFS DFS(L);
  DFS.perform(LI);

  // Stash the DFS iterators before adding blocks to the loop.
  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();

  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();

  // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
  // might break loop-simplified form for these loops (as they, e.g., would
  // share the same exit blocks). We'll keep track of loops for which we can
  // break this so that later we can re-simplify them.
  SmallSetVector<Loop *, 4> LoopsToSimplify;
  for (Loop *SubLoop : *L)
    LoopsToSimplify.insert(SubLoop);

  if (Header->getParent()->isDebugInfoForProfiling())
    for (BasicBlock *BB : L->getBlocks())
      for (Instruction &I : *BB)
        if (!isa<DbgInfoIntrinsic>(&I))
          if (const DILocation *DIL = I.getDebugLoc()) {
            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
            if (NewDIL)
              I.setDebugLoc(NewDIL.getValue());
            else
              LLVM_DEBUG(dbgs()
                         << "Failed to create new discriminator: "
                         << DIL->getFilename() << " Line: " << DIL->getLine());
          }

  // Identify what noalias metadata is inside the loop: if it is inside the 
  // loop, the associated metadata must be cloned for each iteration. 
  SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes; 
  identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); 
 
  for (unsigned It = 1; It != ULO.Count; ++It) {
    SmallVector<BasicBlock *, 8> NewBlocks;
    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
    NewLoops[L] = L;

    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
      ValueToValueMapTy VMap;
      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
      Header->getParent()->getBasicBlockList().push_back(New);

      assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
             "Header should not be in a sub-loop");
      // Tell LI about New.
      const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
      if (OldLoop)
        LoopsToSimplify.insert(NewLoops[OldLoop]);

      if (*BB == Header)
        // Loop over all of the PHI nodes in the block, changing them to use
        // the incoming values from the previous block.
        for (PHINode *OrigPHI : OrigPHINode) {
          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
            if (It > 1 && L->contains(InValI))
              InVal = LastValueMap[InValI];
          VMap[OrigPHI] = InVal;
          New->getInstList().erase(NewPHI);
        }

      // Update our running map of newest clones
      LastValueMap[*BB] = New;
      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
           VI != VE; ++VI)
        LastValueMap[VI->first] = VI->second;

      // Add phi entries for newly created values to all exit blocks.
      for (BasicBlock *Succ : successors(*BB)) {
        if (L->contains(Succ))
          continue;
        for (PHINode &PHI : Succ->phis()) {
          Value *Incoming = PHI.getIncomingValueForBlock(*BB);
          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
          if (It != LastValueMap.end())
            Incoming = It->second;
          PHI.addIncoming(Incoming, New);
        }
      }
      // Keep track of new headers and latches as we create them, so that
      // we can insert the proper branches later.
      if (*BB == Header)
        Headers.push_back(New);
      if (*BB == LatchBlock)
        Latches.push_back(New);

      // Keep track of the exiting block and its successor block contained in
      // the loop for the current iteration.
      if (ExitingBI) {
        if (*BB == ExitingBlocks[0])
          ExitingBlocks.push_back(New);
        if (*BB == ExitingSucc[0])
          ExitingSucc.push_back(New);
      }

      NewBlocks.push_back(New);
      UnrolledLoopBlocks.push_back(New);

      // Update DomTree: since we just copy the loop body, and each copy has a
      // dedicated entry block (copy of the header block), this header's copy
      // dominates all copied blocks. That means, dominance relations in the
      // copied body are the same as in the original body.
      if (DT) {
        if (*BB == Header)
          DT->addNewBlock(New, Latches[It - 1]);
        else {
          auto BBDomNode = DT->getNode(*BB);
          auto BBIDom = BBDomNode->getIDom();
          BasicBlock *OriginalBBIDom = BBIDom->getBlock();
          DT->addNewBlock(
              New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
        }
      }
    }

    // Remap all instructions in the most recent iteration
    remapInstructionsInBlocks(NewBlocks, LastValueMap);
    for (BasicBlock *NewBlock : NewBlocks) {
      for (Instruction &I : *NewBlock) {
        if (auto *II = dyn_cast<IntrinsicInst>(&I))
          if (II->getIntrinsicID() == Intrinsic::assume)
            AC->registerAssumption(II);
      }
    }
 
    { 
      // Identify what other metadata depends on the cloned version. After 
      // cloning, replace the metadata with the corrected version for both 
      // memory instructions and noalias intrinsics. 
      std::string ext = (Twine("It") + Twine(It)).str(); 
      cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, 
                                 Header->getContext(), ext); 
    } 
  }

  // Loop over the PHI nodes in the original block, setting incoming values.
  for (PHINode *PN : OrigPHINode) {
    if (CompletelyUnroll) {
      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
      Header->getInstList().erase(PN);
    } else if (ULO.Count > 1) {
      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
      // If this value was defined in the loop, take the value defined by the
      // last iteration of the loop.
      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
        if (L->contains(InValI))
          InVal = LastValueMap[InVal];
      }
      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
      PN->addIncoming(InVal, Latches.back());
    }
  }

  auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop,
                    bool NeedConditional, Optional<bool> ContinueOnTrue,
                    bool IsDestLoopExit) {
    auto *Term = cast<BranchInst>(Src->getTerminator());
    if (NeedConditional) {
      // Update the conditional branch's successor for the following
      // iteration.
      assert(ContinueOnTrue.hasValue() &&
             "Expecting valid ContinueOnTrue when NeedConditional is true");
      Term->setSuccessor(!(*ContinueOnTrue), Dest);
    } else {
      // Remove phi operands at this loop exit
      if (!IsDestLoopExit) {
        BasicBlock *BB = Src;
        for (BasicBlock *Succ : successors(BB)) {
          // Preserve the incoming value from BB if we are jumping to the block
          // in the current loop.
          if (Succ == BlockInLoop)
            continue;
          for (PHINode &Phi : Succ->phis())
            Phi.removeIncomingValue(BB, false);
        }
      }
      // Replace the conditional branch with an unconditional one.
      BranchInst::Create(Dest, Term);
      Term->eraseFromParent();
    }
  };

  // Connect latches of the unrolled iterations to the headers of the next
  // iteration. If the latch is also the exiting block, the conditional branch
  // may have to be preserved.
  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    // The branch destination.
    unsigned j = (i + 1) % e;
    BasicBlock *Dest = Headers[j];
    bool NeedConditional = LatchIsExiting;

    if (LatchIsExiting) {
      if (RuntimeTripCount && j != 0)
        NeedConditional = false;

      // For a complete unroll, make the last iteration end with a branch
      // to the exit block.
      if (CompletelyUnroll) {
        if (j == 0)
          Dest = LoopExit;
        // If using trip count upper bound to completely unroll, we need to
        // keep the conditional branch except the last one because the loop
        // may exit after any iteration.
        assert(NeedConditional &&
               "NeedCondition cannot be modified by both complete "
               "unrolling and runtime unrolling");
        NeedConditional =
            (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
      } else if (j != BreakoutTrip &&
                 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
        // If we know the trip count or a multiple of it, we can safely use an
        // unconditional branch for some iterations.
        NeedConditional = false;
      }
    }

    setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue,
            Dest == LoopExit);
  }

  if (!LatchIsExiting) {
    // If the latch is not exiting, we may be able to simplify the conditional
    // branches in the unrolled exiting blocks.
    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
      // The branch destination.
      unsigned j = (i + 1) % e;
      bool NeedConditional = true;

      if (RuntimeTripCount && j != 0)
        NeedConditional = false;

      if (CompletelyUnroll)
        // We cannot drop the conditional branch for the last condition, as we
        // may have to execute the loop body depending on the condition.
        NeedConditional = j == 0 || ULO.PreserveCondBr;
      else if (j != BreakoutTrip &&
               (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
        // If we know the trip count or a multiple of it, we can safely use an
        // unconditional branch for some iterations.
        NeedConditional = false;

      // Conditional branches from non-latch exiting block have successors
      // either in the same loop iteration or outside the loop. The branches are
      // already correct.
      if (NeedConditional)
        continue;
      setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional,
              None, false);
    }

    // When completely unrolling, the last latch becomes unreachable.
    if (CompletelyUnroll) {
      BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator());
      new UnreachableInst(Term->getContext(), Term);
      Term->eraseFromParent();
    }
  }

  // Update dominators of blocks we might reach through exits.
  // Immediate dominator of such block might change, because we add more
  // routes which can lead to the exit: we can now reach it from the copied
  // iterations too.
  if (DT && ULO.Count > 1) {
    for (auto *BB : OriginalLoopBlocks) {
      auto *BBDomNode = DT->getNode(BB);
      SmallVector<BasicBlock *, 16> ChildrenToUpdate;
      for (auto *ChildDomNode : BBDomNode->children()) {
        auto *ChildBB = ChildDomNode->getBlock();
        if (!L->contains(ChildBB))
          ChildrenToUpdate.push_back(ChildBB);
      }
      BasicBlock *NewIDom;
      if (ExitingBI && BB == ExitingBlocks[0]) {
        // The latch is special because we emit unconditional branches in
        // some cases where the original loop contained a conditional branch.
        // Since the latch is always at the bottom of the loop, if the latch
        // dominated an exit before unrolling, the new dominator of that exit
        // must also be a latch.  Specifically, the dominator is the first
        // latch which ends in a conditional branch, or the last latch if
        // there is no such latch.
        // For loops exiting from non latch exiting block, we limit the
        // branch simplification to single exiting block loops.
        NewIDom = ExitingBlocks.back();
        for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
          Instruction *Term = ExitingBlocks[i]->getTerminator();
          if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
            NewIDom =
                DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]);
            break;
          }
        }
      } else {
        // The new idom of the block will be the nearest common dominator
        // of all copies of the previous idom. This is equivalent to the
        // nearest common dominator of the previous idom and the first latch,
        // which dominates all copies of the previous idom.
        NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
      }
      for (auto *ChildBB : ChildrenToUpdate)
        DT->changeImmediateDominator(ChildBB, NewIDom);
    }
  }

  assert(!DT || !UnrollVerifyDomtree ||
         DT->verify(DominatorTree::VerificationLevel::Fast));

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
  // Merge adjacent basic blocks, if possible.
  for (BasicBlock *Latch : Latches) {
    BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
    assert((Term ||
            (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
           "Need a branch as terminator, except when fully unrolling with "
           "unconditional latch");
    if (Term && Term->isUnconditional()) {
      BasicBlock *Dest = Term->getSuccessor(0);
      BasicBlock *Fold = Dest->getUniquePredecessor();
      if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
        // Dest has been folded into Fold. Update our worklists accordingly.
        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
        llvm::erase_value(UnrolledLoopBlocks, Dest); 
      }
    }
  }
  // Apply updates to the DomTree.
  DT = &DTU.getDomTree();

  // At this point, the code is well formed.  We now simplify the unrolled loop,
  // doing constant propagation and dead code elimination as we go.
  simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
                          SE, DT, AC, TTI);

  NumCompletelyUnrolled += CompletelyUnroll;
  ++NumUnrolled;

  Loop *OuterL = L->getParentLoop();
  // Update LoopInfo if the loop is completely removed.
  if (CompletelyUnroll)
    LI->erase(L);

  // After complete unrolling most of the blocks should be contained in OuterL.
  // However, some of them might happen to be out of OuterL (e.g. if they
  // precede a loop exit). In this case we might need to insert PHI nodes in
  // order to preserve LCSSA form.
  // We don't need to check this if we already know that we need to fix LCSSA
  // form.
  // TODO: For now we just recompute LCSSA for the outer loop in this case, but
  // it should be possible to fix it in-place.
  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);

  // If we have a pass and a DominatorTree we should re-simplify impacted loops
  // to ensure subsequent analyses can rely on this form. We want to simplify
  // at least one layer outside of the loop that was unrolled so that any
  // changes to the parent loop exposed by the unrolling are considered.
  if (DT) {
    if (OuterL) {
      // OuterL includes all loops for which we can break loop-simplify, so
      // it's sufficient to simplify only it (it'll recursively simplify inner
      // loops too).
      if (NeedToFixLCSSA) {
        // LCSSA must be performed on the outermost affected loop. The unrolled
        // loop's last loop latch is guaranteed to be in the outermost loop
        // after LoopInfo's been updated by LoopInfo::erase.
        Loop *LatchLoop = LI->getLoopFor(Latches.back());
        Loop *FixLCSSALoop = OuterL;
        if (!FixLCSSALoop->contains(LatchLoop))
          while (FixLCSSALoop->getParentLoop() != LatchLoop)
            FixLCSSALoop = FixLCSSALoop->getParentLoop();

        formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
      } else if (PreserveLCSSA) {
        assert(OuterL->isLCSSAForm(*DT) &&
               "Loops should be in LCSSA form after loop-unroll.");
      }

      // TODO: That potentially might be compile-time expensive. We should try
      // to fix the loop-simplified form incrementally.
      simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
    } else {
      // Simplify loops for which we might've broken loop-simplify form.
      for (Loop *SubLoop : LoopsToSimplify)
        simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
    }
  }

  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
                          : LoopUnrollResult::PartiallyUnrolled;
}

/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
/// node with the given name (for example, "llvm.loop.unroll.count"). If no
/// such metadata node exists, then nullptr is returned.
MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
  // First operand should refer to the loop id itself.
  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");

  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    if (!MD)
      continue;

    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    if (!S)
      continue;

    if (Name.equals(S->getString()))
      return MD;
  }
  return nullptr;
}