aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/PowerPC/PPCPreEmitPeephole.cpp
blob: 013c928bdb6be3c832501e72993fc4a5beb09c71 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
//===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pre-emit peephole for catching opportunities introduced by late passes such
// as MachineBlockPlacement.
//
//===----------------------------------------------------------------------===//

#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/MC/MCContext.h" 
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-pre-emit-peephole"

STATISTIC(NumRRConvertedInPreEmit,
          "Number of r+r instructions converted to r+i in pre-emit peephole");
STATISTIC(NumRemovedInPreEmit,
          "Number of instructions deleted in pre-emit peephole");
STATISTIC(NumberOfSelfCopies,
          "Number of self copy instructions eliminated");
STATISTIC(NumFrameOffFoldInPreEmit,
          "Number of folding frame offset by using r+r in pre-emit peephole");

static cl::opt<bool>
EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden, cl::init(true), 
                     cl::desc("enable PC Relative linker optimization")); 
 
static cl::opt<bool> 
RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
                   cl::desc("Run pre-emit peephole optimizations."));

namespace {
 
static bool hasPCRelativeForm(MachineInstr &Use) { 
  switch (Use.getOpcode()) { 
  default: 
    return false; 
  case PPC::LBZ: 
  case PPC::LBZ8: 
  case PPC::LHA: 
  case PPC::LHA8: 
  case PPC::LHZ: 
  case PPC::LHZ8: 
  case PPC::LWZ: 
  case PPC::LWZ8: 
  case PPC::STB: 
  case PPC::STB8: 
  case PPC::STH: 
  case PPC::STH8: 
  case PPC::STW: 
  case PPC::STW8: 
  case PPC::LD: 
  case PPC::STD: 
  case PPC::LWA: 
  case PPC::LXSD: 
  case PPC::LXSSP: 
  case PPC::LXV: 
  case PPC::STXSD: 
  case PPC::STXSSP: 
  case PPC::STXV: 
  case PPC::LFD: 
  case PPC::LFS: 
  case PPC::STFD: 
  case PPC::STFS: 
  case PPC::DFLOADf32: 
  case PPC::DFLOADf64: 
  case PPC::DFSTOREf32: 
  case PPC::DFSTOREf64: 
    return true; 
  } 
} 
 
  class PPCPreEmitPeephole : public MachineFunctionPass {
  public:
    static char ID;
    PPCPreEmitPeephole() : MachineFunctionPass(ID) {
      initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    // This function removes any redundant load immediates. It has two level
    // loops - The outer loop finds the load immediates BBI that could be used
    // to replace following redundancy. The inner loop scans instructions that
    // after BBI to find redundancy and update kill/dead flags accordingly. If
    // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
    // that modify the def register of BBI would break the scanning.
    // DeadOrKillToUnset is a pointer to the previous operand that had the
    // kill/dead flag set. It keeps track of the def register of BBI, the use
    // registers of AfterBBIs and the def registers of AfterBBIs.
    bool removeRedundantLIs(MachineBasicBlock &MBB,
                            const TargetRegisterInfo *TRI) {
      LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
                 MBB.dump(); dbgs() << "\n");

      DenseSet<MachineInstr *> InstrsToErase;
      for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
        // Skip load immediate that is marked to be erased later because it
        // cannot be used to replace any other instructions.
        if (InstrsToErase.contains(&*BBI)) 
          continue;
        // Skip non-load immediate.
        unsigned Opc = BBI->getOpcode();
        if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
            Opc != PPC::LIS8)
          continue;
        // Skip load immediate, where the operand is a relocation (e.g., $r3 =
        // LI target-flags(ppc-lo) %const.0).
        if (!BBI->getOperand(1).isImm())
          continue;
        assert(BBI->getOperand(0).isReg() &&
               "Expected a register for the first operand");

        LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););

        Register Reg = BBI->getOperand(0).getReg();
        int64_t Imm = BBI->getOperand(1).getImm();
        MachineOperand *DeadOrKillToUnset = nullptr;
        if (BBI->getOperand(0).isDead()) {
          DeadOrKillToUnset = &BBI->getOperand(0);
          LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
                            << " from load immediate " << *BBI
                            << " is a unsetting candidate\n");
        }
        // This loop scans instructions after BBI to see if there is any
        // redundant load immediate.
        for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
             ++AfterBBI) {
          // Track the operand that kill Reg. We would unset the kill flag of
          // the operand if there is a following redundant load immediate.
          int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);

          // We can't just clear implicit kills, so if we encounter one, stop
          // looking further.
          if (KillIdx != -1 && AfterBBI->getOperand(KillIdx).isImplicit()) {
            LLVM_DEBUG(dbgs()
                       << "Encountered an implicit kill, cannot proceed: ");
            LLVM_DEBUG(AfterBBI->dump());
            break;
          }

          if (KillIdx != -1) {
            assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
            DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
            LLVM_DEBUG(dbgs()
                       << " Kill flag of " << *DeadOrKillToUnset << " from "
                       << *AfterBBI << " is a unsetting candidate\n");
          }

          if (!AfterBBI->modifiesRegister(Reg, TRI))
            continue;
          // Finish scanning because Reg is overwritten by a non-load
          // instruction.
          if (AfterBBI->getOpcode() != Opc)
            break;
          assert(AfterBBI->getOperand(0).isReg() &&
                 "Expected a register for the first operand");
          // Finish scanning because Reg is overwritten by a relocation or a
          // different value.
          if (!AfterBBI->getOperand(1).isImm() ||
              AfterBBI->getOperand(1).getImm() != Imm)
            break;

          // It loads same immediate value to the same Reg, which is redundant.
          // We would unset kill flag in previous Reg usage to extend live range
          // of Reg first, then remove the redundancy.
          if (DeadOrKillToUnset) {
            LLVM_DEBUG(dbgs()
                       << " Unset dead/kill flag of " << *DeadOrKillToUnset
                       << " from " << *DeadOrKillToUnset->getParent());
            if (DeadOrKillToUnset->isDef())
              DeadOrKillToUnset->setIsDead(false);
            else
              DeadOrKillToUnset->setIsKill(false);
          }
          DeadOrKillToUnset =
              AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
          if (DeadOrKillToUnset)
            LLVM_DEBUG(dbgs()
                       << " Dead flag of " << *DeadOrKillToUnset << " from "
                       << *AfterBBI << " is a unsetting candidate\n");
          InstrsToErase.insert(&*AfterBBI);
          LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
                     AfterBBI->dump());
        }
      }

      for (MachineInstr *MI : InstrsToErase) {
        MI->eraseFromParent();
      }
      NumRemovedInPreEmit += InstrsToErase.size();
      return !InstrsToErase.empty();
    }

    // Check if this instruction is a PLDpc that is part of a GOT indirect 
    // access. 
    bool isGOTPLDpc(MachineInstr &Instr) { 
      if (Instr.getOpcode() != PPC::PLDpc) 
        return false; 
 
      // The result must be a register. 
      const MachineOperand &LoadedAddressReg = Instr.getOperand(0); 
      if (!LoadedAddressReg.isReg()) 
        return false; 
 
      // Make sure that this is a global symbol. 
      const MachineOperand &SymbolOp = Instr.getOperand(1); 
      if (!SymbolOp.isGlobal()) 
        return false; 
 
      // Finally return true only if the GOT flag is present. 
      return (SymbolOp.getTargetFlags() & PPCII::MO_GOT_FLAG); 
    } 
 
    bool addLinkerOpt(MachineBasicBlock &MBB, const TargetRegisterInfo *TRI) { 
      MachineFunction *MF = MBB.getParent(); 
      // If the linker opt is disabled then just return. 
      if (!EnablePCRelLinkerOpt) 
        return false; 
 
      // Add this linker opt only if we are using PC Relative memops. 
      if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) 
        return false; 
 
      // Struct to keep track of one def/use pair for a GOT indirect access. 
      struct GOTDefUsePair { 
        MachineBasicBlock::iterator DefInst; 
        MachineBasicBlock::iterator UseInst; 
        Register DefReg; 
        Register UseReg; 
        bool StillValid; 
      }; 
      // Vector of def/ues pairs in this basic block. 
      SmallVector<GOTDefUsePair, 4> CandPairs; 
      SmallVector<GOTDefUsePair, 4> ValidPairs; 
      bool MadeChange = false; 
 
      // Run through all of the instructions in the basic block and try to 
      // collect potential pairs of GOT indirect access instructions. 
      for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) { 
        // Look for the initial GOT indirect load. 
        if (isGOTPLDpc(*BBI)) { 
          GOTDefUsePair CurrentPair{BBI, MachineBasicBlock::iterator(), 
                                    BBI->getOperand(0).getReg(), 
                                    PPC::NoRegister, true}; 
          CandPairs.push_back(CurrentPair); 
          continue; 
        } 
 
        // We haven't encountered any new PLD instructions, nothing to check. 
        if (CandPairs.empty()) 
          continue; 
 
        // Run through the candidate pairs and see if any of the registers 
        // defined in the PLD instructions are used by this instruction. 
        // Note: the size of CandPairs can change in the loop. 
        for (unsigned Idx = 0; Idx < CandPairs.size(); Idx++) { 
          GOTDefUsePair &Pair = CandPairs[Idx]; 
          // The instruction does not use or modify this PLD's def reg, 
          // ignore it. 
          if (!BBI->readsRegister(Pair.DefReg, TRI) && 
              !BBI->modifiesRegister(Pair.DefReg, TRI)) 
            continue; 
 
          // The use needs to be used in the address compuation and not 
          // as the register being stored for a store. 
          const MachineOperand *UseOp = 
              hasPCRelativeForm(*BBI) ? &BBI->getOperand(2) : nullptr; 
 
          // Check for a valid use. 
          if (UseOp && UseOp->isReg() && UseOp->getReg() == Pair.DefReg && 
              UseOp->isUse() && UseOp->isKill()) { 
            Pair.UseInst = BBI; 
            Pair.UseReg = BBI->getOperand(0).getReg(); 
            ValidPairs.push_back(Pair); 
          } 
          CandPairs.erase(CandPairs.begin() + Idx); 
        } 
      } 
 
      // Go through all of the pairs and check for any more valid uses. 
      for (auto Pair = ValidPairs.begin(); Pair != ValidPairs.end(); Pair++) { 
        // We shouldn't be here if we don't have a valid pair. 
        assert(Pair->UseInst.isValid() && Pair->StillValid && 
               "Kept an invalid def/use pair for GOT PCRel opt"); 
        // We have found a potential pair. Search through the instructions 
        // between the def and the use to see if it is valid to mark this as a 
        // linker opt. 
        MachineBasicBlock::iterator BBI = Pair->DefInst; 
        ++BBI; 
        for (; BBI != Pair->UseInst; ++BBI) { 
          if (BBI->readsRegister(Pair->UseReg, TRI) || 
              BBI->modifiesRegister(Pair->UseReg, TRI)) { 
            Pair->StillValid = false; 
            break; 
          } 
        } 
 
        if (!Pair->StillValid) 
          continue; 
 
        // The load/store instruction that uses the address from the PLD will 
        // either use a register (for a store) or define a register (for the 
        // load). That register will be added as an implicit def to the PLD 
        // and as an implicit use on the second memory op. This is a precaution 
        // to prevent future passes from using that register between the two 
        // instructions. 
        MachineOperand ImplDef = 
            MachineOperand::CreateReg(Pair->UseReg, true, true); 
        MachineOperand ImplUse = 
            MachineOperand::CreateReg(Pair->UseReg, false, true); 
        Pair->DefInst->addOperand(ImplDef); 
        Pair->UseInst->addOperand(ImplUse); 
 
        // Create the symbol. 
        MCContext &Context = MF->getContext(); 
        MCSymbol *Symbol = Context.createNamedTempSymbol("pcrel"); 
        MachineOperand PCRelLabel = 
            MachineOperand::CreateMCSymbol(Symbol, PPCII::MO_PCREL_OPT_FLAG); 
        Pair->DefInst->addOperand(*MF, PCRelLabel); 
        Pair->UseInst->addOperand(*MF, PCRelLabel); 
        MadeChange |= true; 
      } 
      return MadeChange; 
    } 
 
    // This function removes redundant pairs of accumulator prime/unprime 
    // instructions. In some situations, it's possible the compiler inserts an 
    // accumulator prime instruction followed by an unprime instruction (e.g. 
    // when we store an accumulator after restoring it from a spill). If the 
    // accumulator is not used between the two, they can be removed. This 
    // function removes these redundant pairs from basic blocks. 
    // The algorithm is quite straightforward - every time we encounter a prime 
    // instruction, the primed register is added to a candidate set. Any use 
    // other than a prime removes the candidate from the set and any de-prime 
    // of a current candidate marks both the prime and de-prime for removal. 
    // This way we ensure we only remove prime/de-prime *pairs* with no 
    // intervening uses. 
    bool removeAccPrimeUnprime(MachineBasicBlock &MBB) { 
      DenseSet<MachineInstr *> InstrsToErase; 
      // Initially, none of the acc registers are candidates. 
      SmallVector<MachineInstr *, 8> Candidates( 
          PPC::UACCRCRegClass.getNumRegs(), nullptr); 
 
      for (MachineInstr &BBI : MBB.instrs()) { 
        unsigned Opc = BBI.getOpcode(); 
        // If we are visiting a xxmtacc instruction, we add it and its operand 
        // register to the candidate set. 
        if (Opc == PPC::XXMTACC) { 
          Register Acc = BBI.getOperand(0).getReg(); 
          assert(PPC::ACCRCRegClass.contains(Acc) && 
                 "Unexpected register for XXMTACC"); 
          Candidates[Acc - PPC::ACC0] = &BBI; 
        } 
        // If we are visiting a xxmfacc instruction and its operand register is 
        // in the candidate set, we mark the two instructions for removal. 
        else if (Opc == PPC::XXMFACC) { 
          Register Acc = BBI.getOperand(0).getReg(); 
          assert(PPC::ACCRCRegClass.contains(Acc) && 
                 "Unexpected register for XXMFACC"); 
          if (!Candidates[Acc - PPC::ACC0]) 
            continue; 
          InstrsToErase.insert(&BBI); 
          InstrsToErase.insert(Candidates[Acc - PPC::ACC0]); 
        } 
        // If we are visiting an instruction using an accumulator register 
        // as operand, we remove it from the candidate set. 
        else { 
          for (MachineOperand &Operand : BBI.operands()) { 
            if (!Operand.isReg()) 
              continue; 
            Register Reg = Operand.getReg(); 
            if (PPC::ACCRCRegClass.contains(Reg)) 
              Candidates[Reg - PPC::ACC0] = nullptr; 
          } 
        } 
      } 
 
      for (MachineInstr *MI : InstrsToErase) 
        MI->eraseFromParent(); 
      NumRemovedInPreEmit += InstrsToErase.size(); 
      return !InstrsToErase.empty(); 
    } 
 
    bool runOnMachineFunction(MachineFunction &MF) override {
      if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) {
        // Remove UNENCODED_NOP even when this pass is disabled.
        // This needs to be done unconditionally so we don't emit zeros
        // in the instruction stream.
        SmallVector<MachineInstr *, 4> InstrsToErase;
        for (MachineBasicBlock &MBB : MF)
          for (MachineInstr &MI : MBB)
            if (MI.getOpcode() == PPC::UNENCODED_NOP)
              InstrsToErase.push_back(&MI);
        for (MachineInstr *MI : InstrsToErase)
          MI->eraseFromParent();
        return false;
      }
      bool Changed = false;
      const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
      const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
      SmallVector<MachineInstr *, 4> InstrsToErase;
      for (MachineBasicBlock &MBB : MF) {
        Changed |= removeRedundantLIs(MBB, TRI);
        Changed |= addLinkerOpt(MBB, TRI); 
        Changed |= removeAccPrimeUnprime(MBB); 
        for (MachineInstr &MI : MBB) {
          unsigned Opc = MI.getOpcode();
          if (Opc == PPC::UNENCODED_NOP) {
            InstrsToErase.push_back(&MI);
            continue;
          }
          // Detect self copies - these can result from running AADB.
          if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
            const MCInstrDesc &MCID = TII->get(Opc);
            if (MCID.getNumOperands() == 3 &&
                MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
                MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
              NumberOfSelfCopies++;
              LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
              LLVM_DEBUG(MI.dump());
              InstrsToErase.push_back(&MI);
              continue;
            }
            else if (MCID.getNumOperands() == 2 &&
                     MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
              NumberOfSelfCopies++;
              LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
              LLVM_DEBUG(MI.dump());
              InstrsToErase.push_back(&MI);
              continue;
            }
          }
          MachineInstr *DefMIToErase = nullptr;
          if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
            Changed = true;
            NumRRConvertedInPreEmit++;
            LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
            LLVM_DEBUG(MI.dump());
            if (DefMIToErase) {
              InstrsToErase.push_back(DefMIToErase);
            }
          }
          if (TII->foldFrameOffset(MI)) {
            Changed = true;
            NumFrameOffFoldInPreEmit++;
            LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
            LLVM_DEBUG(MI.dump());
          }
        }

        // Eliminate conditional branch based on a constant CR bit by
        // CRSET or CRUNSET. We eliminate the conditional branch or
        // convert it into an unconditional branch. Also, if the CR bit
        // is not used by other instructions, we eliminate CRSET as well.
        auto I = MBB.getFirstInstrTerminator();
        if (I == MBB.instr_end())
          continue;
        MachineInstr *Br = &*I;
        if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
          continue;
        MachineInstr *CRSetMI = nullptr;
        Register CRBit = Br->getOperand(0).getReg();
        unsigned CRReg = getCRFromCRBit(CRBit);
        bool SeenUse = false;
        MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
        for (It++; It != Er; It++) {
          if (It->modifiesRegister(CRBit, TRI)) {
            if ((It->getOpcode() == PPC::CRUNSET ||
                 It->getOpcode() == PPC::CRSET) &&
                It->getOperand(0).getReg() == CRBit)
              CRSetMI = &*It;
            break;
          }
          if (It->readsRegister(CRBit, TRI))
            SeenUse = true;
        }
        if (!CRSetMI) continue;

        unsigned CRSetOp = CRSetMI->getOpcode();
        if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
            (Br->getOpcode() == PPC::BC  && CRSetOp == PPC::CRUNSET)) {
          // Remove this branch since it cannot be taken.
          InstrsToErase.push_back(Br);
          MBB.removeSuccessor(Br->getOperand(1).getMBB());
        }
        else {
          // This conditional branch is always taken. So, remove all branches
          // and insert an unconditional branch to the destination of this.
          MachineBasicBlock::iterator It = Br, Er = MBB.end();
          for (; It != Er; It++) {
            if (It->isDebugInstr()) continue;
            assert(It->isTerminator() && "Non-terminator after a terminator");
            InstrsToErase.push_back(&*It);
          }
          if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
            ArrayRef<MachineOperand> NoCond;
            TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
                              NoCond, Br->getDebugLoc());
          }
          for (auto &Succ : MBB.successors())
            if (Succ != Br->getOperand(1).getMBB()) {
              MBB.removeSuccessor(Succ);
              break;
            }
        }

        // If the CRBit is not used by another instruction, we can eliminate
        // CRSET/CRUNSET instruction.
        if (!SeenUse) {
          // We need to check use of the CRBit in successors.
          for (auto &SuccMBB : MBB.successors())
            if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
              SeenUse = true;
              break;
            }
          if (!SeenUse)
            InstrsToErase.push_back(CRSetMI);
        }
      }
      for (MachineInstr *MI : InstrsToErase) {
        LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
        LLVM_DEBUG(MI->dump());
        MI->eraseFromParent();
        NumRemovedInPreEmit++;
      }
      return Changed;
    }
  };
}

INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
                false, false)
char PPCPreEmitPeephole::ID = 0;

FunctionPass *llvm::createPPCPreEmitPeepholePass() {
  return new PPCPreEmitPeephole();
}