aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/ARM/ARMBaseInstrInfo.h
blob: e61d557c1d193dcd5709fb9e523bc5c1498645aa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
//===-- ARMBaseInstrInfo.h - ARM Base Instruction Information ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Base ARM implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H
#define LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H

#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsARM.h"
#include <array>
#include <cstdint>

#define GET_INSTRINFO_HEADER
#include "ARMGenInstrInfo.inc"

namespace llvm {

class ARMBaseRegisterInfo;
class ARMSubtarget;

class ARMBaseInstrInfo : public ARMGenInstrInfo {
  const ARMSubtarget &Subtarget;

protected:
  // Can be only subclassed.
  explicit ARMBaseInstrInfo(const ARMSubtarget &STI);

  void expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
                                unsigned LoadImmOpc, unsigned LoadOpc) const;

  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
  /// and \p DefIdx.
  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
  /// the list is modeled as <Reg:SubReg, SubIdx>.
  /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
  /// two elements:
  /// - %1:sub1, sub0
  /// - %2<:0>, sub1
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isRegSequenceLike().
  bool getRegSequenceLikeInputs(
      const MachineInstr &MI, unsigned DefIdx,
      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const override;

  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
  /// and \p DefIdx.
  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
  /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
  /// - %1:sub1, sub0
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isExtractSubregLike().
  bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
                                  RegSubRegPairAndIdx &InputReg) const override;

  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
  /// and \p DefIdx.
  /// \p [out] BaseReg and \p [out] InsertedReg contain
  /// the equivalent inputs of INSERT_SUBREG.
  /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
  /// - BaseReg: %0:sub0
  /// - InsertedReg: %1:sub1, sub3
  ///
  /// \returns true if it is possible to build such an input sequence
  /// with the pair \p MI, \p DefIdx. False otherwise.
  ///
  /// \pre MI.isInsertSubregLike().
  bool
  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
                            RegSubRegPair &BaseReg,
                            RegSubRegPairAndIdx &InsertedReg) const override;

  /// Commutes the operands in the given instruction.
  /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
  ///
  /// Do not call this method for a non-commutable instruction or for
  /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
  /// Even though the instruction is commutable, the method may still
  /// fail to commute the operands, null pointer is returned in such cases.
  MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                       unsigned OpIdx1,
                                       unsigned OpIdx2) const override;
  /// If the specific machine instruction is an instruction that moves/copies
  /// value from one register to another register return destination and source
  /// registers as machine operands.
  Optional<DestSourcePair>
  isCopyInstrImpl(const MachineInstr &MI) const override;

  /// Specialization of \ref TargetInstrInfo::describeLoadedValue, used to
  /// enhance debug entry value descriptions for ARM targets.
  Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
                                                 Register Reg) const override;

public:
  // Return whether the target has an explicit NOP encoding.
  bool hasNOP() const;

  // Return the non-pre/post incrementing version of 'Opc'. Return 0
  // if there is not such an opcode.
  virtual unsigned getUnindexedOpcode(unsigned Opc) const = 0;

  MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
                                      MachineInstr &MI,
                                      LiveVariables *LV) const override;

  virtual const ARMBaseRegisterInfo &getRegisterInfo() const = 0;
  const ARMSubtarget &getSubtarget() const { return Subtarget; }

  ScheduleHazardRecognizer *
  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                               const ScheduleDAG *DAG) const override;

  ScheduleHazardRecognizer *
  CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 
                                 const ScheduleDAGMI *DAG) const override; 
 
  ScheduleHazardRecognizer * 
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                     const ScheduleDAG *DAG) const override;

  // Branch analysis.
  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify = false) const override;
  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;
  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;

  bool
  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;

  // Predication support.
  bool isPredicated(const MachineInstr &MI) const override;

  // MIR printer helper function to annotate Operands with a comment.
  std::string
  createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
                          unsigned OpIdx,
                          const TargetRegisterInfo *TRI) const override;

  ARMCC::CondCodes getPredicate(const MachineInstr &MI) const {
    int PIdx = MI.findFirstPredOperandIdx();
    return PIdx != -1 ? (ARMCC::CondCodes)MI.getOperand(PIdx).getImm()
                      : ARMCC::AL;
  }

  bool PredicateInstruction(MachineInstr &MI,
                            ArrayRef<MachineOperand> Pred) const override;

  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                         ArrayRef<MachineOperand> Pred2) const override;

  bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred, 
                         bool SkipDead) const override; 

  bool isPredicable(const MachineInstr &MI) const override;

  // CPSR defined in instruction
  static bool isCPSRDefined(const MachineInstr &MI);

  /// GetInstSize - Returns the size of the specified MachineInstr.
  ///
  unsigned getInstSizeInBytes(const MachineInstr &MI) const override;

  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;
  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;
  unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
                                     int &FrameIndex) const override;
  unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
                                    int &FrameIndex) const override;

  void copyToCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                  unsigned SrcReg, bool KillSrc,
                  const ARMSubtarget &Subtarget) const;
  void copyFromCPSR(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                    unsigned DestReg, bool KillSrc,
                    const ARMSubtarget &Subtarget) const;

  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                   const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
                   bool KillSrc) const override;

  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MBBI,
                           Register SrcReg, bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI,
                            Register DestReg, int FrameIndex,
                            const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  bool expandPostRAPseudo(MachineInstr &MI) const override;

  bool shouldSink(const MachineInstr &MI) const override;

  void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                     Register DestReg, unsigned SubIdx,
                     const MachineInstr &Orig,
                     const TargetRegisterInfo &TRI) const override;

  MachineInstr &
  duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
            const MachineInstr &Orig) const override;

  const MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
                                     unsigned SubIdx, unsigned State,
                                     const TargetRegisterInfo *TRI) const;

  bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1,
                        const MachineRegisterInfo *MRI) const override;

  /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
  /// determine if two loads are loading from the same base address. It should
  /// only return true if the base pointers are the same and the only
  /// differences between the two addresses is the offset. It also returns the
  /// offsets by reference.
  bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
                               int64_t &Offset2) const override;

  /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
  /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
  /// should be scheduled togther. On some targets if two loads are loading from
  /// addresses in the same cache line, it's better if they are scheduled
  /// together. This function takes two integers that represent the load offsets
  /// from the common base address. It returns true if it decides it's desirable
  /// to schedule the two loads together. "NumLoads" is the number of loads that
  /// have already been scheduled after Load1.
  bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
                               int64_t Offset1, int64_t Offset2,
                               unsigned NumLoads) const override;

  bool isSchedulingBoundary(const MachineInstr &MI,
                            const MachineBasicBlock *MBB,
                            const MachineFunction &MF) const override;

  bool isProfitableToIfCvt(MachineBasicBlock &MBB,
                           unsigned NumCycles, unsigned ExtraPredCycles,
                           BranchProbability Probability) const override;

  bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT,
                           unsigned ExtraT, MachineBasicBlock &FMBB,
                           unsigned NumF, unsigned ExtraF,
                           BranchProbability Probability) const override;

  bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
                                 BranchProbability Probability) const override {
    return NumCycles == 1;
  }

  unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
                                            unsigned NumInsts) const override;
  unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const override;

  bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
                                 MachineBasicBlock &FMBB) const override;

  /// analyzeCompare - For a comparison instruction, return the source registers
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
  /// compares against in CmpValue. Return true if the comparison instruction
  /// can be analyzed.
  bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
                      Register &SrcReg2, int &CmpMask,
                      int &CmpValue) const override;

  /// optimizeCompareInstr - Convert the instruction to set the zero flag so
  /// that we can remove a "comparison with zero"; Remove a redundant CMP
  /// instruction if the flags can be updated in the same way by an earlier
  /// instruction such as SUB.
  bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
                            Register SrcReg2, int CmpMask, int CmpValue,
                            const MachineRegisterInfo *MRI) const override;

  bool analyzeSelect(const MachineInstr &MI,
                     SmallVectorImpl<MachineOperand> &Cond, unsigned &TrueOp,
                     unsigned &FalseOp, bool &Optimizable) const override;

  MachineInstr *optimizeSelect(MachineInstr &MI,
                               SmallPtrSetImpl<MachineInstr *> &SeenMIs,
                               bool) const override;

  /// FoldImmediate - 'Reg' is known to be defined by a move immediate
  /// instruction, try to fold the immediate into the use instruction.
  bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
                     MachineRegisterInfo *MRI) const override;

  unsigned getNumMicroOps(const InstrItineraryData *ItinData,
                          const MachineInstr &MI) const override;

  int getOperandLatency(const InstrItineraryData *ItinData,
                        const MachineInstr &DefMI, unsigned DefIdx,
                        const MachineInstr &UseMI,
                        unsigned UseIdx) const override;
  int getOperandLatency(const InstrItineraryData *ItinData,
                        SDNode *DefNode, unsigned DefIdx,
                        SDNode *UseNode, unsigned UseIdx) const override;

  /// VFP/NEON execution domains.
  std::pair<uint16_t, uint16_t>
  getExecutionDomain(const MachineInstr &MI) const override;
  void setExecutionDomain(MachineInstr &MI, unsigned Domain) const override;

  unsigned
  getPartialRegUpdateClearance(const MachineInstr &, unsigned,
                               const TargetRegisterInfo *) const override;
  void breakPartialRegDependency(MachineInstr &, unsigned,
                                 const TargetRegisterInfo *TRI) const override;

  /// Get the number of addresses by LDM or VLDM or zero for unknown.
  unsigned getNumLDMAddresses(const MachineInstr &MI) const;

  std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned TF) const override;
  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const override;
  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableBitmaskMachineOperandTargetFlags() const override;

  /// ARM supports the MachineOutliner.
  bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
                                   bool OutlineFromLinkOnceODRs) const override;
  outliner::OutlinedFunction getOutliningCandidateInfo(
      std::vector<outliner::Candidate> &RepeatedSequenceLocs) const override;
  outliner::InstrType getOutliningType(MachineBasicBlock::iterator &MIT,
                                       unsigned Flags) const override;
  bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
                              unsigned &Flags) const override;
  void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
                          const outliner::OutlinedFunction &OF) const override;
  MachineBasicBlock::iterator
  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator &It, MachineFunction &MF,
                     const outliner::Candidate &C) const override;

  /// Enable outlining by default at -Oz. 
  bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const override; 
 
  bool isUnspillableTerminatorImpl(const MachineInstr *MI) const override { 
    return MI->getOpcode() == ARM::t2LoopEndDec || 
           MI->getOpcode() == ARM::t2DoLoopStartTP; 
  } 
 
private:
  /// Returns an unused general-purpose register which can be used for
  /// constructing an outlined call if one exists. Returns 0 otherwise.
  unsigned findRegisterToSaveLRTo(const outliner::Candidate &C) const;

  // Adds an instruction which saves the link register on top of the stack into 
  /// the MachineBasicBlock \p MBB at position \p It. 
  void saveLROnStack(MachineBasicBlock &MBB, 
                     MachineBasicBlock::iterator It) const; 
 
  /// Adds an instruction which restores the link register from the top the 
  /// stack into the MachineBasicBlock \p MBB at position \p It. 
  void restoreLRFromStack(MachineBasicBlock &MBB, 
                          MachineBasicBlock::iterator It) const; 
 
  /// Emit CFI instructions into the MachineBasicBlock \p MBB at position \p It, 
  /// for the case when the LR is saved on the stack. 
  void emitCFIForLRSaveOnStack(MachineBasicBlock &MBB, 
                               MachineBasicBlock::iterator It) const; 
 
  /// Emit CFI instructions into the MachineBasicBlock \p MBB at position \p It, 
  /// for the case when the LR is saved in the register \p Reg. 
  void emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 
                             MachineBasicBlock::iterator It, 
                             Register Reg) const; 
 
  /// Emit CFI instructions into the MachineBasicBlock \p MBB at position \p It, 
  /// after the LR is was restored from the stack. 
  void emitCFIForLRRestoreFromStack(MachineBasicBlock &MBB, 
                                    MachineBasicBlock::iterator It) const; 
 
  /// Emit CFI instructions into the MachineBasicBlock \p MBB at position \p It, 
  /// after the LR is was restored from a register. 
  void emitCFIForLRRestoreFromReg(MachineBasicBlock &MBB, 
                                  MachineBasicBlock::iterator It) const; 
  /// \brief Sets the offsets on outlined instructions in \p MBB which use SP 
  /// so that they will be valid post-outlining. 
  /// 
  /// \param MBB A \p MachineBasicBlock in an outlined function. 
  void fixupPostOutline(MachineBasicBlock &MBB) const; 
 
  /// Returns true if the machine instruction offset can handle the stack fixup 
  /// and updates it if requested. 
  bool checkAndUpdateStackOffset(MachineInstr *MI, int64_t Fixup, 
                                 bool Updt) const; 
 
  unsigned getInstBundleLength(const MachineInstr &MI) const;

  int getVLDMDefCycle(const InstrItineraryData *ItinData,
                      const MCInstrDesc &DefMCID,
                      unsigned DefClass,
                      unsigned DefIdx, unsigned DefAlign) const;
  int getLDMDefCycle(const InstrItineraryData *ItinData,
                     const MCInstrDesc &DefMCID,
                     unsigned DefClass,
                     unsigned DefIdx, unsigned DefAlign) const;
  int getVSTMUseCycle(const InstrItineraryData *ItinData,
                      const MCInstrDesc &UseMCID,
                      unsigned UseClass,
                      unsigned UseIdx, unsigned UseAlign) const;
  int getSTMUseCycle(const InstrItineraryData *ItinData,
                     const MCInstrDesc &UseMCID,
                     unsigned UseClass,
                     unsigned UseIdx, unsigned UseAlign) const;
  int getOperandLatency(const InstrItineraryData *ItinData,
                        const MCInstrDesc &DefMCID,
                        unsigned DefIdx, unsigned DefAlign,
                        const MCInstrDesc &UseMCID,
                        unsigned UseIdx, unsigned UseAlign) const;

  int getOperandLatencyImpl(const InstrItineraryData *ItinData,
                            const MachineInstr &DefMI, unsigned DefIdx,
                            const MCInstrDesc &DefMCID, unsigned DefAdj,
                            const MachineOperand &DefMO, unsigned Reg,
                            const MachineInstr &UseMI, unsigned UseIdx,
                            const MCInstrDesc &UseMCID, unsigned UseAdj) const;

  unsigned getPredicationCost(const MachineInstr &MI) const override;

  unsigned getInstrLatency(const InstrItineraryData *ItinData,
                           const MachineInstr &MI,
                           unsigned *PredCost = nullptr) const override;

  int getInstrLatency(const InstrItineraryData *ItinData,
                      SDNode *Node) const override;

  bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
                             const MachineRegisterInfo *MRI,
                             const MachineInstr &DefMI, unsigned DefIdx,
                             const MachineInstr &UseMI,
                             unsigned UseIdx) const override;
  bool hasLowDefLatency(const TargetSchedModel &SchedModel,
                        const MachineInstr &DefMI,
                        unsigned DefIdx) const override;

  /// verifyInstruction - Perform target specific instruction verification.
  bool verifyInstruction(const MachineInstr &MI,
                         StringRef &ErrInfo) const override;

  virtual void expandLoadStackGuard(MachineBasicBlock::iterator MI) const = 0;

  void expandMEMCPY(MachineBasicBlock::iterator) const;

  /// Identify instructions that can be folded into a MOVCC instruction, and
  /// return the defining instruction.
  MachineInstr *canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
                                 const TargetInstrInfo *TII) const;

  bool isReallyTriviallyReMaterializable(const MachineInstr &MI, 
                                         AAResults *AA) const override; 
 
private:
  /// Modeling special VFP / NEON fp MLA / MLS hazards.

  /// MLxEntryMap - Map fp MLA / MLS to the corresponding entry in the internal
  /// MLx table.
  DenseMap<unsigned, unsigned> MLxEntryMap;

  /// MLxHazardOpcodes - Set of add / sub and multiply opcodes that would cause
  /// stalls when scheduled together with fp MLA / MLS opcodes.
  SmallSet<unsigned, 16> MLxHazardOpcodes;

public:
  /// isFpMLxInstruction - Return true if the specified opcode is a fp MLA / MLS
  /// instruction.
  bool isFpMLxInstruction(unsigned Opcode) const {
    return MLxEntryMap.count(Opcode);
  }

  /// isFpMLxInstruction - This version also returns the multiply opcode and the
  /// addition / subtraction opcode to expand to. Return true for 'HasLane' for
  /// the MLX instructions with an extra lane operand.
  bool isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
                          unsigned &AddSubOpc, bool &NegAcc,
                          bool &HasLane) const;

  /// canCauseFpMLxStall - Return true if an instruction of the specified opcode
  /// will cause stalls when scheduled after (within 4-cycle window) a fp
  /// MLA / MLS instruction.
  bool canCauseFpMLxStall(unsigned Opcode) const {
    return MLxHazardOpcodes.count(Opcode);
  }

  /// Returns true if the instruction has a shift by immediate that can be
  /// executed in one cycle less.
  bool isSwiftFastImmShift(const MachineInstr *MI) const;

  /// Returns predicate register associated with the given frame instruction.
  unsigned getFramePred(const MachineInstr &MI) const {
    assert(isFrameInstr(MI));
    // Operands of ADJCALLSTACKDOWN/ADJCALLSTACKUP:
    // - argument declared in the pattern:
    // 0 - frame size
    // 1 - arg of CALLSEQ_START/CALLSEQ_END
    // 2 - predicate code (like ARMCC::AL)
    // - added by predOps:
    // 3 - predicate reg
    return MI.getOperand(3).getReg();
  }

  Optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
                                      Register Reg) const override;
};

/// Get the operands corresponding to the given \p Pred value. By default, the
/// predicate register is assumed to be 0 (no register), but you can pass in a
/// \p PredReg if that is not the case.
static inline std::array<MachineOperand, 2> predOps(ARMCC::CondCodes Pred,
                                                    unsigned PredReg = 0) {
  return {{MachineOperand::CreateImm(static_cast<int64_t>(Pred)),
           MachineOperand::CreateReg(PredReg, false)}};
}

/// Get the operand corresponding to the conditional code result. By default,
/// this is 0 (no register).
static inline MachineOperand condCodeOp(unsigned CCReg = 0) {
  return MachineOperand::CreateReg(CCReg, false);
}

/// Get the operand corresponding to the conditional code result for Thumb1.
/// This operand will always refer to CPSR and it will have the Define flag set.
/// You can optionally set the Dead flag by means of \p isDead.
static inline MachineOperand t1CondCodeOp(bool isDead = false) {
  return MachineOperand::CreateReg(ARM::CPSR,
                                   /*Define*/ true, /*Implicit*/ false,
                                   /*Kill*/ false, isDead);
}

static inline
bool isUncondBranchOpcode(int Opc) {
  return Opc == ARM::B || Opc == ARM::tB || Opc == ARM::t2B;
}

// This table shows the VPT instruction variants, i.e. the different
// mask field encodings, see also B5.6. Predication/conditional execution in
// the ArmARM.
static inline bool isVPTOpcode(int Opc) {
  return Opc == ARM::MVE_VPTv16i8 || Opc == ARM::MVE_VPTv16u8 ||
         Opc == ARM::MVE_VPTv16s8 || Opc == ARM::MVE_VPTv8i16 ||
         Opc == ARM::MVE_VPTv8u16 || Opc == ARM::MVE_VPTv8s16 ||
         Opc == ARM::MVE_VPTv4i32 || Opc == ARM::MVE_VPTv4u32 ||
         Opc == ARM::MVE_VPTv4s32 || Opc == ARM::MVE_VPTv4f32 ||
         Opc == ARM::MVE_VPTv8f16 || Opc == ARM::MVE_VPTv16i8r ||
         Opc == ARM::MVE_VPTv16u8r || Opc == ARM::MVE_VPTv16s8r ||
         Opc == ARM::MVE_VPTv8i16r || Opc == ARM::MVE_VPTv8u16r ||
         Opc == ARM::MVE_VPTv8s16r || Opc == ARM::MVE_VPTv4i32r ||
         Opc == ARM::MVE_VPTv4u32r || Opc == ARM::MVE_VPTv4s32r ||
         Opc == ARM::MVE_VPTv4f32r || Opc == ARM::MVE_VPTv8f16r ||
         Opc == ARM::MVE_VPST;
}

static inline
unsigned VCMPOpcodeToVPT(unsigned Opcode) {
  switch (Opcode) {
  default:
    return 0;
  case ARM::MVE_VCMPf32:
    return ARM::MVE_VPTv4f32;
  case ARM::MVE_VCMPf16:
    return ARM::MVE_VPTv8f16;
  case ARM::MVE_VCMPi8:
    return ARM::MVE_VPTv16i8;
  case ARM::MVE_VCMPi16:
    return ARM::MVE_VPTv8i16;
  case ARM::MVE_VCMPi32:
    return ARM::MVE_VPTv4i32;
  case ARM::MVE_VCMPu8:
    return ARM::MVE_VPTv16u8;
  case ARM::MVE_VCMPu16:
    return ARM::MVE_VPTv8u16;
  case ARM::MVE_VCMPu32:
    return ARM::MVE_VPTv4u32;
  case ARM::MVE_VCMPs8:
    return ARM::MVE_VPTv16s8;
  case ARM::MVE_VCMPs16:
    return ARM::MVE_VPTv8s16;
  case ARM::MVE_VCMPs32:
    return ARM::MVE_VPTv4s32;

  case ARM::MVE_VCMPf32r:
    return ARM::MVE_VPTv4f32r;
  case ARM::MVE_VCMPf16r:
    return ARM::MVE_VPTv8f16r;
  case ARM::MVE_VCMPi8r:
    return ARM::MVE_VPTv16i8r;
  case ARM::MVE_VCMPi16r:
    return ARM::MVE_VPTv8i16r;
  case ARM::MVE_VCMPi32r:
    return ARM::MVE_VPTv4i32r;
  case ARM::MVE_VCMPu8r:
    return ARM::MVE_VPTv16u8r;
  case ARM::MVE_VCMPu16r:
    return ARM::MVE_VPTv8u16r;
  case ARM::MVE_VCMPu32r:
    return ARM::MVE_VPTv4u32r;
  case ARM::MVE_VCMPs8r:
    return ARM::MVE_VPTv16s8r;
  case ARM::MVE_VCMPs16r:
    return ARM::MVE_VPTv8s16r;
  case ARM::MVE_VCMPs32r:
    return ARM::MVE_VPTv4s32r;
  }
}

static inline
bool isCondBranchOpcode(int Opc) {
  return Opc == ARM::Bcc || Opc == ARM::tBcc || Opc == ARM::t2Bcc;
}

static inline bool isJumpTableBranchOpcode(int Opc) {
  return Opc == ARM::BR_JTr || Opc == ARM::BR_JTm_i12 ||
         Opc == ARM::BR_JTm_rs || Opc == ARM::BR_JTadd || Opc == ARM::tBR_JTr ||
         Opc == ARM::t2BR_JT;
}

static inline bool isLowOverheadTerminatorOpcode(int Opc) { 
  return Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 
         Opc == ARM::t2LoopEnd || Opc == ARM::t2LoopEndDec; 
} 
 
static inline
bool isIndirectBranchOpcode(int Opc) {
  return Opc == ARM::BX || Opc == ARM::MOVPCRX || Opc == ARM::tBRIND;
}

static inline bool isIndirectCall(const MachineInstr &MI) { 
  int Opc = MI.getOpcode(); 
  switch (Opc) { 
    // indirect calls: 
  case ARM::BLX: 
  case ARM::BLX_noip: 
  case ARM::BLX_pred: 
  case ARM::BLX_pred_noip: 
  case ARM::BX_CALL: 
  case ARM::BMOVPCRX_CALL: 
  case ARM::TCRETURNri: 
  case ARM::TAILJMPr: 
  case ARM::TAILJMPr4: 
  case ARM::tBLXr: 
  case ARM::tBLXr_noip: 
  case ARM::tBLXNSr: 
  case ARM::tBLXNS_CALL: 
  case ARM::tBX_CALL: 
  case ARM::tTAILJMPr: 
    assert(MI.isCall(MachineInstr::IgnoreBundle)); 
    return true; 
    // direct calls: 
  case ARM::BL: 
  case ARM::BL_pred: 
  case ARM::BMOVPCB_CALL: 
  case ARM::BL_PUSHLR: 
  case ARM::BLXi: 
  case ARM::TCRETURNdi: 
  case ARM::TAILJMPd: 
  case ARM::SVC: 
  case ARM::HVC: 
  case ARM::TPsoft: 
  case ARM::tTAILJMPd: 
  case ARM::t2SMC: 
  case ARM::t2HVC: 
  case ARM::tBL: 
  case ARM::tBLXi: 
  case ARM::tBL_PUSHLR: 
  case ARM::tTAILJMPdND: 
  case ARM::tSVC: 
  case ARM::tTPsoft: 
    assert(MI.isCall(MachineInstr::IgnoreBundle)); 
    return false; 
  } 
  assert(!MI.isCall(MachineInstr::IgnoreBundle)); 
  return false; 
} 
 
static inline bool isIndirectControlFlowNotComingBack(const MachineInstr &MI) { 
  int opc = MI.getOpcode(); 
  return MI.isReturn() || isIndirectBranchOpcode(MI.getOpcode()) || 
         isJumpTableBranchOpcode(opc); 
} 
 
static inline bool isSpeculationBarrierEndBBOpcode(int Opc) { 
  return Opc == ARM::SpeculationBarrierISBDSBEndBB || 
         Opc == ARM::SpeculationBarrierSBEndBB || 
         Opc == ARM::t2SpeculationBarrierISBDSBEndBB || 
         Opc == ARM::t2SpeculationBarrierSBEndBB; 
} 
 
static inline bool isPopOpcode(int Opc) {
  return Opc == ARM::tPOP_RET || Opc == ARM::LDMIA_RET ||
         Opc == ARM::t2LDMIA_RET || Opc == ARM::tPOP || Opc == ARM::LDMIA_UPD ||
         Opc == ARM::t2LDMIA_UPD || Opc == ARM::VLDMDIA_UPD;
}

static inline bool isPushOpcode(int Opc) {
  return Opc == ARM::tPUSH || Opc == ARM::t2STMDB_UPD ||
         Opc == ARM::STMDB_UPD || Opc == ARM::VSTMDDB_UPD;
}

static inline bool isSubImmOpcode(int Opc) {
  return Opc == ARM::SUBri ||
         Opc == ARM::tSUBi3 || Opc == ARM::tSUBi8 ||
         Opc == ARM::tSUBSi3 || Opc == ARM::tSUBSi8 ||
         Opc == ARM::t2SUBri || Opc == ARM::t2SUBri12 || Opc == ARM::t2SUBSri;
}

static inline bool isMovRegOpcode(int Opc) {
  return Opc == ARM::MOVr || Opc == ARM::tMOVr || Opc == ARM::t2MOVr;
}
/// isValidCoprocessorNumber - decide whether an explicit coprocessor
/// number is legal in generic instructions like CDP. The answer can
/// vary with the subtarget.
static inline bool isValidCoprocessorNumber(unsigned Num,
                                            const FeatureBitset& featureBits) {
  // In Armv7 and Armv8-M CP10 and CP11 clash with VFP/NEON, however, the
  // coprocessor is still valid for CDP/MCR/MRC and friends. Allowing it is
  // useful for code which is shared with older architectures which do not know
  // the new VFP/NEON mnemonics.

  // Armv8-A disallows everything *other* than 111x (CP14 and CP15).
  if (featureBits[ARM::HasV8Ops] && (Num & 0xE) != 0xE)
    return false;

  // Armv8.1-M disallows 100x (CP8,CP9) and 111x (CP14,CP15)
  // which clash with MVE.
  if (featureBits[ARM::HasV8_1MMainlineOps] &&
      ((Num & 0xE) == 0x8 || (Num & 0xE) == 0xE))
    return false;

  return true;
}

/// getInstrPredicate - If instruction is predicated, returns its predicate
/// condition, otherwise returns AL. It also returns the condition code
/// register by reference.
ARMCC::CondCodes getInstrPredicate(const MachineInstr &MI, Register &PredReg);

unsigned getMatchingCondBranchOpcode(unsigned Opc);

/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether
/// the instruction is encoded with an 'S' bit is determined by the optional
/// CPSR def operand.
unsigned convertAddSubFlagsOpcode(unsigned OldOpc);

/// emitARMRegPlusImmediate / emitT2RegPlusImmediate - Emits a series of
/// instructions to materializea destreg = basereg + immediate in ARM / Thumb2
/// code.
void emitARMRegPlusImmediate(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator &MBBI,
                             const DebugLoc &dl, Register DestReg,
                             Register BaseReg, int NumBytes,
                             ARMCC::CondCodes Pred, Register PredReg,
                             const ARMBaseInstrInfo &TII, unsigned MIFlags = 0);

void emitT2RegPlusImmediate(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator &MBBI,
                            const DebugLoc &dl, Register DestReg,
                            Register BaseReg, int NumBytes,
                            ARMCC::CondCodes Pred, Register PredReg,
                            const ARMBaseInstrInfo &TII, unsigned MIFlags = 0);
void emitThumbRegPlusImmediate(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator &MBBI,
                               const DebugLoc &dl, Register DestReg,
                               Register BaseReg, int NumBytes,
                               const TargetInstrInfo &TII,
                               const ARMBaseRegisterInfo &MRI,
                               unsigned MIFlags = 0);

/// Tries to add registers to the reglist of a given base-updating
/// push/pop instruction to adjust the stack by an additional
/// NumBytes. This can save a few bytes per function in code-size, but
/// obviously generates more memory traffic. As such, it only takes
/// effect in functions being optimised for size.
bool tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
                                MachineFunction &MF, MachineInstr *MI,
                                unsigned NumBytes);

/// rewriteARMFrameIndex / rewriteT2FrameIndex -
/// Rewrite MI to access 'Offset' bytes from the FP. Return false if the
/// offset could not be handled directly in MI, and return the left-over
/// portion by reference.
bool rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
                          Register FrameReg, int &Offset,
                          const ARMBaseInstrInfo &TII);

bool rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
                         Register FrameReg, int &Offset,
                         const ARMBaseInstrInfo &TII,
                         const TargetRegisterInfo *TRI);

/// Return true if Reg is defd between From and To
bool registerDefinedBetween(unsigned Reg, MachineBasicBlock::iterator From,
                            MachineBasicBlock::iterator To,
                            const TargetRegisterInfo *TRI);

/// Search backwards from a tBcc to find a tCMPi8 against 0, meaning
/// we can convert them to a tCBZ or tCBNZ. Return nullptr if not found.
MachineInstr *findCMPToFoldIntoCBZ(MachineInstr *Br,
                                   const TargetRegisterInfo *TRI);

void addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB);
void addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, Register DestReg);

void addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond);
void addPredicatedMveVpredROp(MachineInstrBuilder &MIB, unsigned Cond,
                              unsigned Inactive);

/// Returns the number of instructions required to materialize the given
/// constant in a register, or 3 if a literal pool load is needed.
/// If ForCodesize is specified, an approximate cost in bytes is returned.
unsigned ConstantMaterializationCost(unsigned Val,
                                     const ARMSubtarget *Subtarget,
                                     bool ForCodesize = false);

/// Returns true if Val1 has a lower Constant Materialization Cost than Val2.
/// Uses the cost from ConstantMaterializationCost, first with ForCodesize as
/// specified. If the scores are equal, return the comparison for !ForCodesize.
bool HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
                                         const ARMSubtarget *Subtarget,
                                         bool ForCodesize = false);

// Return the immediate if this is ADDri or SUBri, scaled as appropriate.
// Returns 0 for unknown instructions.
inline int getAddSubImmediate(MachineInstr &MI) {
  int Scale = 1;
  unsigned ImmOp;
  switch (MI.getOpcode()) {
  case ARM::t2ADDri:
    ImmOp = 2;
    break;
  case ARM::t2SUBri:
  case ARM::t2SUBri12:
    ImmOp = 2;
    Scale = -1;
    break;
  case ARM::tSUBi3:
  case ARM::tSUBi8:
    ImmOp = 3;
    Scale = -1;
    break;
  default:
    return 0;
  }
  return Scale * MI.getOperand(ImmOp).getImm();
}

// Given a memory access Opcode, check that the give Imm would be a valid Offset
// for this instruction using its addressing mode.
inline bool isLegalAddressImm(unsigned Opcode, int Imm,
                              const TargetInstrInfo *TII) {
  const MCInstrDesc &Desc = TII->get(Opcode);
  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
  switch (AddrMode) {
  case ARMII::AddrModeT2_i7:
    return std::abs(Imm) < (((1 << 7) * 1) - 1);
  case ARMII::AddrModeT2_i7s2:
    return std::abs(Imm) < (((1 << 7) * 2) - 1) && Imm % 2 == 0;
  case ARMII::AddrModeT2_i7s4:
    return std::abs(Imm) < (((1 << 7) * 4) - 1) && Imm % 4 == 0;
  case ARMII::AddrModeT2_i8: 
    return std::abs(Imm) < (((1 << 8) * 1) - 1); 
  case ARMII::AddrModeT2_i12: 
    return Imm >= 0 && Imm < (((1 << 12) * 1) - 1); 
  default:
    llvm_unreachable("Unhandled Addressing mode");
  }
}

// Return true if the given intrinsic is a gather 
inline bool isGather(IntrinsicInst *IntInst) { 
  if (IntInst == nullptr)
    return false;
  unsigned IntrinsicID = IntInst->getIntrinsicID();
  return (IntrinsicID == Intrinsic::masked_gather ||
          IntrinsicID == Intrinsic::arm_mve_vldr_gather_base ||
          IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_predicated ||
          IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_wb ||
          IntrinsicID == Intrinsic::arm_mve_vldr_gather_base_wb_predicated ||
          IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset ||
          IntrinsicID == Intrinsic::arm_mve_vldr_gather_offset_predicated); 
} 
 
// Return true if the given intrinsic is a scatter 
inline bool isScatter(IntrinsicInst *IntInst) { 
  if (IntInst == nullptr) 
    return false; 
  unsigned IntrinsicID = IntInst->getIntrinsicID(); 
  return (IntrinsicID == Intrinsic::masked_scatter || 
          IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base ||
          IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_predicated ||
          IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_wb ||
          IntrinsicID == Intrinsic::arm_mve_vstr_scatter_base_wb_predicated ||
          IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset ||
          IntrinsicID == Intrinsic::arm_mve_vstr_scatter_offset_predicated);
}

// Return true if the given intrinsic is a gather or scatter 
inline bool isGatherScatter(IntrinsicInst *IntInst) { 
  if (IntInst == nullptr) 
    return false; 
  return isGather(IntInst) || isScatter(IntInst); 
} 
 
unsigned getBLXOpcode(const MachineFunction &MF); 
unsigned gettBLXrOpcode(const MachineFunction &MF); 
unsigned getBLXpredOpcode(const MachineFunction &MF); 
 
} // end namespace llvm

#endif // LLVM_LIB_TARGET_ARM_ARMBASEINSTRINFO_H