aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/ARM/MCTargetDesc/ARMAddressingModes.h
blob: 07376848c4ce1c1dd1da526a64f7d2eededbde6a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM addressing mode implementation stuff.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>

namespace llvm {

/// ARM_AM - ARM Addressing Mode Stuff
namespace ARM_AM {
  enum ShiftOpc {
    no_shift = 0,
    asr,
    lsl,
    lsr,
    ror,
    rrx,
    uxtw
  };

  enum AddrOpc {
    sub = 0,
    add
  };

  inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }

  inline const char *getShiftOpcStr(ShiftOpc Op) {
    switch (Op) {
    default: llvm_unreachable("Unknown shift opc!");
    case ARM_AM::asr: return "asr";
    case ARM_AM::lsl: return "lsl";
    case ARM_AM::lsr: return "lsr";
    case ARM_AM::ror: return "ror";
    case ARM_AM::rrx: return "rrx";
    case ARM_AM::uxtw: return "uxtw";
    }
  }

  inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
    switch (Op) {
    default: llvm_unreachable("Unknown shift opc!");
    case ARM_AM::asr: return 2;
    case ARM_AM::lsl: return 0;
    case ARM_AM::lsr: return 1;
    case ARM_AM::ror: return 3;
    }
  }

  enum AMSubMode {
    bad_am_submode = 0,
    ia,
    ib,
    da,
    db
  };

  inline const char *getAMSubModeStr(AMSubMode Mode) {
    switch (Mode) {
    default: llvm_unreachable("Unknown addressing sub-mode!");
    case ARM_AM::ia: return "ia";
    case ARM_AM::ib: return "ib";
    case ARM_AM::da: return "da";
    case ARM_AM::db: return "db";
    }
  }

  /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
  ///
  inline unsigned rotr32(unsigned Val, unsigned Amt) {
    assert(Amt < 32 && "Invalid rotate amount");
    return (Val >> Amt) | (Val << ((32-Amt)&31));
  }

  /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
  ///
  inline unsigned rotl32(unsigned Val, unsigned Amt) {
    assert(Amt < 32 && "Invalid rotate amount");
    return (Val << Amt) | (Val >> ((32-Amt)&31));
  }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #1: shift_operand with registers
  //===--------------------------------------------------------------------===//
  //
  // This 'addressing mode' is used for arithmetic instructions.  It can
  // represent things like:
  //   reg
  //   reg [asr|lsl|lsr|ror|rrx] reg
  //   reg [asr|lsl|lsr|ror|rrx] imm
  //
  // This is stored three operands [rega, regb, opc].  The first is the base
  // reg, the second is the shift amount (or reg0 if not present or imm).  The
  // third operand encodes the shift opcode and the imm if a reg isn't present.
  //
  inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
    return ShOp | (Imm << 3);
  }
  inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
  inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }

  /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
  /// the 8-bit imm value.
  inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
  /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
  /// the rotate amount.
  inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }

  /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
  /// computing the rotate amount to use.  If this immediate value cannot be
  /// handled with a single shifter-op, determine a good rotate amount that will
  /// take a maximal chunk of bits out of the immediate.
  inline unsigned getSOImmValRotate(unsigned Imm) {
    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
    // of zero.
    if ((Imm & ~255U) == 0) return 0;

    // Use CTZ to compute the rotate amount.
    unsigned TZ = countTrailingZeros(Imm);

    // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
    // not 9.
    unsigned RotAmt = TZ & ~1;

    // If we can handle this spread, return it.
    if ((rotr32(Imm, RotAmt) & ~255U) == 0)
      return (32-RotAmt)&31;  // HW rotates right, not left.

    // For values like 0xF000000F, we should ignore the low 6 bits, then
    // retry the hunt.
    if (Imm & 63U) {
      unsigned TZ2 = countTrailingZeros(Imm & ~63U);
      unsigned RotAmt2 = TZ2 & ~1;
      if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
        return (32-RotAmt2)&31;  // HW rotates right, not left.
    }

    // Otherwise, we have no way to cover this span of bits with a single
    // shifter_op immediate.  Return a chunk of bits that will be useful to
    // handle.
    return (32-RotAmt)&31;  // HW rotates right, not left.
  }

  /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
  /// into an shifter_operand immediate operand, return the 12-bit encoding for
  /// it.  If not, return -1.
  inline int getSOImmVal(unsigned Arg) {
    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
    // of zero.
    if ((Arg & ~255U) == 0) return Arg;

    unsigned RotAmt = getSOImmValRotate(Arg);

    // If this cannot be handled with a single shifter_op, bail out.
    if (rotr32(~255U, RotAmt) & Arg)
      return -1;

    // Encode this correctly.
    return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
  }

  /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
  /// or'ing together two SOImmVal's.
  inline bool isSOImmTwoPartVal(unsigned V) {
    // If this can be handled with a single shifter_op, bail out.
    V = rotr32(~255U, getSOImmValRotate(V)) & V;
    if (V == 0)
      return false;

    // If this can be handled with two shifter_op's, accept.
    V = rotr32(~255U, getSOImmValRotate(V)) & V;
    return V == 0;
  }

  /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
  /// return the first chunk of it.
  inline unsigned getSOImmTwoPartFirst(unsigned V) {
    return rotr32(255U, getSOImmValRotate(V)) & V;
  }

  /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
  /// return the second chunk of it.
  inline unsigned getSOImmTwoPartSecond(unsigned V) {
    // Mask out the first hunk.
    V = rotr32(~255U, getSOImmValRotate(V)) & V;

    // Take what's left.
    assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
    return V;
  }

  /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained 
  /// by two SOImmVal, that -V = First + Second. 
  /// "R+V" can be optimized to (sub (sub R, First), Second). 
  /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second). 
  inline bool isSOImmTwoPartValNeg(unsigned V) { 
    unsigned First; 
    if (!isSOImmTwoPartVal(-V)) 
      return false; 
    // Return false if ~(-First) is not a SoImmval. 
    First = getSOImmTwoPartFirst(-V); 
    First = ~(-First); 
    return !(rotr32(~255U, getSOImmValRotate(First)) & First); 
  } 
 
  /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
  /// by a left shift. Returns the shift amount to use.
  inline unsigned getThumbImmValShift(unsigned Imm) {
    // 8-bit (or less) immediates are trivially immediate operand with a shift
    // of zero.
    if ((Imm & ~255U) == 0) return 0;

    // Use CTZ to compute the shift amount.
    return countTrailingZeros(Imm);
  }

  /// isThumbImmShiftedVal - Return true if the specified value can be obtained
  /// by left shifting a 8-bit immediate.
  inline bool isThumbImmShiftedVal(unsigned V) {
    // If this can be handled with
    V = (~255U << getThumbImmValShift(V)) & V;
    return V == 0;
  }

  /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
  /// by a left shift. Returns the shift amount to use.
  inline unsigned getThumbImm16ValShift(unsigned Imm) {
    // 16-bit (or less) immediates are trivially immediate operand with a shift
    // of zero.
    if ((Imm & ~65535U) == 0) return 0;

    // Use CTZ to compute the shift amount.
    return countTrailingZeros(Imm);
  }

  /// isThumbImm16ShiftedVal - Return true if the specified value can be
  /// obtained by left shifting a 16-bit immediate.
  inline bool isThumbImm16ShiftedVal(unsigned V) {
    // If this can be handled with
    V = (~65535U << getThumbImm16ValShift(V)) & V;
    return V == 0;
  }

  /// getThumbImmNonShiftedVal - If V is a value that satisfies
  /// isThumbImmShiftedVal, return the non-shiftd value.
  inline unsigned getThumbImmNonShiftedVal(unsigned V) {
    return V >> getThumbImmValShift(V);
  }


  /// getT2SOImmValSplat - Return the 12-bit encoded representation
  /// if the specified value can be obtained by splatting the low 8 bits
  /// into every other byte or every byte of a 32-bit value. i.e.,
  ///     00000000 00000000 00000000 abcdefgh    control = 0
  ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
  ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
  ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
  /// Return -1 if none of the above apply.
  /// See ARM Reference Manual A6.3.2.
  inline int getT2SOImmValSplatVal(unsigned V) {
    unsigned u, Vs, Imm;
    // control = 0
    if ((V & 0xffffff00) == 0)
      return V;

    // If the value is zeroes in the first byte, just shift those off
    Vs = ((V & 0xff) == 0) ? V >> 8 : V;
    // Any passing value only has 8 bits of payload, splatted across the word
    Imm = Vs & 0xff;
    // Likewise, any passing values have the payload splatted into the 3rd byte
    u = Imm | (Imm << 16);

    // control = 1 or 2
    if (Vs == u)
      return (((Vs == V) ? 1 : 2) << 8) | Imm;

    // control = 3
    if (Vs == (u | (u << 8)))
      return (3 << 8) | Imm;

    return -1;
  }

  /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
  /// specified value is a rotated 8-bit value. Return -1 if no rotation
  /// encoding is possible.
  /// See ARM Reference Manual A6.3.2.
  inline int getT2SOImmValRotateVal(unsigned V) {
    unsigned RotAmt = countLeadingZeros(V);
    if (RotAmt >= 24)
      return -1;

    // If 'Arg' can be handled with a single shifter_op return the value.
    if ((rotr32(0xff000000U, RotAmt) & V) == V)
      return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);

    return -1;
  }

  /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
  /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
  /// encoding for it.  If not, return -1.
  /// See ARM Reference Manual A6.3.2.
  inline int getT2SOImmVal(unsigned Arg) {
    // If 'Arg' is an 8-bit splat, then get the encoded value.
    int Splat = getT2SOImmValSplatVal(Arg);
    if (Splat != -1)
      return Splat;

    // If 'Arg' can be handled with a single shifter_op return the value.
    int Rot = getT2SOImmValRotateVal(Arg);
    if (Rot != -1)
      return Rot;

    return -1;
  }

  inline unsigned getT2SOImmValRotate(unsigned V) {
    if ((V & ~255U) == 0) return 0;
    // Use CTZ to compute the rotate amount.
    unsigned RotAmt = countTrailingZeros(V);
    return (32 - RotAmt) & 31;
  }

  inline bool isT2SOImmTwoPartVal(unsigned Imm) {
    unsigned V = Imm;
    // Passing values can be any combination of splat values and shifter
    // values. If this can be handled with a single shifter or splat, bail
    // out. Those should be handled directly, not with a two-part val.
    if (getT2SOImmValSplatVal(V) != -1)
      return false;
    V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
    if (V == 0)
      return false;

    // If this can be handled as an immediate, accept.
    if (getT2SOImmVal(V) != -1) return true;

    // Likewise, try masking out a splat value first.
    V = Imm;
    if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
      V &= ~0xff00ff00U;
    else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
      V &= ~0x00ff00ffU;
    // If what's left can be handled as an immediate, accept.
    if (getT2SOImmVal(V) != -1) return true;

    // Otherwise, do not accept.
    return false;
  }

  inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
    assert (isT2SOImmTwoPartVal(Imm) &&
            "Immedate cannot be encoded as two part immediate!");
    // Try a shifter operand as one part
    unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
    // If the rest is encodable as an immediate, then return it.
    if (getT2SOImmVal(V) != -1) return V;

    // Try masking out a splat value first.
    if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
      return Imm & 0xff00ff00U;

    // The other splat is all that's left as an option.
    assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
    return Imm & 0x00ff00ffU;
  }

  inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
    // Mask out the first hunk
    Imm ^= getT2SOImmTwoPartFirst(Imm);
    // Return what's left
    assert (getT2SOImmVal(Imm) != -1 &&
            "Unable to encode second part of T2 two part SO immediate");
    return Imm;
  }


  //===--------------------------------------------------------------------===//
  // Addressing Mode #2
  //===--------------------------------------------------------------------===//
  //
  // This is used for most simple load/store instructions.
  //
  // addrmode2 := reg +/- reg shop imm
  // addrmode2 := reg +/- imm12
  //
  // The first operand is always a Reg.  The second operand is a reg if in
  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
  // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
  // fourth operand 16-17 encodes the index mode.
  //
  // If this addressing mode is a frame index (before prolog/epilog insertion
  // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
  // with no shift amount for the frame offset.
  //
  inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
                            unsigned IdxMode = 0) {
    assert(Imm12 < (1 << 12) && "Imm too large!");
    bool isSub = Opc == sub;
    return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
  }
  inline unsigned getAM2Offset(unsigned AM2Opc) {
    return AM2Opc & ((1 << 12)-1);
  }
  inline AddrOpc getAM2Op(unsigned AM2Opc) {
    return ((AM2Opc >> 12) & 1) ? sub : add;
  }
  inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
    return (ShiftOpc)((AM2Opc >> 13) & 7);
  }
  inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #3
  //===--------------------------------------------------------------------===//
  //
  // This is used for sign-extending loads, and load/store-pair instructions.
  //
  // addrmode3 := reg +/- reg
  // addrmode3 := reg +/- imm8
  //
  // The first operand is always a Reg.  The second operand is a reg if in
  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
  // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
  // index mode.

  /// getAM3Opc - This function encodes the addrmode3 opc field.
  inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
                            unsigned IdxMode = 0) {
    bool isSub = Opc == sub;
    return ((int)isSub << 8) | Offset | (IdxMode << 9);
  }
  inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
  inline AddrOpc getAM3Op(unsigned AM3Opc) {
    return ((AM3Opc >> 8) & 1) ? sub : add;
  }
  inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #4
  //===--------------------------------------------------------------------===//
  //
  // This is used for load / store multiple instructions.
  //
  // addrmode4 := reg, <mode>
  //
  // The four modes are:
  //    IA - Increment after
  //    IB - Increment before
  //    DA - Decrement after
  //    DB - Decrement before
  // For VFP instructions, only the IA and DB modes are valid.

  inline AMSubMode getAM4SubMode(unsigned Mode) {
    return (AMSubMode)(Mode & 0x7);
  }

  inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #5
  //===--------------------------------------------------------------------===//
  //
  // This is used for coprocessor instructions, such as FP load/stores.
  //
  // addrmode5 := reg +/- imm8*4
  //
  // The first operand is always a Reg.  The second operand encodes the
  // operation (add or subtract) in bit 8 and the immediate in bits 0-7.

  /// getAM5Opc - This function encodes the addrmode5 opc field.
  inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
    bool isSub = Opc == sub;
    return ((int)isSub << 8) | Offset;
  }
  inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
  inline AddrOpc getAM5Op(unsigned AM5Opc) {
    return ((AM5Opc >> 8) & 1) ? sub : add;
  }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #5 FP16
  //===--------------------------------------------------------------------===//
  //
  // This is used for coprocessor instructions, such as 16-bit FP load/stores.
  //
  // addrmode5fp16 := reg +/- imm8*2
  //
  // The first operand is always a Reg.  The second operand encodes the
  // operation (add or subtract) in bit 8 and the immediate in bits 0-7.

  /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
  inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
    bool isSub = Opc == sub;
    return ((int)isSub << 8) | Offset;
  }
  inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
    return AM5Opc & 0xFF;
  }
  inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
    return ((AM5Opc >> 8) & 1) ? sub : add;
  }

  //===--------------------------------------------------------------------===//
  // Addressing Mode #6
  //===--------------------------------------------------------------------===//
  //
  // This is used for NEON load / store instructions.
  //
  // addrmode6 := reg with optional alignment
  //
  // This is stored in two operands [regaddr, align].  The first is the
  // address register.  The second operand is the value of the alignment
  // specifier in bytes or zero if no explicit alignment.
  // Valid alignments depend on the specific instruction.

  //===--------------------------------------------------------------------===//
  // NEON/MVE Modified Immediates
  //===--------------------------------------------------------------------===//
  //
  // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
  // vector operand, where a small immediate encoded in the instruction
  // specifies a full NEON vector value.  These modified immediates are
  // represented here as encoded integers.  The low 8 bits hold the immediate
  // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
  // the "Cmode" field of the instruction.  The interfaces below treat the
  // Op and Cmode values as a single 5-bit value.

  inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
    return (OpCmode << 8) | Val;
  }
  inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
    return (ModImm >> 8) & 0x1f;
  }
  inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }

  /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
  /// element value and the element size in bits.  (If the element size is
  /// smaller than the vector, it is splatted into all the elements.)
  inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
    unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
    unsigned Imm8 = getVMOVModImmVal(ModImm);
    uint64_t Val = 0;

    if (OpCmode == 0xe) {
      // 8-bit vector elements
      Val = Imm8;
      EltBits = 8;
    } else if ((OpCmode & 0xc) == 0x8) {
      // 16-bit vector elements
      unsigned ByteNum = (OpCmode & 0x6) >> 1;
      Val = Imm8 << (8 * ByteNum);
      EltBits = 16;
    } else if ((OpCmode & 0x8) == 0) {
      // 32-bit vector elements, zero with one byte set
      unsigned ByteNum = (OpCmode & 0x6) >> 1;
      Val = Imm8 << (8 * ByteNum);
      EltBits = 32;
    } else if ((OpCmode & 0xe) == 0xc) {
      // 32-bit vector elements, one byte with low bits set
      unsigned ByteNum = 1 + (OpCmode & 0x1);
      Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
      EltBits = 32;
    } else if (OpCmode == 0x1e) {
      // 64-bit vector elements
      for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
        if ((ModImm >> ByteNum) & 1)
          Val |= (uint64_t)0xff << (8 * ByteNum);
      }
      EltBits = 64;
    } else {
      llvm_unreachable("Unsupported VMOV immediate");
    }
    return Val;
  }

  // Generic validation for single-byte immediate (0X00, 00X0, etc).
  inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
    assert(Size >= 1 && Size <= 4 && "Invalid size");
    unsigned count = 0;
    for (unsigned i = 0; i < Size; ++i) {
      if (Value & 0xff) count++;
      Value >>= 8;
    }
    return count == 1;
  }

  /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
  inline bool isNEONi16splat(unsigned Value) {
    if (Value > 0xffff)
      return false;
    // i16 value with set bits only in one byte X0 or 0X.
    return Value == 0 || isNEONBytesplat(Value, 2);
  }

  // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
  inline unsigned encodeNEONi16splat(unsigned Value) {
    assert(isNEONi16splat(Value) && "Invalid NEON splat value");
    if (Value >= 0x100)
      Value = (Value >> 8) | 0xa00;
    else
      Value |= 0x800;
    return Value;
  }

  /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
  inline bool isNEONi32splat(unsigned Value) {
    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
    return Value == 0 || isNEONBytesplat(Value, 4);
  }

  /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
  inline unsigned encodeNEONi32splat(unsigned Value) {
    assert(isNEONi32splat(Value) && "Invalid NEON splat value");
    if (Value >= 0x100 && Value <= 0xff00)
      Value = (Value >> 8) | 0x200;
    else if (Value > 0xffff && Value <= 0xff0000)
      Value = (Value >> 16) | 0x400;
    else if (Value > 0xffffff)
      Value = (Value >> 24) | 0x600;
    return Value;
  }

  //===--------------------------------------------------------------------===//
  // Floating-point Immediates
  //
  inline float getFPImmFloat(unsigned Imm) {
    // We expect an 8-bit binary encoding of a floating-point number here.

    uint8_t Sign = (Imm >> 7) & 0x1;
    uint8_t Exp = (Imm >> 4) & 0x7;
    uint8_t Mantissa = Imm & 0xf;

    //   8-bit FP    IEEE Float Encoding
    //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
    //
    // where B = NOT(b);
    uint32_t I = 0;
    I |= Sign << 31;
    I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
    I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
    I |= (Exp & 0x3) << 23;
    I |= Mantissa << 19;
    return bit_cast<float>(I);
  }

  /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
  /// floating-point value. If the value cannot be represented as an 8-bit
  /// floating-point value, then return -1.
  inline int getFP16Imm(const APInt &Imm) {
    uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
    int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
    int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits

    // We can handle 4 bits of mantissa.
    // mantissa = (16+UInt(e:f:g:h))/16.
    if (Mantissa & 0x3f)
      return -1;
    Mantissa >>= 6;

    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    if (Exp < -3 || Exp > 4)
      return -1;
    Exp = ((Exp+3) & 0x7) ^ 4;

    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
  }

  inline int getFP16Imm(const APFloat &FPImm) {
    return getFP16Imm(FPImm.bitcastToAPInt());
  }

  /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding 
  /// for it. Otherwise return -1 like getFP16Imm. 
  inline int getFP32FP16Imm(const APInt &Imm) { 
    if (Imm.getActiveBits() > 16) 
      return -1; 
    return ARM_AM::getFP16Imm(Imm.trunc(16)); 
  } 
 
  inline int getFP32FP16Imm(const APFloat &FPImm) { 
    return getFP32FP16Imm(FPImm.bitcastToAPInt()); 
  } 
 
  /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
  /// floating-point value. If the value cannot be represented as an 8-bit
  /// floating-point value, then return -1.
  inline int getFP32Imm(const APInt &Imm) {
    uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
    int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
    int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits

    // We can handle 4 bits of mantissa.
    // mantissa = (16+UInt(e:f:g:h))/16.
    if (Mantissa & 0x7ffff)
      return -1;
    Mantissa >>= 19;
    if ((Mantissa & 0xf) != Mantissa)
      return -1;

    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    if (Exp < -3 || Exp > 4)
      return -1;
    Exp = ((Exp+3) & 0x7) ^ 4;

    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
  }

  inline int getFP32Imm(const APFloat &FPImm) {
    return getFP32Imm(FPImm.bitcastToAPInt());
  }

  /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
  /// floating-point value. If the value cannot be represented as an 8-bit
  /// floating-point value, then return -1.
  inline int getFP64Imm(const APInt &Imm) {
    uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
    int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
    uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;

    // We can handle 4 bits of mantissa.
    // mantissa = (16+UInt(e:f:g:h))/16.
    if (Mantissa & 0xffffffffffffULL)
      return -1;
    Mantissa >>= 48;
    if ((Mantissa & 0xf) != Mantissa)
      return -1;

    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
    if (Exp < -3 || Exp > 4)
      return -1;
    Exp = ((Exp+3) & 0x7) ^ 4;

    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
  }

  inline int getFP64Imm(const APFloat &FPImm) {
    return getFP64Imm(FPImm.bitcastToAPInt());
  }

} // end namespace ARM_AM
} // end namespace llvm

#endif