aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/X86/X86ISelLowering.h
blob: 8c2249a18f0985210ca79433aaf6e91c8e53dbc3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H

#include "llvm/CodeGen/TargetLowering.h"

namespace llvm {
  class X86Subtarget;
  class X86TargetMachine;

  namespace X86ISD {
    // X86 Specific DAG Nodes
  enum NodeType : unsigned {
    // Start the numbering where the builtin ops leave off.
    FIRST_NUMBER = ISD::BUILTIN_OP_END,

    /// Bit scan forward.
    BSF,
    /// Bit scan reverse.
    BSR,

    /// X86 funnel/double shift i16 instructions. These correspond to
    /// X86::SHLDW and X86::SHRDW instructions which have different amt
    /// modulo rules to generic funnel shifts.
    /// NOTE: The operand order matches ISD::FSHL/FSHR not SHLD/SHRD.
    FSHL,
    FSHR,

    /// Bitwise logical AND of floating point values. This corresponds
    /// to X86::ANDPS or X86::ANDPD.
    FAND,

    /// Bitwise logical OR of floating point values. This corresponds
    /// to X86::ORPS or X86::ORPD.
    FOR,

    /// Bitwise logical XOR of floating point values. This corresponds
    /// to X86::XORPS or X86::XORPD.
    FXOR,

    ///  Bitwise logical ANDNOT of floating point values. This
    /// corresponds to X86::ANDNPS or X86::ANDNPD.
    FANDN,

    /// These operations represent an abstract X86 call
    /// instruction, which includes a bunch of information.  In particular the
    /// operands of these node are:
    ///
    ///     #0 - The incoming token chain
    ///     #1 - The callee
    ///     #2 - The number of arg bytes the caller pushes on the stack.
    ///     #3 - The number of arg bytes the callee pops off the stack.
    ///     #4 - The value to pass in AL/AX/EAX (optional)
    ///     #5 - The value to pass in DL/DX/EDX (optional)
    ///
    /// The result values of these nodes are:
    ///
    ///     #0 - The outgoing token chain
    ///     #1 - The first register result value (optional)
    ///     #2 - The second register result value (optional)
    ///
    CALL,

    /// Same as call except it adds the NoTrack prefix.
    NT_CALL,

    /// X86 compare and logical compare instructions.
    CMP,
    FCMP,
    COMI,
    UCOMI,

    /// X86 bit-test instructions.
    BT,

    /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
    /// operand, usually produced by a CMP instruction.
    SETCC,

    /// X86 Select
    SELECTS,

    // Same as SETCC except it's materialized with a sbb and the value is all
    // one's or all zero's.
    SETCC_CARRY, // R = carry_bit ? ~0 : 0

    /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
    /// Operands are two FP values to compare; result is a mask of
    /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
    FSETCC,

    /// X86 FP SETCC, similar to above, but with output as an i1 mask and
    /// and a version with SAE.
    FSETCCM,
    FSETCCM_SAE,

    /// X86 conditional moves. Operand 0 and operand 1 are the two values
    /// to select from. Operand 2 is the condition code, and operand 3 is the
    /// flag operand produced by a CMP or TEST instruction.
    CMOV,

    /// X86 conditional branches. Operand 0 is the chain operand, operand 1
    /// is the block to branch if condition is true, operand 2 is the
    /// condition code, and operand 3 is the flag operand produced by a CMP
    /// or TEST instruction.
    BRCOND,

    /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
    /// operand 1 is the target address.
    NT_BRIND,

    /// Return with a flag operand. Operand 0 is the chain operand, operand
    /// 1 is the number of bytes of stack to pop.
    RET_FLAG,

    /// Return from interrupt. Operand 0 is the number of bytes to pop.
    IRET,

    /// Repeat fill, corresponds to X86::REP_STOSx.
    REP_STOS,

    /// Repeat move, corresponds to X86::REP_MOVSx.
    REP_MOVS,

    /// On Darwin, this node represents the result of the popl
    /// at function entry, used for PIC code.
    GlobalBaseReg,

    /// A wrapper node for TargetConstantPool, TargetJumpTable,
    /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
    /// MCSymbol and TargetBlockAddress.
    Wrapper,

    /// Special wrapper used under X86-64 PIC mode for RIP
    /// relative displacements.
    WrapperRIP,

    /// Copies a 64-bit value from an MMX vector to the low word
    /// of an XMM vector, with the high word zero filled.
    MOVQ2DQ,

    /// Copies a 64-bit value from the low word of an XMM vector
    /// to an MMX vector.
    MOVDQ2Q,

    /// Copies a 32-bit value from the low word of a MMX
    /// vector to a GPR.
    MMX_MOVD2W,

    /// Copies a GPR into the low 32-bit word of a MMX vector
    /// and zero out the high word.
    MMX_MOVW2D,

    /// Extract an 8-bit value from a vector and zero extend it to
    /// i32, corresponds to X86::PEXTRB.
    PEXTRB,

    /// Extract a 16-bit value from a vector and zero extend it to
    /// i32, corresponds to X86::PEXTRW.
    PEXTRW,

    /// Insert any element of a 4 x float vector into any element
    /// of a destination 4 x floatvector.
    INSERTPS,

    /// Insert the lower 8-bits of a 32-bit value to a vector,
    /// corresponds to X86::PINSRB.
    PINSRB,

    /// Insert the lower 16-bits of a 32-bit value to a vector,
    /// corresponds to X86::PINSRW.
    PINSRW,

    /// Shuffle 16 8-bit values within a vector.
    PSHUFB,

    /// Compute Sum of Absolute Differences.
    PSADBW,
    /// Compute Double Block Packed Sum-Absolute-Differences
    DBPSADBW,

    /// Bitwise Logical AND NOT of Packed FP values.
    ANDNP,

    /// Blend where the selector is an immediate.
    BLENDI,

    /// Dynamic (non-constant condition) vector blend where only the sign bits
    /// of the condition elements are used. This is used to enforce that the
    /// condition mask is not valid for generic VSELECT optimizations. This
    /// is also used to implement the intrinsics.
    /// Operands are in VSELECT order: MASK, TRUE, FALSE
    BLENDV,

    /// Combined add and sub on an FP vector.
    ADDSUB,

    //  FP vector ops with rounding mode.
    FADD_RND,
    FADDS,
    FADDS_RND,
    FSUB_RND,
    FSUBS,
    FSUBS_RND,
    FMUL_RND,
    FMULS,
    FMULS_RND,
    FDIV_RND,
    FDIVS,
    FDIVS_RND,
    FMAX_SAE,
    FMAXS_SAE,
    FMIN_SAE,
    FMINS_SAE,
    FSQRT_RND,
    FSQRTS,
    FSQRTS_RND,

    // FP vector get exponent.
    FGETEXP,
    FGETEXP_SAE,
    FGETEXPS,
    FGETEXPS_SAE,
    // Extract Normalized Mantissas.
    VGETMANT,
    VGETMANT_SAE,
    VGETMANTS,
    VGETMANTS_SAE,
    // FP Scale.
    SCALEF,
    SCALEF_RND,
    SCALEFS,
    SCALEFS_RND,

    // Unsigned Integer average.
    AVG,

    /// Integer horizontal add/sub.
    HADD,
    HSUB,

    /// Floating point horizontal add/sub.
    FHADD,
    FHSUB,

    // Detect Conflicts Within a Vector
    CONFLICT,

    /// Floating point max and min.
    FMAX,
    FMIN,

    /// Commutative FMIN and FMAX.
    FMAXC,
    FMINC,

    /// Scalar intrinsic floating point max and min.
    FMAXS,
    FMINS,

    /// Floating point reciprocal-sqrt and reciprocal approximation.
    /// Note that these typically require refinement
    /// in order to obtain suitable precision.
    FRSQRT,
    FRCP,

    // AVX-512 reciprocal approximations with a little more precision.
    RSQRT14,
    RSQRT14S,
    RCP14,
    RCP14S,

    // Thread Local Storage.
    TLSADDR,

    // Thread Local Storage. A call to get the start address
    // of the TLS block for the current module.
    TLSBASEADDR,

    // Thread Local Storage.  When calling to an OS provided
    // thunk at the address from an earlier relocation.
    TLSCALL,

    // Exception Handling helpers.
    EH_RETURN,

    // SjLj exception handling setjmp.
    EH_SJLJ_SETJMP,

    // SjLj exception handling longjmp.
    EH_SJLJ_LONGJMP,

    // SjLj exception handling dispatch.
    EH_SJLJ_SETUP_DISPATCH,

    /// Tail call return. See X86TargetLowering::LowerCall for
    /// the list of operands.
    TC_RETURN,

    // Vector move to low scalar and zero higher vector elements.
    VZEXT_MOVL,

    // Vector integer truncate.
    VTRUNC,
    // Vector integer truncate with unsigned/signed saturation.
    VTRUNCUS,
    VTRUNCS,

    // Masked version of the above. Used when less than a 128-bit result is
    // produced since the mask only applies to the lower elements and can't
    // be represented by a select.
    // SRC, PASSTHRU, MASK
    VMTRUNC,
    VMTRUNCUS,
    VMTRUNCS,

    // Vector FP extend.
    VFPEXT,
    VFPEXT_SAE,
    VFPEXTS,
    VFPEXTS_SAE,

    // Vector FP round.
    VFPROUND,
    VFPROUND_RND,
    VFPROUNDS,
    VFPROUNDS_RND,

    // Masked version of above. Used for v2f64->v4f32.
    // SRC, PASSTHRU, MASK
    VMFPROUND,

    // 128-bit vector logical left / right shift
    VSHLDQ,
    VSRLDQ,

    // Vector shift elements
    VSHL,
    VSRL,
    VSRA,

    // Vector variable shift
    VSHLV,
    VSRLV,
    VSRAV,

    // Vector shift elements by immediate
    VSHLI,
    VSRLI,
    VSRAI,

    // Shifts of mask registers.
    KSHIFTL,
    KSHIFTR,

    // Bit rotate by immediate
    VROTLI,
    VROTRI,

    // Vector packed double/float comparison.
    CMPP,

    // Vector integer comparisons.
    PCMPEQ,
    PCMPGT,

    // v8i16 Horizontal minimum and position.
    PHMINPOS,

    MULTISHIFT,

    /// Vector comparison generating mask bits for fp and
    /// integer signed and unsigned data types.
    CMPM,
    // Vector mask comparison generating mask bits for FP values. 
    CMPMM, 
    // Vector mask comparison with SAE for FP values. 
    CMPMM_SAE, 

    // Arithmetic operations with FLAGS results.
    ADD,
    SUB,
    ADC,
    SBB,
    SMUL,
    UMUL,
    OR,
    XOR,
    AND,

    // Bit field extract.
    BEXTR,
    BEXTRI, 

    // Zero High Bits Starting with Specified Bit Position.
    BZHI,

    // Parallel extract and deposit.
    PDEP,
    PEXT,

    // X86-specific multiply by immediate.
    MUL_IMM,

    // Vector sign bit extraction.
    MOVMSK,

    // Vector bitwise comparisons.
    PTEST,

    // Vector packed fp sign bitwise comparisons.
    TESTP,

    // OR/AND test for masks.
    KORTEST,
    KTEST,

    // ADD for masks.
    KADD,

    // Several flavors of instructions with vector shuffle behaviors.
    // Saturated signed/unnsigned packing.
    PACKSS,
    PACKUS,
    // Intra-lane alignr.
    PALIGNR,
    // AVX512 inter-lane alignr.
    VALIGN,
    PSHUFD,
    PSHUFHW,
    PSHUFLW,
    SHUFP,
    // VBMI2 Concat & Shift.
    VSHLD,
    VSHRD,
    VSHLDV,
    VSHRDV,
    // Shuffle Packed Values at 128-bit granularity.
    SHUF128,
    MOVDDUP,
    MOVSHDUP,
    MOVSLDUP,
    MOVLHPS,
    MOVHLPS,
    MOVSD,
    MOVSS,
    UNPCKL,
    UNPCKH,
    VPERMILPV,
    VPERMILPI,
    VPERMI,
    VPERM2X128,

    // Variable Permute (VPERM).
    // Res = VPERMV MaskV, V0
    VPERMV,

    // 3-op Variable Permute (VPERMT2).
    // Res = VPERMV3 V0, MaskV, V1
    VPERMV3,

    // Bitwise ternary logic.
    VPTERNLOG,
    // Fix Up Special Packed Float32/64 values.
    VFIXUPIMM,
    VFIXUPIMM_SAE,
    VFIXUPIMMS,
    VFIXUPIMMS_SAE,
    // Range Restriction Calculation For Packed Pairs of Float32/64 values.
    VRANGE,
    VRANGE_SAE,
    VRANGES,
    VRANGES_SAE,
    // Reduce - Perform Reduction Transformation on scalar\packed FP.
    VREDUCE,
    VREDUCE_SAE,
    VREDUCES,
    VREDUCES_SAE,
    // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
    // Also used by the legacy (V)ROUND intrinsics where we mask out the
    // scaling part of the immediate.
    VRNDSCALE,
    VRNDSCALE_SAE,
    VRNDSCALES,
    VRNDSCALES_SAE,
    // Tests Types Of a FP Values for packed types.
    VFPCLASS,
    // Tests Types Of a FP Values for scalar types.
    VFPCLASSS,

    // Broadcast (splat) scalar or element 0 of a vector. If the operand is
    // a vector, this node may change the vector length as part of the splat.
    VBROADCAST,
    // Broadcast mask to vector.
    VBROADCASTM,

    /// SSE4A Extraction and Insertion.
    EXTRQI,
    INSERTQI,

    // XOP arithmetic/logical shifts.
    VPSHA,
    VPSHL,
    // XOP signed/unsigned integer comparisons.
    VPCOM,
    VPCOMU,
    // XOP packed permute bytes.
    VPPERM,
    // XOP two source permutation.
    VPERMIL2,

    // Vector multiply packed unsigned doubleword integers.
    PMULUDQ,
    // Vector multiply packed signed doubleword integers.
    PMULDQ,
    // Vector Multiply Packed UnsignedIntegers with Round and Scale.
    MULHRS,

    // Multiply and Add Packed Integers.
    VPMADDUBSW,
    VPMADDWD,

    // AVX512IFMA multiply and add.
    // NOTE: These are different than the instruction and perform
    // op0 x op1 + op2.
    VPMADD52L,
    VPMADD52H,

    // VNNI
    VPDPBUSD,
    VPDPBUSDS,
    VPDPWSSD,
    VPDPWSSDS,

    // FMA nodes.
    // We use the target independent ISD::FMA for the non-inverted case.
    FNMADD,
    FMSUB,
    FNMSUB,
    FMADDSUB,
    FMSUBADD,

    // FMA with rounding mode.
    FMADD_RND,
    FNMADD_RND,
    FMSUB_RND,
    FNMSUB_RND,
    FMADDSUB_RND,
    FMSUBADD_RND,

    // Compress and expand.
    COMPRESS,
    EXPAND,

    // Bits shuffle
    VPSHUFBITQMB,

    // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
    SINT_TO_FP_RND,
    UINT_TO_FP_RND,
    SCALAR_SINT_TO_FP,
    SCALAR_UINT_TO_FP,
    SCALAR_SINT_TO_FP_RND,
    SCALAR_UINT_TO_FP_RND,

    // Vector float/double to signed/unsigned integer.
    CVTP2SI,
    CVTP2UI,
    CVTP2SI_RND,
    CVTP2UI_RND,
    // Scalar float/double to signed/unsigned integer.
    CVTS2SI,
    CVTS2UI,
    CVTS2SI_RND,
    CVTS2UI_RND,

    // Vector float/double to signed/unsigned integer with truncation.
    CVTTP2SI,
    CVTTP2UI,
    CVTTP2SI_SAE,
    CVTTP2UI_SAE,
    // Scalar float/double to signed/unsigned integer with truncation.
    CVTTS2SI,
    CVTTS2UI,
    CVTTS2SI_SAE,
    CVTTS2UI_SAE,

    // Vector signed/unsigned integer to float/double.
    CVTSI2P,
    CVTUI2P,

    // Masked versions of above. Used for v2f64->v4f32.
    // SRC, PASSTHRU, MASK
    MCVTP2SI,
    MCVTP2UI,
    MCVTTP2SI,
    MCVTTP2UI,
    MCVTSI2P,
    MCVTUI2P,

    // Vector float to bfloat16.
    // Convert TWO packed single data to one packed BF16 data
    CVTNE2PS2BF16,
    // Convert packed single data to packed BF16 data
    CVTNEPS2BF16,
    // Masked version of above.
    // SRC, PASSTHRU, MASK
    MCVTNEPS2BF16,

    // Dot product of BF16 pairs to accumulated into
    // packed single precision.
    DPBF16PS,

    // Save xmm argument registers to the stack, according to %al. An operator
    // is needed so that this can be expanded with control flow.
    VASTART_SAVE_XMM_REGS,

    // Windows's _chkstk call to do stack probing.
    WIN_ALLOCA,

    // For allocating variable amounts of stack space when using
    // segmented stacks. Check if the current stacklet has enough space, and
    // falls back to heap allocation if not.
    SEG_ALLOCA,

    // For allocating stack space when using stack clash protector.
    // Allocation is performed by block, and each block is probed.
    PROBED_ALLOCA,

    // Memory barriers.
    MEMBARRIER,
    MFENCE,

    // Get a random integer and indicate whether it is valid in CF.
    RDRAND,

    // Get a NIST SP800-90B & C compliant random integer and
    // indicate whether it is valid in CF.
    RDSEED,

    // Protection keys
    // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
    // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
    // value for ECX.
    RDPKRU,
    WRPKRU,

    // SSE42 string comparisons.
    // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
    // will emit one or two instructions based on which results are used. If
    // flags and index/mask this allows us to use a single instruction since
    // we won't have to pick and opcode for flags. Instead we can rely on the
    // DAG to CSE everything and decide at isel.
    PCMPISTR,
    PCMPESTR,

    // Test if in transactional execution.
    XTEST,

    // ERI instructions.
    RSQRT28,
    RSQRT28_SAE,
    RSQRT28S,
    RSQRT28S_SAE,
    RCP28,
    RCP28_SAE,
    RCP28S,
    RCP28S_SAE,
    EXP2,
    EXP2_SAE,

    // Conversions between float and half-float.
    CVTPS2PH,
    CVTPH2PS,
    CVTPH2PS_SAE,

    // Masked version of above.
    // SRC, RND, PASSTHRU, MASK
    MCVTPS2PH,

    // Galois Field Arithmetic Instructions
    GF2P8AFFINEINVQB,
    GF2P8AFFINEQB,
    GF2P8MULB,

    // LWP insert record.
    LWPINS,

    // User level wait
    UMWAIT,
    TPAUSE,

    // Enqueue Stores Instructions
    ENQCMD,
    ENQCMDS,

    // For avx512-vp2intersect
    VP2INTERSECT,

    // User level interrupts - testui 
    TESTUI, 
 
    /// X86 strict FP compare instructions.
    STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
    STRICT_FCMPS,

    // Vector packed double/float comparison.
    STRICT_CMPP,

    /// Vector comparison generating mask bits for fp and
    /// integer signed and unsigned data types.
    STRICT_CMPM,

    // Vector float/double to signed/unsigned integer with truncation.
    STRICT_CVTTP2SI,
    STRICT_CVTTP2UI,

    // Vector FP extend.
    STRICT_VFPEXT,

    // Vector FP round.
    STRICT_VFPROUND,

    // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
    // Also used by the legacy (V)ROUND intrinsics where we mask out the
    // scaling part of the immediate.
    STRICT_VRNDSCALE,

    // Vector signed/unsigned integer to float/double.
    STRICT_CVTSI2P,
    STRICT_CVTUI2P,

    // Strict FMA nodes.
    STRICT_FNMADD,
    STRICT_FMSUB,
    STRICT_FNMSUB,

    // Conversions between float and half-float.
    STRICT_CVTPS2PH,
    STRICT_CVTPH2PS,

    // WARNING: Only add nodes here if they are stric FP nodes. Non-memory and 
    // non-strict FP nodes should be above FIRST_TARGET_STRICTFP_OPCODE. 
 
    // Compare and swap.
    LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
    LCMPXCHG8_DAG,
    LCMPXCHG16_DAG,
    LCMPXCHG16_SAVE_RBX_DAG,

    /// LOCK-prefixed arithmetic read-modify-write instructions.
    /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
    LADD,
    LSUB,
    LOR,
    LXOR,
    LAND,

    // Load, scalar_to_vector, and zero extend.
    VZEXT_LOAD,

    // extract_vector_elt, store.
    VEXTRACT_STORE,

    // scalar broadcast from memory. 
    VBROADCAST_LOAD,

    // subvector broadcast from memory. 
    SUBV_BROADCAST_LOAD, 
 
    // Store FP control world into i16 memory.
    FNSTCW16m,

    /// This instruction implements FP_TO_SINT with the
    /// integer destination in memory and a FP reg source.  This corresponds
    /// to the X86::FIST*m instructions and the rounding mode change stuff. It
    /// has two inputs (token chain and address) and two outputs (int value
    /// and token chain). Memory VT specifies the type to store to.
    FP_TO_INT_IN_MEM,

    /// This instruction implements SINT_TO_FP with the
    /// integer source in memory and FP reg result.  This corresponds to the
    /// X86::FILD*m instructions. It has two inputs (token chain and address)
    /// and two outputs (FP value and token chain). The integer source type is
    /// specified by the memory VT.
    FILD,

    /// This instruction implements a fp->int store from FP stack
    /// slots. This corresponds to the fist instruction. It takes a
    /// chain operand, value to store, address, and glue. The memory VT
    /// specifies the type to store as.
    FIST,

    /// This instruction implements an extending load to FP stack slots.
    /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
    /// operand, and ptr to load from. The memory VT specifies the type to
    /// load from.
    FLD,

    /// This instruction implements a truncating store from FP stack
    /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
    /// chain operand, value to store, address, and glue. The memory VT
    /// specifies the type to store as.
    FST,

    /// These instructions grab the address of the next argument 
    /// from a va_list. (reads and modifies the va_list in memory)
    VAARG_64,
    VAARG_X32, 

    // Vector truncating store with unsigned/signed saturation
    VTRUNCSTOREUS,
    VTRUNCSTORES,
    // Vector truncating masked store with unsigned/signed saturation
    VMTRUNCSTOREUS,
    VMTRUNCSTORES,

    // X86 specific gather and scatter
    MGATHER,
    MSCATTER,

    // Key locker nodes that produce flags. 
    AESENC128KL, 
    AESDEC128KL, 
    AESENC256KL, 
    AESDEC256KL, 
    AESENCWIDE128KL, 
    AESDECWIDE128KL, 
    AESENCWIDE256KL, 
    AESDECWIDE256KL, 
 
    // WARNING: Do not add anything in the end unless you want the node to
    // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
    // opcodes will be thought as target memory ops!
  };
  } // end namespace X86ISD

  /// Define some predicates that are used for node matching.
  namespace X86 {
    /// Returns true if Elt is a constant zero or floating point constant +0.0.
    bool isZeroNode(SDValue Elt);

    /// Returns true of the given offset can be
    /// fit into displacement field of the instruction.
    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
                                      bool hasSymbolicDisplacement); 

    /// Determines whether the callee is required to pop its
    /// own arguments. Callee pop is necessary to support tail calls.
    bool isCalleePop(CallingConv::ID CallingConv,
                     bool is64Bit, bool IsVarArg, bool GuaranteeTCO);

    /// If Op is a constant whose elements are all the same constant or
    /// undefined, return true and return the constant value in \p SplatVal.
    /// If we have undef bits that don't cover an entire element, we treat these
    /// as zero if AllowPartialUndefs is set, else we fail and return false.
    bool isConstantSplat(SDValue Op, APInt &SplatVal,
                         bool AllowPartialUndefs = true);
  } // end namespace X86

  //===--------------------------------------------------------------------===//
  //  X86 Implementation of the TargetLowering interface
  class X86TargetLowering final : public TargetLowering {
  public:
    explicit X86TargetLowering(const X86TargetMachine &TM,
                               const X86Subtarget &STI);

    unsigned getJumpTableEncoding() const override;
    bool useSoftFloat() const override;

    void markLibCallAttributes(MachineFunction *MF, unsigned CC,
                               ArgListTy &Args) const override;

    MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
      return MVT::i8;
    }

    const MCExpr *
    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                              const MachineBasicBlock *MBB, unsigned uid,
                              MCContext &Ctx) const override;

    /// Returns relocation base for the given PIC jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                     SelectionDAG &DAG) const override;
    const MCExpr *
    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                 unsigned JTI, MCContext &Ctx) const override;

    /// Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area. For X86, aggregates
    /// that contains are placed at 16-byte boundaries while the rest are at
    /// 4-byte boundaries.
    unsigned getByValTypeAlignment(Type *Ty,
                                   const DataLayout &DL) const override;

    EVT getOptimalMemOpType(const MemOp &Op,
                            const AttributeList &FuncAttributes) const override;

    /// Returns true if it's safe to use load / store of the
    /// specified type to expand memcpy / memset inline. This is mostly true
    /// for all types except for some special cases. For example, on X86
    /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    /// also does type conversion. Note the specified type doesn't have to be
    /// legal as the hook is used before type legalization.
    bool isSafeMemOpType(MVT VT) const override;

    /// Returns true if the target allows unaligned memory accesses of the
    /// specified type. Returns whether it is "fast" in the last argument.
    bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
                                        MachineMemOperand::Flags Flags,
                                        bool *Fast) const override;

    /// Provide custom lowering hooks for some operations.
    ///
    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

    /// Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                            SelectionDAG &DAG) const override;

    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

    /// Return true if the target has native support for
    /// the specified value type and it is 'desirable' to use the type for the
    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    /// instruction encodings are longer and some i16 instructions are slow.
    bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;

    /// Return true if the target has native support for the
    /// specified value type and it is 'desirable' to use the type. e.g. On x86
    /// i16 is legal, but undesirable since i16 instruction encodings are longer
    /// and some i16 instructions are slow.
    bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;

    /// Return the newly negated expression if the cost is not expensive and
    /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
    /// do the negation.
    SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
                                 bool LegalOperations, bool ForCodeSize,
                                 NegatibleCost &Cost,
                                 unsigned Depth) const override;

    MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr &MI,
                                MachineBasicBlock *MBB) const override;

    /// This method returns the name of a target specific DAG node.
    const char *getTargetNodeName(unsigned Opcode) const override;

    /// Do not merge vector stores after legalization because that may conflict
    /// with x86-specific store splitting optimizations.
    bool mergeStoresAfterLegalization(EVT MemVT) const override {
      return !MemVT.isVector();
    }

    bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
                          const SelectionDAG &DAG) const override;

    bool isCheapToSpeculateCttz() const override;

    bool isCheapToSpeculateCtlz() const override;

    bool isCtlzFast() const override;

    bool hasBitPreservingFPLogic(EVT VT) const override {
      return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
    }

    bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
      // If the pair to store is a mixture of float and int values, we will
      // save two bitwise instructions and one float-to-int instruction and
      // increase one store instruction. There is potentially a more
      // significant benefit because it avoids the float->int domain switch
      // for input value. So It is more likely a win.
      if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
          (LTy.isInteger() && HTy.isFloatingPoint()))
        return true;
      // If the pair only contains int values, we will save two bitwise
      // instructions and increase one store instruction (costing one more
      // store buffer). Since the benefit is more blurred so we leave
      // such pair out until we get testcase to prove it is a win.
      return false;
    }

    bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;

    bool hasAndNotCompare(SDValue Y) const override;

    bool hasAndNot(SDValue Y) const override;

    bool hasBitTest(SDValue X, SDValue Y) const override;

    bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
        SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
        unsigned OldShiftOpcode, unsigned NewShiftOpcode,
        SelectionDAG &DAG) const override;

    bool shouldFoldConstantShiftPairToMask(const SDNode *N,
                                           CombineLevel Level) const override;

    bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;

    bool
    shouldTransformSignedTruncationCheck(EVT XVT,
                                         unsigned KeptBits) const override {
      // For vectors, we don't have a preference..
      if (XVT.isVector())
        return false;

      auto VTIsOk = [](EVT VT) -> bool {
        return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
               VT == MVT::i64;
      };

      // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
      // XVT will be larger than KeptBitsVT.
      MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
      return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
    }

    bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;

    bool shouldSplatInsEltVarIndex(EVT VT) const override;

    bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
      return VT.isScalarInteger();
    }

    /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
    MVT hasFastEqualityCompare(unsigned NumBits) const override;

    /// Return the value type to use for ISD::SETCC.
    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                           EVT VT) const override;

    bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
                                      const APInt &DemandedElts,
                                      TargetLoweringOpt &TLO) const override;

    /// Determine which of the bits specified in Mask are known to be either
    /// zero or one and return them in the KnownZero/KnownOne bitsets.
    void computeKnownBitsForTargetNode(const SDValue Op,
                                       KnownBits &Known,
                                       const APInt &DemandedElts,
                                       const SelectionDAG &DAG,
                                       unsigned Depth = 0) const override;

    /// Determine the number of bits in the operation that are sign bits.
    unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                             const APInt &DemandedElts,
                                             const SelectionDAG &DAG,
                                             unsigned Depth) const override;

    bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
                                                 const APInt &DemandedElts,
                                                 APInt &KnownUndef,
                                                 APInt &KnownZero,
                                                 TargetLoweringOpt &TLO,
                                                 unsigned Depth) const override;

    bool SimplifyDemandedVectorEltsForTargetShuffle(SDValue Op,
                                                    const APInt &DemandedElts,
                                                    unsigned MaskIndex,
                                                    TargetLoweringOpt &TLO,
                                                    unsigned Depth) const;

    bool SimplifyDemandedBitsForTargetNode(SDValue Op,
                                           const APInt &DemandedBits,
                                           const APInt &DemandedElts,
                                           KnownBits &Known,
                                           TargetLoweringOpt &TLO,
                                           unsigned Depth) const override;

    SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
        SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
        SelectionDAG &DAG, unsigned Depth) const override;

    const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;

    SDValue unwrapAddress(SDValue N) const override;

    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;

    bool ExpandInlineAsm(CallInst *CI) const override;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight
      getSingleConstraintMatchWeight(AsmOperandInfo &info,
                                     const char *constraint) const override;

    const char *LowerXConstraint(EVT ConstraintVT) const override;

    /// Lower the specified operand into the Ops vector. If it is invalid, don't
    /// add anything to Ops. If hasMemory is true it means one of the asm
    /// constraint of the inline asm instruction being processed is 'm'.
    void LowerAsmOperandForConstraint(SDValue Op,
                                      std::string &Constraint,
                                      std::vector<SDValue> &Ops,
                                      SelectionDAG &DAG) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "o")
        return InlineAsm::Constraint_o;
      else if (ConstraintCode == "v")
        return InlineAsm::Constraint_v;
      else if (ConstraintCode == "X")
        return InlineAsm::Constraint_X;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    /// Handle Lowering flag assembly outputs.
    SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, 
                                        const SDLoc &DL, 
                                        const AsmOperandInfo &Constraint,
                                        SelectionDAG &DAG) const override;

    /// Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    /// Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;

    /// Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    /// Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalAddImmediate(int64_t Imm) const override;

    bool isLegalStoreImmediate(int64_t Imm) const override;

    /// Return the cost of the scaling factor used in the addressing
    /// mode represented by AM for this target, for a load/store
    /// of the specified type.
    /// If the AM is supported, the return value must be >= 0.
    /// If the AM is not supported, it returns a negative value.
    int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                             unsigned AS) const override;

    /// This is used to enable splatted operand transforms for vector shifts
    /// and vector funnel shifts.
    bool isVectorShiftByScalarCheap(Type *Ty) const override;

    /// Add x86-specific opcodes to the default list.
    bool isBinOp(unsigned Opcode) const override;

    /// Returns true if the opcode is a commutative binary operation.
    bool isCommutativeBinOp(unsigned Opcode) const override;

    /// Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;

    /// Return true if any actual instruction that defines a
    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    /// register. This does not necessarily include registers defined in
    /// unknown ways, such as incoming arguments, or copies from unknown
    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    /// all instructions that define 32-bit values implicit zero-extend the
    /// result out to 64 bits.
    bool isZExtFree(Type *Ty1, Type *Ty2) const override;
    bool isZExtFree(EVT VT1, EVT VT2) const override;
    bool isZExtFree(SDValue Val, EVT VT2) const override;

    bool shouldSinkOperands(Instruction *I,
                            SmallVectorImpl<Use *> &Ops) const override;
    bool shouldConvertPhiType(Type *From, Type *To) const override;

    /// Return true if folding a vector load into ExtVal (a sign, zero, or any
    /// extend node) is profitable.
    bool isVectorLoadExtDesirable(SDValue) const override;

    /// Return true if an FMA operation is faster than a pair of fmul and fadd
    /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
    bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
                                    EVT VT) const override;

    /// Return true if it's profitable to narrow
    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    /// from i32 to i8 but not from i32 to i16.
    bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;

    /// Given an intrinsic, checks if on the target the intrinsic will need to map
    /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    /// true and stores the intrinsic information into the IntrinsicInfo that was
    /// passed to the function.
    bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;

    /// Returns true if the target can instruction select the
    /// specified FP immediate natively. If false, the legalizer will
    /// materialize the FP immediate as a load from a constant pool.
    bool isFPImmLegal(const APFloat &Imm, EVT VT,
                      bool ForCodeSize) const override;

    /// Targets can use this to indicate that they only support *some*
    /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
    /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
    /// be legal.
    bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;

    /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
    /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
    /// constant pool entry.
    bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;

    /// Returns true if lowering to a jump table is allowed.
    bool areJTsAllowed(const Function *Fn) const override;

    /// If true, then instruction selection should
    /// seek to shrink the FP constant of the specified type to a smaller type
    /// in order to save space and / or reduce runtime.
    bool ShouldShrinkFPConstant(EVT VT) const override {
      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
      // expensive than a straight movsd. On the other hand, it's important to
      // shrink long double fp constant since fldt is very slow.
      return !X86ScalarSSEf64 || VT == MVT::f80;
    }

    /// Return true if we believe it is correct and profitable to reduce the
    /// load node to a smaller type.
    bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                               EVT NewVT) const override;

    /// Return true if the specified scalar FP type is computed in an SSE
    /// register, not on the X87 floating point stack.
    bool isScalarFPTypeInSSEReg(EVT VT) const {
      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
             (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    }

    /// Returns true if it is beneficial to convert a load of a constant
    /// to just the constant itself.
    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                           Type *Ty) const override;

    bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override;

    bool convertSelectOfConstantsToMath(EVT VT) const override;

    bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
                                SDValue C) const override;

    /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
    /// with this index.
    bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                                 unsigned Index) const override;

    /// Scalar ops always have equal or better analysis/performance/power than
    /// the vector equivalent, so this always makes sense if the scalar op is
    /// supported.
    bool shouldScalarizeBinop(SDValue) const override;

    /// Extract of a scalar FP value from index 0 of a vector is free.
    bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
      EVT EltVT = VT.getScalarType();
      return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
    }

    /// Overflow nodes should get combined/lowered to optimal instructions
    /// (they should allow eliminating explicit compares by getting flags from
    /// math ops).
    bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
                              bool MathUsed) const override;

    bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
                                      unsigned AddrSpace) const override {
      // If we can replace more than 2 scalar stores, there will be a reduction
      // in instructions even after we add a vector constant load.
      return NumElem > 2;
    }

    bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
                                 const SelectionDAG &DAG,
                                 const MachineMemOperand &MMO) const override;

    /// Intel processors have a unified instruction and data cache
    const char * getClearCacheBuiltinName() const override {
      return nullptr; // nothing to do, move along.
    }

    Register getRegisterByName(const char* RegName, LLT VT,
                               const MachineFunction &MF) const override;

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    Register
    getExceptionPointerRegister(const Constant *PersonalityFn) const override;

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    Register
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;

    virtual bool needsFixedCatchObjects() const override;

    /// This method returns a target specific FastISel object,
    /// or null if the target does not support "fast" ISel.
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo) const override;

    /// If the target has a standard location for the stack protector cookie,
    /// returns the address of that location. Otherwise, returns nullptr.
    Value *getIRStackGuard(IRBuilder<> &IRB) const override;

    bool useLoadStackGuardNode() const override;
    bool useStackGuardXorFP() const override;
    void insertSSPDeclarations(Module &M) const override;
    Value *getSDagStackGuard(const Module &M) const override;
    Function *getSSPStackGuardCheck(const Module &M) const override;
    SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
                                const SDLoc &DL) const override;


    /// Return true if the target stores SafeStack pointer at a fixed offset in
    /// some non-standard address space, and populates the address space and
    /// offset as appropriate.
    Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;

    std::pair<SDValue, SDValue> BuildFILD(EVT DstVT, EVT SrcVT, const SDLoc &DL,
                                          SDValue Chain, SDValue Pointer,
                                          MachinePointerInfo PtrInfo,
                                          Align Alignment,
                                          SelectionDAG &DAG) const;

    /// Customize the preferred legalization strategy for certain types.
    LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;

    bool softPromoteHalfType() const override { return true; }

    MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
                                      EVT VT) const override;

    unsigned getNumRegistersForCallingConv(LLVMContext &Context,
                                           CallingConv::ID CC,
                                           EVT VT) const override;

    unsigned getVectorTypeBreakdownForCallingConv(
        LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
        unsigned &NumIntermediates, MVT &RegisterVT) const override;

    bool isIntDivCheap(EVT VT, AttributeList Attr) const override;

    bool supportSwiftError() const override;

    bool hasStackProbeSymbol(MachineFunction &MF) const override;
    bool hasInlineStackProbe(MachineFunction &MF) const override;
    StringRef getStackProbeSymbolName(MachineFunction &MF) const override;

    unsigned getStackProbeSize(MachineFunction &MF) const;

    bool hasVectorBlend() const override { return true; }

    unsigned getMaxSupportedInterleaveFactor() const override { return 4; }

    /// Lower interleaved load(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedLoad(LoadInst *LI,
                              ArrayRef<ShuffleVectorInst *> Shuffles,
                              ArrayRef<unsigned> Indices,
                              unsigned Factor) const override;

    /// Lower interleaved store(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
                               unsigned Factor) const override;

    SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
                                   SDValue Addr, SelectionDAG &DAG)
                                   const override;

    Align getPrefLoopAlignment(MachineLoop *ML) const override; 
 
  protected:
    std::pair<const TargetRegisterClass *, uint8_t>
    findRepresentativeClass(const TargetRegisterInfo *TRI,
                            MVT VT) const override;

  private:
    /// Keep a reference to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget &Subtarget;

    /// Select between SSE or x87 floating point ops.
    /// When SSE is available, use it for f32 operations.
    /// When SSE2 is available, use it for f64 operations.
    bool X86ScalarSSEf32;
    bool X86ScalarSSEf64;

    /// A list of legal FP immediates.
    std::vector<APFloat> LegalFPImmediates;

    /// Indicate that this x86 target can instruction
    /// select the specified FP immediate natively.
    void addLegalFPImmediate(const APFloat& Imm) {
      LegalFPImmediates.push_back(Imm);
    }

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals,
                            uint32_t *RegMask) const;
    SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA, MachineFrameInfo &MFI,
                             unsigned i) const;
    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags, bool isByval) const;

    // Call lowering helpers.

    /// Check whether the call is eligible for tail call optimization. Targets
    /// that want to do tail call optimization should implement this function.
    bool IsEligibleForTailCallOptimization(SDValue Callee,
                                           CallingConv::ID CalleeCC,
                                           bool isVarArg,
                                           bool isCalleeStructRet,
                                           bool isCallerStructRet,
                                           Type *RetTy,
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
                                    const SmallVectorImpl<SDValue> &OutVals,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                           SelectionDAG& DAG) const;
    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
                                    SDValue Chain, bool IsTailCall,
                                    bool Is64Bit, int FPDiff,
                                    const SDLoc &dl) const;

    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
                                         SelectionDAG &DAG) const;

    unsigned getAddressSpace(void) const;

    SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned,
                            SDValue &Chain) const;
    SDValue LRINT_LLRINTHelper(SDNode *N, SelectionDAG &DAG) const;

    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;

    unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
                                  const unsigned char OpFlags = 0) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;

    /// Creates target global address or external symbol nodes for calls or
    /// other uses.
    SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
                                  bool ForCall) const;

    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const; 
    SDValue LowerLRINT_LLRINT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;

    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerCall(CallLoweringInfo &CLI,
                      SmallVectorImpl<SDValue> &InVals) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    bool supportSplitCSR(MachineFunction *MF) const override {
      return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
          MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
    }
    void initializeSplitCSR(MachineBasicBlock *Entry) const override;
    void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;

    bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;

    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;

    EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
                            ISD::NodeType ExtendKind) const override;

    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                        bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
    bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;

    LoadInst *
    lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;

    bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const override;
    bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const override;

    bool needsCmpXchgNb(Type *MemType) const;

    void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
                                MachineBasicBlock *DispatchBB, int FI) const;

    // Utility function to emit the low-level va_arg code for X86-64.
    MachineBasicBlock *
    EmitVAARGWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const; 

    /// Utility function to emit the xmm reg save portion of va_start.
    MachineBasicBlock *
    EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
                                             MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
                                                 MachineInstr &MI2,
                                                 MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
                                         MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
                                            MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredProbedAlloca(MachineInstr &MI,
                                               MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredIndirectThunk(MachineInstr &MI,
                                                MachineBasicBlock *BB) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;

    void emitSetJmpShadowStackFix(MachineInstr &MI,
                                  MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
                                         MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
                                                 MachineBasicBlock *MBB) const;

    MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
                                             MachineBasicBlock *MBB) const;

    /// Emit flags for the given setcc condition and operands. Also returns the
    /// corresponding X86 condition code constant in X86CC.
    SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1, ISD::CondCode CC,
                              const SDLoc &dl, SelectionDAG &DAG,
                              SDValue &X86CC) const;

    /// Check if replacement of SQRT with RSQRT should be disabled.
    bool isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const override;

    /// Use rsqrt* to speed up sqrt calculations.
    SDValue getSqrtEstimate(SDValue Op, SelectionDAG &DAG, int Enabled,
                            int &RefinementSteps, bool &UseOneConstNR,
                            bool Reciprocal) const override;

    /// Use rcp* to speed up fdiv calculations.
    SDValue getRecipEstimate(SDValue Op, SelectionDAG &DAG, int Enabled,
                             int &RefinementSteps) const override;

    /// Reassociate floating point divisions into multiply by reciprocal.
    unsigned combineRepeatedFPDivisors() const override;

    SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                          SmallVectorImpl<SDNode *> &Created) const override;
  };

  namespace X86 {
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo);
  } // end namespace X86

  // X86 specific Gather/Scatter nodes.
  // The class has the same order of operands as MaskedGatherScatterSDNode for
  // convenience.
  class X86MaskedGatherScatterSDNode : public MemIntrinsicSDNode {
  public:
    // This is a intended as a utility and should never be directly created.
    X86MaskedGatherScatterSDNode() = delete;
    ~X86MaskedGatherScatterSDNode() = delete;

    const SDValue &getBasePtr() const { return getOperand(3); }
    const SDValue &getIndex()   const { return getOperand(4); }
    const SDValue &getMask()    const { return getOperand(2); }
    const SDValue &getScale()   const { return getOperand(5); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER ||
             N->getOpcode() == X86ISD::MSCATTER;
    }
  };

  class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
  public:
    const SDValue &getPassThru() const { return getOperand(1); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER;
    }
  };

  class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
  public:
    const SDValue &getValue() const { return getOperand(1); }

    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MSCATTER;
    }
  };

  /// Generate unpacklo/unpackhi shuffle mask.
  void createUnpackShuffleMask(EVT VT, SmallVectorImpl<int> &Mask, bool Lo, 
                               bool Unary);

  /// Similar to unpacklo/unpackhi, but without the 128-bit lane limitation
  /// imposed by AVX and specific to the unary pattern. Example:
  /// v8iX Lo --> <0, 0, 1, 1, 2, 2, 3, 3>
  /// v8iX Hi --> <4, 4, 5, 5, 6, 6, 7, 7>
  void createSplat2ShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, bool Lo);

} // end namespace llvm

#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H