aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Support/YAMLParser.cpp
blob: ef76410a6839582cefdcf01f29ecb2015087f923 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
//===- YAMLParser.cpp - Simple YAML parser --------------------------------===// 
// 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
// See https://llvm.org/LICENSE.txt for license information. 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
// 
//===----------------------------------------------------------------------===// 
// 
//  This file implements a YAML parser. 
// 
//===----------------------------------------------------------------------===// 
 
#include "llvm/Support/YAMLParser.h" 
#include "llvm/ADT/AllocatorList.h" 
#include "llvm/ADT/ArrayRef.h" 
#include "llvm/ADT/None.h" 
#include "llvm/ADT/STLExtras.h" 
#include "llvm/ADT/SmallString.h" 
#include "llvm/ADT/SmallVector.h" 
#include "llvm/ADT/StringExtras.h" 
#include "llvm/ADT/StringRef.h" 
#include "llvm/ADT/Twine.h" 
#include "llvm/Support/Compiler.h" 
#include "llvm/Support/ErrorHandling.h" 
#include "llvm/Support/MemoryBuffer.h" 
#include "llvm/Support/SMLoc.h" 
#include "llvm/Support/SourceMgr.h" 
#include "llvm/Support/Unicode.h" 
#include "llvm/Support/raw_ostream.h" 
#include <algorithm> 
#include <cassert> 
#include <cstddef> 
#include <cstdint> 
#include <map> 
#include <memory> 
#include <string> 
#include <system_error> 
#include <utility> 
 
using namespace llvm; 
using namespace yaml; 
 
enum UnicodeEncodingForm { 
  UEF_UTF32_LE, ///< UTF-32 Little Endian 
  UEF_UTF32_BE, ///< UTF-32 Big Endian 
  UEF_UTF16_LE, ///< UTF-16 Little Endian 
  UEF_UTF16_BE, ///< UTF-16 Big Endian 
  UEF_UTF8,     ///< UTF-8 or ascii. 
  UEF_Unknown   ///< Not a valid Unicode encoding. 
}; 
 
/// EncodingInfo - Holds the encoding type and length of the byte order mark if 
///                it exists. Length is in {0, 2, 3, 4}. 
using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>; 
 
/// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode 
///                      encoding form of \a Input. 
/// 
/// @param Input A string of length 0 or more. 
/// @returns An EncodingInfo indicating the Unicode encoding form of the input 
///          and how long the byte order mark is if one exists. 
static EncodingInfo getUnicodeEncoding(StringRef Input) { 
  if (Input.empty()) 
    return std::make_pair(UEF_Unknown, 0); 
 
  switch (uint8_t(Input[0])) { 
  case 0x00: 
    if (Input.size() >= 4) { 
      if (  Input[1] == 0 
         && uint8_t(Input[2]) == 0xFE 
         && uint8_t(Input[3]) == 0xFF) 
        return std::make_pair(UEF_UTF32_BE, 4); 
      if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0) 
        return std::make_pair(UEF_UTF32_BE, 0); 
    } 
 
    if (Input.size() >= 2 && Input[1] != 0) 
      return std::make_pair(UEF_UTF16_BE, 0); 
    return std::make_pair(UEF_Unknown, 0); 
  case 0xFF: 
    if (  Input.size() >= 4 
       && uint8_t(Input[1]) == 0xFE 
       && Input[2] == 0 
       && Input[3] == 0) 
      return std::make_pair(UEF_UTF32_LE, 4); 
 
    if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE) 
      return std::make_pair(UEF_UTF16_LE, 2); 
    return std::make_pair(UEF_Unknown, 0); 
  case 0xFE: 
    if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF) 
      return std::make_pair(UEF_UTF16_BE, 2); 
    return std::make_pair(UEF_Unknown, 0); 
  case 0xEF: 
    if (  Input.size() >= 3 
       && uint8_t(Input[1]) == 0xBB 
       && uint8_t(Input[2]) == 0xBF) 
      return std::make_pair(UEF_UTF8, 3); 
    return std::make_pair(UEF_Unknown, 0); 
  } 
 
  // It could still be utf-32 or utf-16. 
  if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0) 
    return std::make_pair(UEF_UTF32_LE, 0); 
 
  if (Input.size() >= 2 && Input[1] == 0) 
    return std::make_pair(UEF_UTF16_LE, 0); 
 
  return std::make_pair(UEF_UTF8, 0); 
} 
 
/// Pin the vtables to this file. 
void Node::anchor() {} 
void NullNode::anchor() {} 
void ScalarNode::anchor() {} 
void BlockScalarNode::anchor() {} 
void KeyValueNode::anchor() {} 
void MappingNode::anchor() {} 
void SequenceNode::anchor() {} 
void AliasNode::anchor() {} 
 
namespace llvm { 
namespace yaml { 
 
/// Token - A single YAML token. 
struct Token { 
  enum TokenKind { 
    TK_Error, // Uninitialized token. 
    TK_StreamStart, 
    TK_StreamEnd, 
    TK_VersionDirective, 
    TK_TagDirective, 
    TK_DocumentStart, 
    TK_DocumentEnd, 
    TK_BlockEntry, 
    TK_BlockEnd, 
    TK_BlockSequenceStart, 
    TK_BlockMappingStart, 
    TK_FlowEntry, 
    TK_FlowSequenceStart, 
    TK_FlowSequenceEnd, 
    TK_FlowMappingStart, 
    TK_FlowMappingEnd, 
    TK_Key, 
    TK_Value, 
    TK_Scalar, 
    TK_BlockScalar, 
    TK_Alias, 
    TK_Anchor, 
    TK_Tag 
  } Kind = TK_Error; 
 
  /// A string of length 0 or more whose begin() points to the logical location 
  /// of the token in the input. 
  StringRef Range; 
 
  /// The value of a block scalar node. 
  std::string Value; 
 
  Token() = default; 
}; 
 
} // end namespace yaml 
} // end namespace llvm 
 
using TokenQueueT = BumpPtrList<Token>; 
 
namespace { 
 
/// This struct is used to track simple keys. 
/// 
/// Simple keys are handled by creating an entry in SimpleKeys for each Token 
/// which could legally be the start of a simple key. When peekNext is called, 
/// if the Token To be returned is referenced by a SimpleKey, we continue 
/// tokenizing until that potential simple key has either been found to not be 
/// a simple key (we moved on to the next line or went further than 1024 chars). 
/// Or when we run into a Value, and then insert a Key token (and possibly 
/// others) before the SimpleKey's Tok. 
struct SimpleKey { 
  TokenQueueT::iterator Tok; 
  unsigned Column = 0; 
  unsigned Line = 0; 
  unsigned FlowLevel = 0; 
  bool IsRequired = false; 
 
  bool operator ==(const SimpleKey &Other) { 
    return Tok == Other.Tok; 
  } 
}; 
 
} // end anonymous namespace 
 
/// The Unicode scalar value of a UTF-8 minimal well-formed code unit 
///        subsequence and the subsequence's length in code units (uint8_t). 
///        A length of 0 represents an error. 
using UTF8Decoded = std::pair<uint32_t, unsigned>; 
 
static UTF8Decoded decodeUTF8(StringRef Range) { 
  StringRef::iterator Position= Range.begin(); 
  StringRef::iterator End = Range.end(); 
  // 1 byte: [0x00, 0x7f] 
  // Bit pattern: 0xxxxxxx 
  if (Position < End && (*Position & 0x80) == 0) {
    return std::make_pair(*Position, 1);
  } 
  // 2 bytes: [0x80, 0x7ff] 
  // Bit pattern: 110xxxxx 10xxxxxx 
  if (Position + 1 < End && ((*Position & 0xE0) == 0xC0) &&
      ((*(Position + 1) & 0xC0) == 0x80)) { 
    uint32_t codepoint = ((*Position & 0x1F) << 6) | 
                          (*(Position + 1) & 0x3F); 
    if (codepoint >= 0x80) 
      return std::make_pair(codepoint, 2); 
  } 
  // 3 bytes: [0x8000, 0xffff] 
  // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx 
  if (Position + 2 < End && ((*Position & 0xF0) == 0xE0) &&
      ((*(Position + 1) & 0xC0) == 0x80) && 
      ((*(Position + 2) & 0xC0) == 0x80)) { 
    uint32_t codepoint = ((*Position & 0x0F) << 12) | 
                         ((*(Position + 1) & 0x3F) << 6) | 
                          (*(Position + 2) & 0x3F); 
    // Codepoints between 0xD800 and 0xDFFF are invalid, as 
    // they are high / low surrogate halves used by UTF-16. 
    if (codepoint >= 0x800 && 
        (codepoint < 0xD800 || codepoint > 0xDFFF)) 
      return std::make_pair(codepoint, 3); 
  } 
  // 4 bytes: [0x10000, 0x10FFFF] 
  // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 
  if (Position + 3 < End && ((*Position & 0xF8) == 0xF0) &&
      ((*(Position + 1) & 0xC0) == 0x80) && 
      ((*(Position + 2) & 0xC0) == 0x80) && 
      ((*(Position + 3) & 0xC0) == 0x80)) { 
    uint32_t codepoint = ((*Position & 0x07) << 18) | 
                         ((*(Position + 1) & 0x3F) << 12) | 
                         ((*(Position + 2) & 0x3F) << 6) | 
                          (*(Position + 3) & 0x3F); 
    if (codepoint >= 0x10000 && codepoint <= 0x10FFFF) 
      return std::make_pair(codepoint, 4); 
  } 
  return std::make_pair(0, 0); 
} 
 
namespace llvm { 
namespace yaml { 
 
/// Scans YAML tokens from a MemoryBuffer. 
class Scanner { 
public: 
  Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true, 
          std::error_code *EC = nullptr); 
  Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true, 
          std::error_code *EC = nullptr); 
 
  /// Parse the next token and return it without popping it. 
  Token &peekNext(); 
 
  /// Parse the next token and pop it from the queue. 
  Token getNext(); 
 
  void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message, 
                  ArrayRef<SMRange> Ranges = None) { 
    SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors); 
  } 
 
  void setError(const Twine &Message, StringRef::iterator Position) { 
    if (Position >= End) 
      Position = End - 1; 
 
    // propagate the error if possible 
    if (EC) 
      *EC = make_error_code(std::errc::invalid_argument); 
 
    // Don't print out more errors after the first one we encounter. The rest 
    // are just the result of the first, and have no meaning. 
    if (!Failed) 
      printError(SMLoc::getFromPointer(Position), SourceMgr::DK_Error, Message); 
    Failed = true; 
  } 
 
  /// Returns true if an error occurred while parsing. 
  bool failed() { 
    return Failed; 
  } 
 
private: 
  void init(MemoryBufferRef Buffer); 
 
  StringRef currentInput() { 
    return StringRef(Current, End - Current); 
  } 
 
  /// Decode a UTF-8 minimal well-formed code unit subsequence starting 
  ///        at \a Position. 
  /// 
  /// If the UTF-8 code units starting at Position do not form a well-formed 
  /// code unit subsequence, then the Unicode scalar value is 0, and the length 
  /// is 0. 
  UTF8Decoded decodeUTF8(StringRef::iterator Position) { 
    return ::decodeUTF8(StringRef(Position, End - Position)); 
  } 
 
  // The following functions are based on the gramar rules in the YAML spec. The 
  // style of the function names it meant to closely match how they are written 
  // in the spec. The number within the [] is the number of the grammar rule in 
  // the spec. 
  // 
  // See 4.2 [Production Naming Conventions] for the meaning of the prefixes. 
  // 
  // c- 
  //   A production starting and ending with a special character. 
  // b- 
  //   A production matching a single line break. 
  // nb- 
  //   A production starting and ending with a non-break character. 
  // s- 
  //   A production starting and ending with a white space character. 
  // ns- 
  //   A production starting and ending with a non-space character. 
  // l- 
  //   A production matching complete line(s). 
 
  /// Skip a single nb-char[27] starting at Position. 
  /// 
  /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE] 
  ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF] 
  /// 
  /// @returns The code unit after the nb-char, or Position if it's not an 
  ///          nb-char. 
  StringRef::iterator skip_nb_char(StringRef::iterator Position); 
 
  /// Skip a single b-break[28] starting at Position. 
  /// 
  /// A b-break is 0xD 0xA | 0xD | 0xA 
  /// 
  /// @returns The code unit after the b-break, or Position if it's not a 
  ///          b-break. 
  StringRef::iterator skip_b_break(StringRef::iterator Position); 
 
  /// Skip a single s-space[31] starting at Position. 
  /// 
  /// An s-space is 0x20 
  /// 
  /// @returns The code unit after the s-space, or Position if it's not a 
  ///          s-space. 
  StringRef::iterator skip_s_space(StringRef::iterator Position); 
 
  /// Skip a single s-white[33] starting at Position. 
  /// 
  /// A s-white is 0x20 | 0x9 
  /// 
  /// @returns The code unit after the s-white, or Position if it's not a 
  ///          s-white. 
  StringRef::iterator skip_s_white(StringRef::iterator Position); 
 
  /// Skip a single ns-char[34] starting at Position. 
  /// 
  /// A ns-char is nb-char - s-white 
  /// 
  /// @returns The code unit after the ns-char, or Position if it's not a 
  ///          ns-char. 
  StringRef::iterator skip_ns_char(StringRef::iterator Position); 
 
  using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator); 
 
  /// Skip minimal well-formed code unit subsequences until Func 
  ///        returns its input. 
  /// 
  /// @returns The code unit after the last minimal well-formed code unit 
  ///          subsequence that Func accepted. 
  StringRef::iterator skip_while( SkipWhileFunc Func 
                                , StringRef::iterator Position); 
 
  /// Skip minimal well-formed code unit subsequences until Func returns its 
  /// input. 
  void advanceWhile(SkipWhileFunc Func); 
 
  /// Scan ns-uri-char[39]s starting at Cur. 
  /// 
  /// This updates Cur and Column while scanning. 
  void scan_ns_uri_char(); 
 
  /// Consume a minimal well-formed code unit subsequence starting at 
  ///        \a Cur. Return false if it is not the same Unicode scalar value as 
  ///        \a Expected. This updates \a Column. 
  bool consume(uint32_t Expected); 
 
  /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column. 
  void skip(uint32_t Distance); 
 
  /// Return true if the minimal well-formed code unit subsequence at 
  ///        Pos is whitespace or a new line 
  bool isBlankOrBreak(StringRef::iterator Position); 
 
  /// Consume a single b-break[28] if it's present at the current position. 
  /// 
  /// Return false if the code unit at the current position isn't a line break. 
  bool consumeLineBreakIfPresent(); 
 
  /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey. 
  void saveSimpleKeyCandidate( TokenQueueT::iterator Tok 
                             , unsigned AtColumn 
                             , bool IsRequired); 
 
  /// Remove simple keys that can no longer be valid simple keys. 
  /// 
  /// Invalid simple keys are not on the current line or are further than 1024 
  /// columns back. 
  void removeStaleSimpleKeyCandidates(); 
 
  /// Remove all simple keys on FlowLevel \a Level. 
  void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level); 
 
  /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd 
  ///        tokens if needed. 
  bool unrollIndent(int ToColumn); 
 
  /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint 
  ///        if needed. 
  bool rollIndent( int ToColumn 
                 , Token::TokenKind Kind 
                 , TokenQueueT::iterator InsertPoint); 
 
  /// Skip a single-line comment when the comment starts at the current 
  /// position of the scanner. 
  void skipComment(); 
 
  /// Skip whitespace and comments until the start of the next token. 
  void scanToNextToken(); 
 
  /// Must be the first token generated. 
  bool scanStreamStart(); 
 
  /// Generate tokens needed to close out the stream. 
  bool scanStreamEnd(); 
 
  /// Scan a %BLAH directive. 
  bool scanDirective(); 
 
  /// Scan a ... or ---. 
  bool scanDocumentIndicator(bool IsStart); 
 
  /// Scan a [ or { and generate the proper flow collection start token. 
  bool scanFlowCollectionStart(bool IsSequence); 
 
  /// Scan a ] or } and generate the proper flow collection end token. 
  bool scanFlowCollectionEnd(bool IsSequence); 
 
  /// Scan the , that separates entries in a flow collection. 
  bool scanFlowEntry(); 
 
  /// Scan the - that starts block sequence entries. 
  bool scanBlockEntry(); 
 
  /// Scan an explicit ? indicating a key. 
  bool scanKey(); 
 
  /// Scan an explicit : indicating a value. 
  bool scanValue(); 
 
  /// Scan a quoted scalar. 
  bool scanFlowScalar(bool IsDoubleQuoted); 
 
  /// Scan an unquoted scalar. 
  bool scanPlainScalar(); 
 
  /// Scan an Alias or Anchor starting with * or &. 
  bool scanAliasOrAnchor(bool IsAlias); 
 
  /// Scan a block scalar starting with | or >. 
  bool scanBlockScalar(bool IsLiteral); 
 
  /// Scan a chomping indicator in a block scalar header. 
  char scanBlockChompingIndicator(); 
 
  /// Scan an indentation indicator in a block scalar header. 
  unsigned scanBlockIndentationIndicator(); 
 
  /// Scan a block scalar header. 
  /// 
  /// Return false if an error occurred. 
  bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator, 
                             bool &IsDone); 
 
  /// Look for the indentation level of a block scalar. 
  /// 
  /// Return false if an error occurred. 
  bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent, 
                             unsigned &LineBreaks, bool &IsDone); 
 
  /// Scan the indentation of a text line in a block scalar. 
  /// 
  /// Return false if an error occurred. 
  bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent, 
                             bool &IsDone); 
 
  /// Scan a tag of the form !stuff. 
  bool scanTag(); 
 
  /// Dispatch to the next scanning function based on \a *Cur. 
  bool fetchMoreTokens(); 
 
  /// The SourceMgr used for diagnostics and buffer management. 
  SourceMgr &SM; 
 
  /// The original input. 
  MemoryBufferRef InputBuffer; 
 
  /// The current position of the scanner. 
  StringRef::iterator Current; 
 
  /// The end of the input (one past the last character). 
  StringRef::iterator End; 
 
  /// Current YAML indentation level in spaces. 
  int Indent; 
 
  /// Current column number in Unicode code points. 
  unsigned Column; 
 
  /// Current line number. 
  unsigned Line; 
 
  /// How deep we are in flow style containers. 0 Means at block level. 
  unsigned FlowLevel; 
 
  /// Are we at the start of the stream? 
  bool IsStartOfStream; 
 
  /// Can the next token be the start of a simple key? 
  bool IsSimpleKeyAllowed; 
 
  /// True if an error has occurred. 
  bool Failed; 
 
  /// Should colors be used when printing out the diagnostic messages? 
  bool ShowColors; 
 
  /// Queue of tokens. This is required to queue up tokens while looking 
  ///        for the end of a simple key. And for cases where a single character 
  ///        can produce multiple tokens (e.g. BlockEnd). 
  TokenQueueT TokenQueue; 
 
  /// Indentation levels. 
  SmallVector<int, 4> Indents; 
 
  /// Potential simple keys. 
  SmallVector<SimpleKey, 4> SimpleKeys; 
 
  std::error_code *EC; 
}; 
 
} // end namespace yaml 
} // end namespace llvm 
 
/// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result. 
static void encodeUTF8( uint32_t UnicodeScalarValue 
                      , SmallVectorImpl<char> &Result) { 
  if (UnicodeScalarValue <= 0x7F) { 
    Result.push_back(UnicodeScalarValue & 0x7F); 
  } else if (UnicodeScalarValue <= 0x7FF) { 
    uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6); 
    uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F); 
    Result.push_back(FirstByte); 
    Result.push_back(SecondByte); 
  } else if (UnicodeScalarValue <= 0xFFFF) { 
    uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12); 
    uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6); 
    uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F); 
    Result.push_back(FirstByte); 
    Result.push_back(SecondByte); 
    Result.push_back(ThirdByte); 
  } else if (UnicodeScalarValue <= 0x10FFFF) { 
    uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18); 
    uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12); 
    uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6); 
    uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F); 
    Result.push_back(FirstByte); 
    Result.push_back(SecondByte); 
    Result.push_back(ThirdByte); 
    Result.push_back(FourthByte); 
  } 
} 
 
bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) { 
  SourceMgr SM; 
  Scanner scanner(Input, SM); 
  while (true) { 
    Token T = scanner.getNext(); 
    switch (T.Kind) { 
    case Token::TK_StreamStart: 
      OS << "Stream-Start: "; 
      break; 
    case Token::TK_StreamEnd: 
      OS << "Stream-End: "; 
      break; 
    case Token::TK_VersionDirective: 
      OS << "Version-Directive: "; 
      break; 
    case Token::TK_TagDirective: 
      OS << "Tag-Directive: "; 
      break; 
    case Token::TK_DocumentStart: 
      OS << "Document-Start: "; 
      break; 
    case Token::TK_DocumentEnd: 
      OS << "Document-End: "; 
      break; 
    case Token::TK_BlockEntry: 
      OS << "Block-Entry: "; 
      break; 
    case Token::TK_BlockEnd: 
      OS << "Block-End: "; 
      break; 
    case Token::TK_BlockSequenceStart: 
      OS << "Block-Sequence-Start: "; 
      break; 
    case Token::TK_BlockMappingStart: 
      OS << "Block-Mapping-Start: "; 
      break; 
    case Token::TK_FlowEntry: 
      OS << "Flow-Entry: "; 
      break; 
    case Token::TK_FlowSequenceStart: 
      OS << "Flow-Sequence-Start: "; 
      break; 
    case Token::TK_FlowSequenceEnd: 
      OS << "Flow-Sequence-End: "; 
      break; 
    case Token::TK_FlowMappingStart: 
      OS << "Flow-Mapping-Start: "; 
      break; 
    case Token::TK_FlowMappingEnd: 
      OS << "Flow-Mapping-End: "; 
      break; 
    case Token::TK_Key: 
      OS << "Key: "; 
      break; 
    case Token::TK_Value: 
      OS << "Value: "; 
      break; 
    case Token::TK_Scalar: 
      OS << "Scalar: "; 
      break; 
    case Token::TK_BlockScalar: 
      OS << "Block Scalar: "; 
      break; 
    case Token::TK_Alias: 
      OS << "Alias: "; 
      break; 
    case Token::TK_Anchor: 
      OS << "Anchor: "; 
      break; 
    case Token::TK_Tag: 
      OS << "Tag: "; 
      break; 
    case Token::TK_Error: 
      break; 
    } 
    OS << T.Range << "\n"; 
    if (T.Kind == Token::TK_StreamEnd) 
      break; 
    else if (T.Kind == Token::TK_Error) 
      return false; 
  } 
  return true; 
} 
 
bool yaml::scanTokens(StringRef Input) { 
  SourceMgr SM; 
  Scanner scanner(Input, SM); 
  while (true) { 
    Token T = scanner.getNext(); 
    if (T.Kind == Token::TK_StreamEnd) 
      break; 
    else if (T.Kind == Token::TK_Error) 
      return false; 
  } 
  return true; 
} 
 
std::string yaml::escape(StringRef Input, bool EscapePrintable) { 
  std::string EscapedInput; 
  for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) { 
    if (*i == '\\') 
      EscapedInput += "\\\\"; 
    else if (*i == '"') 
      EscapedInput += "\\\""; 
    else if (*i == 0) 
      EscapedInput += "\\0"; 
    else if (*i == 0x07) 
      EscapedInput += "\\a"; 
    else if (*i == 0x08) 
      EscapedInput += "\\b"; 
    else if (*i == 0x09) 
      EscapedInput += "\\t"; 
    else if (*i == 0x0A) 
      EscapedInput += "\\n"; 
    else if (*i == 0x0B) 
      EscapedInput += "\\v"; 
    else if (*i == 0x0C) 
      EscapedInput += "\\f"; 
    else if (*i == 0x0D) 
      EscapedInput += "\\r"; 
    else if (*i == 0x1B) 
      EscapedInput += "\\e"; 
    else if ((unsigned char)*i < 0x20) { // Control characters not handled above. 
      std::string HexStr = utohexstr(*i); 
      EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr; 
    } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence. 
      UTF8Decoded UnicodeScalarValue 
        = decodeUTF8(StringRef(i, Input.end() - i)); 
      if (UnicodeScalarValue.second == 0) { 
        // Found invalid char. 
        SmallString<4> Val; 
        encodeUTF8(0xFFFD, Val); 
        llvm::append_range(EscapedInput, Val);
        // FIXME: Error reporting. 
        return EscapedInput; 
      } 
      if (UnicodeScalarValue.first == 0x85) 
        EscapedInput += "\\N"; 
      else if (UnicodeScalarValue.first == 0xA0) 
        EscapedInput += "\\_"; 
      else if (UnicodeScalarValue.first == 0x2028) 
        EscapedInput += "\\L"; 
      else if (UnicodeScalarValue.first == 0x2029) 
        EscapedInput += "\\P"; 
      else if (!EscapePrintable && 
               sys::unicode::isPrintable(UnicodeScalarValue.first)) 
        EscapedInput += StringRef(i, UnicodeScalarValue.second); 
      else { 
        std::string HexStr = utohexstr(UnicodeScalarValue.first); 
        if (HexStr.size() <= 2) 
          EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr; 
        else if (HexStr.size() <= 4) 
          EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr; 
        else if (HexStr.size() <= 8) 
          EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr; 
      } 
      i += UnicodeScalarValue.second - 1; 
    } else 
      EscapedInput.push_back(*i); 
  } 
  return EscapedInput; 
} 
 
llvm::Optional<bool> yaml::parseBool(StringRef S) {
  switch (S.size()) {
  case 1:
    switch (S.front()) {
    case 'y':
    case 'Y':
      return true;
    case 'n':
    case 'N':
      return false;
    default:
      return None;
    }
  case 2:
    switch (S.front()) {
    case 'O':
      if (S[1] == 'N') // ON
        return true;
      LLVM_FALLTHROUGH;
    case 'o':
      if (S[1] == 'n') //[Oo]n
        return true;
      return None;
    case 'N':
      if (S[1] == 'O') // NO
        return false;
      LLVM_FALLTHROUGH;
    case 'n':
      if (S[1] == 'o') //[Nn]o
        return false;
      return None;
    default:
      return None;
    }
  case 3:
    switch (S.front()) {
    case 'O':
      if (S.drop_front() == "FF") // OFF
        return false;
      LLVM_FALLTHROUGH;
    case 'o':
      if (S.drop_front() == "ff") //[Oo]ff
        return false;
      return None;
    case 'Y':
      if (S.drop_front() == "ES") // YES
        return true;
      LLVM_FALLTHROUGH;
    case 'y':
      if (S.drop_front() == "es") //[Yy]es
        return true;
      return None;
    default:
      return None;
    }
  case 4:
    switch (S.front()) {
    case 'T':
      if (S.drop_front() == "RUE") // TRUE
        return true;
      LLVM_FALLTHROUGH;
    case 't':
      if (S.drop_front() == "rue") //[Tt]rue
        return true;
      return None;
    default:
      return None;
    }
  case 5:
    switch (S.front()) {
    case 'F':
      if (S.drop_front() == "ALSE") // FALSE
        return false;
      LLVM_FALLTHROUGH;
    case 'f':
      if (S.drop_front() == "alse") //[Ff]alse
        return false;
      return None;
    default:
      return None;
    }
  default:
    return None;
  }
}

Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors, 
                 std::error_code *EC) 
    : SM(sm), ShowColors(ShowColors), EC(EC) { 
  init(MemoryBufferRef(Input, "YAML")); 
} 
 
Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors, 
                 std::error_code *EC) 
    : SM(SM_), ShowColors(ShowColors), EC(EC) { 
  init(Buffer); 
} 
 
void Scanner::init(MemoryBufferRef Buffer) { 
  InputBuffer = Buffer; 
  Current = InputBuffer.getBufferStart(); 
  End = InputBuffer.getBufferEnd(); 
  Indent = -1; 
  Column = 0; 
  Line = 0; 
  FlowLevel = 0; 
  IsStartOfStream = true; 
  IsSimpleKeyAllowed = true; 
  Failed = false; 
  std::unique_ptr<MemoryBuffer> InputBufferOwner = 
      MemoryBuffer::getMemBuffer(Buffer, /*RequiresNullTerminator=*/false);
  SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc()); 
} 
 
Token &Scanner::peekNext() { 
  // If the current token is a possible simple key, keep parsing until we 
  // can confirm. 
  bool NeedMore = false; 
  while (true) { 
    if (TokenQueue.empty() || NeedMore) { 
      if (!fetchMoreTokens()) { 
        TokenQueue.clear(); 
        SimpleKeys.clear(); 
        TokenQueue.push_back(Token()); 
        return TokenQueue.front(); 
      } 
    } 
    assert(!TokenQueue.empty() && 
            "fetchMoreTokens lied about getting tokens!"); 
 
    removeStaleSimpleKeyCandidates(); 
    SimpleKey SK; 
    SK.Tok = TokenQueue.begin(); 
    if (!is_contained(SimpleKeys, SK)) 
      break; 
    else 
      NeedMore = true; 
  } 
  return TokenQueue.front(); 
} 
 
Token Scanner::getNext() { 
  Token Ret = peekNext(); 
  // TokenQueue can be empty if there was an error getting the next token. 
  if (!TokenQueue.empty()) 
    TokenQueue.pop_front(); 
 
  // There cannot be any referenced Token's if the TokenQueue is empty. So do a 
  // quick deallocation of them all. 
  if (TokenQueue.empty()) 
    TokenQueue.resetAlloc(); 
 
  return Ret; 
} 
 
StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) { 
  if (Position == End) 
    return Position; 
  // Check 7 bit c-printable - b-char. 
  if (   *Position == 0x09 
      || (*Position >= 0x20 && *Position <= 0x7E)) 
    return Position + 1; 
 
  // Check for valid UTF-8. 
  if (uint8_t(*Position) & 0x80) { 
    UTF8Decoded u8d = decodeUTF8(Position); 
    if (   u8d.second != 0 
        && u8d.first != 0xFEFF 
        && ( u8d.first == 0x85 
          || ( u8d.first >= 0xA0 
            && u8d.first <= 0xD7FF) 
          || ( u8d.first >= 0xE000 
            && u8d.first <= 0xFFFD) 
          || ( u8d.first >= 0x10000 
            && u8d.first <= 0x10FFFF))) 
      return Position + u8d.second; 
  } 
  return Position; 
} 
 
StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) { 
  if (Position == End) 
    return Position; 
  if (*Position == 0x0D) { 
    if (Position + 1 != End && *(Position + 1) == 0x0A) 
      return Position + 2; 
    return Position + 1; 
  } 
 
  if (*Position == 0x0A) 
    return Position + 1; 
  return Position; 
} 
 
StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) { 
  if (Position == End) 
    return Position; 
  if (*Position == ' ') 
    return Position + 1; 
  return Position; 
} 
 
StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) { 
  if (Position == End) 
    return Position; 
  if (*Position == ' ' || *Position == '\t') 
    return Position + 1; 
  return Position; 
} 
 
StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) { 
  if (Position == End) 
    return Position; 
  if (*Position == ' ' || *Position == '\t') 
    return Position; 
  return skip_nb_char(Position); 
} 
 
StringRef::iterator Scanner::skip_while( SkipWhileFunc Func 
                                       , StringRef::iterator Position) { 
  while (true) { 
    StringRef::iterator i = (this->*Func)(Position); 
    if (i == Position) 
      break; 
    Position = i; 
  } 
  return Position; 
} 
 
void Scanner::advanceWhile(SkipWhileFunc Func) { 
  auto Final = skip_while(Func, Current); 
  Column += Final - Current; 
  Current = Final; 
} 
 
static bool is_ns_hex_digit(const char C) { return isAlnum(C); }
 
static bool is_ns_word_char(const char C) { return C == '-' || isAlpha(C); }
 
void Scanner::scan_ns_uri_char() { 
  while (true) { 
    if (Current == End) 
      break; 
    if ((   *Current == '%' 
          && Current + 2 < End 
          && is_ns_hex_digit(*(Current + 1)) 
          && is_ns_hex_digit(*(Current + 2))) 
        || is_ns_word_char(*Current) 
        || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]") 
          != StringRef::npos) { 
      ++Current; 
      ++Column; 
    } else 
      break; 
  } 
} 
 
bool Scanner::consume(uint32_t Expected) { 
  if (Expected >= 0x80) { 
    setError("Cannot consume non-ascii characters", Current); 
    return false; 
  } 
  if (Current == End) 
    return false; 
  if (uint8_t(*Current) >= 0x80) { 
    setError("Cannot consume non-ascii characters", Current); 
    return false; 
  } 
  if (uint8_t(*Current) == Expected) { 
    ++Current; 
    ++Column; 
    return true; 
  } 
  return false; 
} 
 
void Scanner::skip(uint32_t Distance) { 
  Current += Distance; 
  Column += Distance; 
  assert(Current <= End && "Skipped past the end"); 
} 
 
bool Scanner::isBlankOrBreak(StringRef::iterator Position) { 
  if (Position == End) 
    return false; 
  return *Position == ' ' || *Position == '\t' || *Position == '\r' || 
         *Position == '\n'; 
} 
 
bool Scanner::consumeLineBreakIfPresent() { 
  auto Next = skip_b_break(Current); 
  if (Next == Current) 
    return false; 
  Column = 0; 
  ++Line; 
  Current = Next; 
  return true; 
} 
 
void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok 
                                    , unsigned AtColumn 
                                    , bool IsRequired) { 
  if (IsSimpleKeyAllowed) { 
    SimpleKey SK; 
    SK.Tok = Tok; 
    SK.Line = Line; 
    SK.Column = AtColumn; 
    SK.IsRequired = IsRequired; 
    SK.FlowLevel = FlowLevel; 
    SimpleKeys.push_back(SK); 
  } 
} 
 
void Scanner::removeStaleSimpleKeyCandidates() { 
  for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin(); 
                                            i != SimpleKeys.end();) { 
    if (i->Line != Line || i->Column + 1024 < Column) { 
      if (i->IsRequired) 
        setError( "Could not find expected : for simple key" 
                , i->Tok->Range.begin()); 
      i = SimpleKeys.erase(i); 
    } else 
      ++i; 
  } 
} 
 
void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) { 
  if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level) 
    SimpleKeys.pop_back(); 
} 
 
bool Scanner::unrollIndent(int ToColumn) { 
  Token T; 
  // Indentation is ignored in flow. 
  if (FlowLevel != 0) 
    return true; 
 
  while (Indent > ToColumn) { 
    T.Kind = Token::TK_BlockEnd; 
    T.Range = StringRef(Current, 1); 
    TokenQueue.push_back(T); 
    Indent = Indents.pop_back_val(); 
  } 
 
  return true; 
} 
 
bool Scanner::rollIndent( int ToColumn 
                        , Token::TokenKind Kind 
                        , TokenQueueT::iterator InsertPoint) { 
  if (FlowLevel) 
    return true; 
  if (Indent < ToColumn) { 
    Indents.push_back(Indent); 
    Indent = ToColumn; 
 
    Token T; 
    T.Kind = Kind; 
    T.Range = StringRef(Current, 0); 
    TokenQueue.insert(InsertPoint, T); 
  } 
  return true; 
} 
 
void Scanner::skipComment() { 
  if (Current == End || *Current != '#')
    return; 
  while (true) { 
    // This may skip more than one byte, thus Column is only incremented 
    // for code points. 
    StringRef::iterator I = skip_nb_char(Current); 
    if (I == Current) 
      break; 
    Current = I; 
    ++Column; 
  } 
} 
 
void Scanner::scanToNextToken() { 
  while (true) { 
    while (Current != End && (*Current == ' ' || *Current == '\t')) {
      skip(1); 
    } 
 
    skipComment(); 
 
    // Skip EOL. 
    StringRef::iterator i = skip_b_break(Current); 
    if (i == Current) 
      break; 
    Current = i; 
    ++Line; 
    Column = 0; 
    // New lines may start a simple key. 
    if (!FlowLevel) 
      IsSimpleKeyAllowed = true; 
  } 
} 
 
bool Scanner::scanStreamStart() { 
  IsStartOfStream = false; 
 
  EncodingInfo EI = getUnicodeEncoding(currentInput()); 
 
  Token T; 
  T.Kind = Token::TK_StreamStart; 
  T.Range = StringRef(Current, EI.second); 
  TokenQueue.push_back(T); 
  Current += EI.second; 
  return true; 
} 
 
bool Scanner::scanStreamEnd() { 
  // Force an ending new line if one isn't present. 
  if (Column != 0) { 
    Column = 0; 
    ++Line; 
  } 
 
  unrollIndent(-1); 
  SimpleKeys.clear(); 
  IsSimpleKeyAllowed = false; 
 
  Token T; 
  T.Kind = Token::TK_StreamEnd; 
  T.Range = StringRef(Current, 0); 
  TokenQueue.push_back(T); 
  return true; 
} 
 
bool Scanner::scanDirective() { 
  // Reset the indentation level. 
  unrollIndent(-1); 
  SimpleKeys.clear(); 
  IsSimpleKeyAllowed = false; 
 
  StringRef::iterator Start = Current; 
  consume('%'); 
  StringRef::iterator NameStart = Current; 
  Current = skip_while(&Scanner::skip_ns_char, Current); 
  StringRef Name(NameStart, Current - NameStart); 
  Current = skip_while(&Scanner::skip_s_white, Current); 
 
  Token T; 
  if (Name == "YAML") { 
    Current = skip_while(&Scanner::skip_ns_char, Current); 
    T.Kind = Token::TK_VersionDirective; 
    T.Range = StringRef(Start, Current - Start); 
    TokenQueue.push_back(T); 
    return true; 
  } else if(Name == "TAG") { 
    Current = skip_while(&Scanner::skip_ns_char, Current); 
    Current = skip_while(&Scanner::skip_s_white, Current); 
    Current = skip_while(&Scanner::skip_ns_char, Current); 
    T.Kind = Token::TK_TagDirective; 
    T.Range = StringRef(Start, Current - Start); 
    TokenQueue.push_back(T); 
    return true; 
  } 
  return false; 
} 
 
bool Scanner::scanDocumentIndicator(bool IsStart) { 
  unrollIndent(-1); 
  SimpleKeys.clear(); 
  IsSimpleKeyAllowed = false; 
 
  Token T; 
  T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd; 
  T.Range = StringRef(Current, 3); 
  skip(3); 
  TokenQueue.push_back(T); 
  return true; 
} 
 
bool Scanner::scanFlowCollectionStart(bool IsSequence) { 
  Token T; 
  T.Kind = IsSequence ? Token::TK_FlowSequenceStart 
                      : Token::TK_FlowMappingStart; 
  T.Range = StringRef(Current, 1); 
  skip(1); 
  TokenQueue.push_back(T); 
 
  // [ and { may begin a simple key. 
  saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false); 
 
  // And may also be followed by a simple key. 
  IsSimpleKeyAllowed = true; 
  ++FlowLevel; 
  return true; 
} 
 
bool Scanner::scanFlowCollectionEnd(bool IsSequence) { 
  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel); 
  IsSimpleKeyAllowed = false; 
  Token T; 
  T.Kind = IsSequence ? Token::TK_FlowSequenceEnd 
                      : Token::TK_FlowMappingEnd; 
  T.Range = StringRef(Current, 1); 
  skip(1); 
  TokenQueue.push_back(T); 
  if (FlowLevel) 
    --FlowLevel; 
  return true; 
} 
 
bool Scanner::scanFlowEntry() { 
  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel); 
  IsSimpleKeyAllowed = true; 
  Token T; 
  T.Kind = Token::TK_FlowEntry; 
  T.Range = StringRef(Current, 1); 
  skip(1); 
  TokenQueue.push_back(T); 
  return true; 
} 
 
bool Scanner::scanBlockEntry() { 
  rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end()); 
  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel); 
  IsSimpleKeyAllowed = true; 
  Token T; 
  T.Kind = Token::TK_BlockEntry; 
  T.Range = StringRef(Current, 1); 
  skip(1); 
  TokenQueue.push_back(T); 
  return true; 
} 
 
bool Scanner::scanKey() { 
  if (!FlowLevel) 
    rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end()); 
 
  removeSimpleKeyCandidatesOnFlowLevel(FlowLevel); 
  IsSimpleKeyAllowed = !FlowLevel; 
 
  Token T; 
  T.Kind = Token::TK_Key; 
  T.Range = StringRef(Current, 1); 
  skip(1); 
  TokenQueue.push_back(T); 
  return true; 
} 
 
bool Scanner::scanValue() { 
  // If the previous token could have been a simple key, insert the key token 
  // into the token queue. 
  if (!SimpleKeys.empty()) { 
    SimpleKey SK = SimpleKeys.pop_back_val(); 
    Token T; 
    T.Kind = Token::TK_Key; 
    T.Range = SK.Tok->Range; 
    TokenQueueT::iterator i, e; 
    for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) { 
      if (i == SK.Tok) 
        break; 
    } 
    if (i == e) { 
      Failed = true; 
      return false; 
    } 
    i = TokenQueue.insert(i, T); 
 
    // We may also need to add a Block-Mapping-Start token. 
    rollIndent(SK.Column, Token::TK_BlockMappingStart, i); 
 
    IsSimpleKeyAllowed = false; 
  } else { 
    if (!FlowLevel) 
      rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end()); 
    IsSimpleKeyAllowed = !FlowLevel; 
  } 
 
  Token T; 
  T.Kind = Token::TK_Value; 
  T.Range = StringRef(Current, 1); 
  skip(1); 
  TokenQueue.push_back(T); 
  return true; 
} 
 
// Forbidding inlining improves performance by roughly 20%. 
// FIXME: Remove once llvm optimizes this to the faster version without hints. 
LLVM_ATTRIBUTE_NOINLINE static bool 
wasEscaped(StringRef::iterator First, StringRef::iterator Position); 
 
// Returns whether a character at 'Position' was escaped with a leading '\'. 
// 'First' specifies the position of the first character in the string. 
static bool wasEscaped(StringRef::iterator First, 
                       StringRef::iterator Position) { 
  assert(Position - 1 >= First); 
  StringRef::iterator I = Position - 1; 
  // We calculate the number of consecutive '\'s before the current position 
  // by iterating backwards through our string. 
  while (I >= First && *I == '\\') --I; 
  // (Position - 1 - I) now contains the number of '\'s before the current 
  // position. If it is odd, the character at 'Position' was escaped. 
  return (Position - 1 - I) % 2 == 1; 
} 
 
bool Scanner::scanFlowScalar(bool IsDoubleQuoted) { 
  StringRef::iterator Start = Current; 
  unsigned ColStart = Column; 
  if (IsDoubleQuoted) { 
    do { 
      ++Current; 
      while (Current != End && *Current != '"') 
        ++Current; 
      // Repeat until the previous character was not a '\' or was an escaped 
      // backslash. 
    } while (   Current != End 
             && *(Current - 1) == '\\' 
             && wasEscaped(Start + 1, Current)); 
  } else { 
    skip(1); 
    while (Current != End) {
      // Skip a ' followed by another '. 
      if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') { 
        skip(2); 
        continue; 
      } else if (*Current == '\'') 
        break; 
      StringRef::iterator i = skip_nb_char(Current); 
      if (i == Current) { 
        i = skip_b_break(Current); 
        if (i == Current) 
          break; 
        Current = i; 
        Column = 0; 
        ++Line; 
      } else { 
        if (i == End) 
          break; 
        Current = i; 
        ++Column; 
      } 
    } 
  } 
 
  if (Current == End) { 
    setError("Expected quote at end of scalar", Current); 
    return false; 
  } 
 
  skip(1); // Skip ending quote. 
  Token T; 
  T.Kind = Token::TK_Scalar; 
  T.Range = StringRef(Start, Current - Start); 
  TokenQueue.push_back(T); 
 
  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false); 
 
  IsSimpleKeyAllowed = false; 
 
  return true; 
} 
 
bool Scanner::scanPlainScalar() { 
  StringRef::iterator Start = Current; 
  unsigned ColStart = Column; 
  unsigned LeadingBlanks = 0; 
  assert(Indent >= -1 && "Indent must be >= -1 !"); 
  unsigned indent = static_cast<unsigned>(Indent + 1); 
  while (Current != End) {
    if (*Current == '#') 
      break; 
 
    while (Current != End && !isBlankOrBreak(Current)) {
      if (FlowLevel && *Current == ':' &&
          (Current + 1 == End ||
           !(isBlankOrBreak(Current + 1) || *(Current + 1) == ','))) {
        setError("Found unexpected ':' while scanning a plain scalar", Current); 
        return false; 
      } 
 
      // Check for the end of the plain scalar. 
      if (  (*Current == ':' && isBlankOrBreak(Current + 1)) 
          || (  FlowLevel 
          && (StringRef(Current, 1).find_first_of(",:?[]{}") 
              != StringRef::npos))) 
        break; 
 
      StringRef::iterator i = skip_nb_char(Current); 
      if (i == Current) 
        break; 
      Current = i; 
      ++Column; 
    } 
 
    // Are we at the end? 
    if (!isBlankOrBreak(Current)) 
      break; 
 
    // Eat blanks. 
    StringRef::iterator Tmp = Current; 
    while (isBlankOrBreak(Tmp)) { 
      StringRef::iterator i = skip_s_white(Tmp); 
      if (i != Tmp) { 
        if (LeadingBlanks && (Column < indent) && *Tmp == '\t') { 
          setError("Found invalid tab character in indentation", Tmp); 
          return false; 
        } 
        Tmp = i; 
        ++Column; 
      } else { 
        i = skip_b_break(Tmp); 
        if (!LeadingBlanks) 
          LeadingBlanks = 1; 
        Tmp = i; 
        Column = 0; 
        ++Line; 
      } 
    } 
 
    if (!FlowLevel && Column < indent) 
      break; 
 
    Current = Tmp; 
  } 
  if (Start == Current) { 
    setError("Got empty plain scalar", Start); 
    return false; 
  } 
  Token T; 
  T.Kind = Token::TK_Scalar; 
  T.Range = StringRef(Start, Current - Start); 
  TokenQueue.push_back(T); 
 
  // Plain scalars can be simple keys. 
  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false); 
 
  IsSimpleKeyAllowed = false; 
 
  return true; 
} 
 
bool Scanner::scanAliasOrAnchor(bool IsAlias) { 
  StringRef::iterator Start = Current; 
  unsigned ColStart = Column; 
  skip(1); 
  while (Current != End) {
    if (   *Current == '[' || *Current == ']' 
        || *Current == '{' || *Current == '}' 
        || *Current == ',' 
        || *Current == ':') 
      break; 
    StringRef::iterator i = skip_ns_char(Current); 
    if (i == Current) 
      break; 
    Current = i; 
    ++Column; 
  } 
 
  if (Start + 1 == Current) {
    setError("Got empty alias or anchor", Start); 
    return false; 
  } 
 
  Token T; 
  T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor; 
  T.Range = StringRef(Start, Current - Start); 
  TokenQueue.push_back(T); 
 
  // Alias and anchors can be simple keys. 
  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false); 
 
  IsSimpleKeyAllowed = false; 
 
  return true; 
} 
 
char Scanner::scanBlockChompingIndicator() { 
  char Indicator = ' '; 
  if (Current != End && (*Current == '+' || *Current == '-')) { 
    Indicator = *Current; 
    skip(1); 
  } 
  return Indicator; 
} 
 
/// Get the number of line breaks after chomping. 
/// 
/// Return the number of trailing line breaks to emit, depending on 
/// \p ChompingIndicator. 
static unsigned getChompedLineBreaks(char ChompingIndicator, 
                                     unsigned LineBreaks, StringRef Str) { 
  if (ChompingIndicator == '-') // Strip all line breaks. 
    return 0; 
  if (ChompingIndicator == '+') // Keep all line breaks. 
    return LineBreaks; 
  // Clip trailing lines. 
  return Str.empty() ? 0 : 1; 
} 
 
unsigned Scanner::scanBlockIndentationIndicator() { 
  unsigned Indent = 0; 
  if (Current != End && (*Current >= '1' && *Current <= '9')) { 
    Indent = unsigned(*Current - '0'); 
    skip(1); 
  } 
  return Indent; 
} 
 
bool Scanner::scanBlockScalarHeader(char &ChompingIndicator, 
                                    unsigned &IndentIndicator, bool &IsDone) { 
  auto Start = Current; 
 
  ChompingIndicator = scanBlockChompingIndicator(); 
  IndentIndicator = scanBlockIndentationIndicator(); 
  // Check for the chomping indicator once again. 
  if (ChompingIndicator == ' ') 
    ChompingIndicator = scanBlockChompingIndicator(); 
  Current = skip_while(&Scanner::skip_s_white, Current); 
  skipComment(); 
 
  if (Current == End) { // EOF, we have an empty scalar. 
    Token T; 
    T.Kind = Token::TK_BlockScalar; 
    T.Range = StringRef(Start, Current - Start); 
    TokenQueue.push_back(T); 
    IsDone = true; 
    return true; 
  } 
 
  if (!consumeLineBreakIfPresent()) { 
    setError("Expected a line break after block scalar header", Current); 
    return false; 
  } 
  return true; 
} 
 
bool Scanner::findBlockScalarIndent(unsigned &BlockIndent, 
                                    unsigned BlockExitIndent, 
                                    unsigned &LineBreaks, bool &IsDone) { 
  unsigned MaxAllSpaceLineCharacters = 0; 
  StringRef::iterator LongestAllSpaceLine; 
 
  while (true) { 
    advanceWhile(&Scanner::skip_s_space); 
    if (skip_nb_char(Current) != Current) { 
      // This line isn't empty, so try and find the indentation. 
      if (Column <= BlockExitIndent) { // End of the block literal. 
        IsDone = true; 
        return true; 
      } 
      // We found the block's indentation. 
      BlockIndent = Column; 
      if (MaxAllSpaceLineCharacters > BlockIndent) { 
        setError( 
            "Leading all-spaces line must be smaller than the block indent", 
            LongestAllSpaceLine); 
        return false; 
      } 
      return true; 
    } 
    if (skip_b_break(Current) != Current && 
        Column > MaxAllSpaceLineCharacters) { 
      // Record the longest all-space line in case it's longer than the 
      // discovered block indent. 
      MaxAllSpaceLineCharacters = Column; 
      LongestAllSpaceLine = Current; 
    } 
 
    // Check for EOF. 
    if (Current == End) { 
      IsDone = true; 
      return true; 
    } 
 
    if (!consumeLineBreakIfPresent()) { 
      IsDone = true; 
      return true; 
    } 
    ++LineBreaks; 
  } 
  return true; 
} 
 
bool Scanner::scanBlockScalarIndent(unsigned BlockIndent, 
                                    unsigned BlockExitIndent, bool &IsDone) { 
  // Skip the indentation. 
  while (Column < BlockIndent) { 
    auto I = skip_s_space(Current); 
    if (I == Current) 
      break; 
    Current = I; 
    ++Column; 
  } 
 
  if (skip_nb_char(Current) == Current) 
    return true; 
 
  if (Column <= BlockExitIndent) { // End of the block literal. 
    IsDone = true; 
    return true; 
  } 
 
  if (Column < BlockIndent) { 
    if (Current != End && *Current == '#') { // Trailing comment. 
      IsDone = true; 
      return true; 
    } 
    setError("A text line is less indented than the block scalar", Current); 
    return false; 
  } 
  return true; // A normal text line. 
} 
 
bool Scanner::scanBlockScalar(bool IsLiteral) { 
  // Eat '|' or '>' 
  assert(*Current == '|' || *Current == '>'); 
  skip(1); 
 
  char ChompingIndicator; 
  unsigned BlockIndent; 
  bool IsDone = false; 
  if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone)) 
    return false; 
  if (IsDone) 
    return true; 
 
  auto Start = Current; 
  unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent; 
  unsigned LineBreaks = 0; 
  if (BlockIndent == 0) { 
    if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks, 
                               IsDone)) 
      return false; 
  } 
 
  // Scan the block's scalars body. 
  SmallString<256> Str; 
  while (!IsDone) { 
    if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone)) 
      return false; 
    if (IsDone) 
      break; 
 
    // Parse the current line. 
    auto LineStart = Current; 
    advanceWhile(&Scanner::skip_nb_char); 
    if (LineStart != Current) { 
      Str.append(LineBreaks, '\n'); 
      Str.append(StringRef(LineStart, Current - LineStart)); 
      LineBreaks = 0; 
    } 
 
    // Check for EOF. 
    if (Current == End) 
      break; 
 
    if (!consumeLineBreakIfPresent()) 
      break; 
    ++LineBreaks; 
  } 
 
  if (Current == End && !LineBreaks) 
    // Ensure that there is at least one line break before the end of file. 
    LineBreaks = 1; 
  Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n'); 
 
  // New lines may start a simple key. 
  if (!FlowLevel) 
    IsSimpleKeyAllowed = true; 
 
  Token T; 
  T.Kind = Token::TK_BlockScalar; 
  T.Range = StringRef(Start, Current - Start); 
  T.Value = std::string(Str); 
  TokenQueue.push_back(T); 
  return true; 
} 
 
bool Scanner::scanTag() { 
  StringRef::iterator Start = Current; 
  unsigned ColStart = Column; 
  skip(1); // Eat !. 
  if (Current == End || isBlankOrBreak(Current)); // An empty tag. 
  else if (*Current == '<') { 
    skip(1); 
    scan_ns_uri_char(); 
    if (!consume('>')) 
      return false; 
  } else { 
    // FIXME: Actually parse the c-ns-shorthand-tag rule. 
    Current = skip_while(&Scanner::skip_ns_char, Current); 
  } 
 
  Token T; 
  T.Kind = Token::TK_Tag; 
  T.Range = StringRef(Start, Current - Start); 
  TokenQueue.push_back(T); 
 
  // Tags can be simple keys. 
  saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false); 
 
  IsSimpleKeyAllowed = false; 
 
  return true; 
} 
 
bool Scanner::fetchMoreTokens() { 
  if (IsStartOfStream) 
    return scanStreamStart(); 
 
  scanToNextToken(); 
 
  if (Current == End) 
    return scanStreamEnd(); 
 
  removeStaleSimpleKeyCandidates(); 
 
  unrollIndent(Column); 
 
  if (Column == 0 && *Current == '%') 
    return scanDirective(); 
 
  if (Column == 0 && Current + 4 <= End 
      && *Current == '-' 
      && *(Current + 1) == '-' 
      && *(Current + 2) == '-' 
      && (Current + 3 == End || isBlankOrBreak(Current + 3))) 
    return scanDocumentIndicator(true); 
 
  if (Column == 0 && Current + 4 <= End 
      && *Current == '.' 
      && *(Current + 1) == '.' 
      && *(Current + 2) == '.' 
      && (Current + 3 == End || isBlankOrBreak(Current + 3))) 
    return scanDocumentIndicator(false); 
 
  if (*Current == '[') 
    return scanFlowCollectionStart(true); 
 
  if (*Current == '{') 
    return scanFlowCollectionStart(false); 
 
  if (*Current == ']') 
    return scanFlowCollectionEnd(true); 
 
  if (*Current == '}') 
    return scanFlowCollectionEnd(false); 
 
  if (*Current == ',') 
    return scanFlowEntry(); 
 
  if (*Current == '-' && isBlankOrBreak(Current + 1)) 
    return scanBlockEntry(); 
 
  if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1))) 
    return scanKey(); 
 
  if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1))) 
    return scanValue(); 
 
  if (*Current == '*') 
    return scanAliasOrAnchor(true); 
 
  if (*Current == '&') 
    return scanAliasOrAnchor(false); 
 
  if (*Current == '!') 
    return scanTag(); 
 
  if (*Current == '|' && !FlowLevel) 
    return scanBlockScalar(true); 
 
  if (*Current == '>' && !FlowLevel) 
    return scanBlockScalar(false); 
 
  if (*Current == '\'') 
    return scanFlowScalar(false); 
 
  if (*Current == '"') 
    return scanFlowScalar(true); 
 
  // Get a plain scalar. 
  StringRef FirstChar(Current, 1); 
  if (!(isBlankOrBreak(Current) 
        || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos) 
      || (*Current == '-' && !isBlankOrBreak(Current + 1)) 
      || (!FlowLevel && (*Current == '?' || *Current == ':') 
          && isBlankOrBreak(Current + 1)) 
      || (!FlowLevel && *Current == ':' 
                      && Current + 2 < End 
                      && *(Current + 1) == ':' 
                      && !isBlankOrBreak(Current + 2))) 
    return scanPlainScalar(); 
 
  setError("Unrecognized character while tokenizing.", Current); 
  return false; 
} 
 
Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors, 
               std::error_code *EC) 
    : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {} 
 
Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors, 
               std::error_code *EC) 
    : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {} 
 
Stream::~Stream() = default; 
 
bool Stream::failed() { return scanner->failed(); } 
 
void Stream::printError(Node *N, const Twine &Msg, SourceMgr::DiagKind Kind) {
  printError(N ? N->getSourceRange() : SMRange(), Msg, Kind);
} 
 
void Stream::printError(const SMRange &Range, const Twine &Msg,
                        SourceMgr::DiagKind Kind) {
  scanner->printError(Range.Start, Kind, Msg, Range);
}

document_iterator Stream::begin() { 
  if (CurrentDoc) 
    report_fatal_error("Can only iterate over the stream once"); 
 
  // Skip Stream-Start. 
  scanner->getNext(); 
 
  CurrentDoc.reset(new Document(*this)); 
  return document_iterator(CurrentDoc); 
} 
 
document_iterator Stream::end() { 
  return document_iterator(); 
} 
 
void Stream::skip() { 
  for (document_iterator i = begin(), e = end(); i != e; ++i) 
    i->skip(); 
} 
 
Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A, 
           StringRef T) 
    : Doc(D), TypeID(Type), Anchor(A), Tag(T) { 
  SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin()); 
  SourceRange = SMRange(Start, Start); 
} 
 
std::string Node::getVerbatimTag() const { 
  StringRef Raw = getRawTag(); 
  if (!Raw.empty() && Raw != "!") { 
    std::string Ret; 
    if (Raw.find_last_of('!') == 0) { 
      Ret = std::string(Doc->getTagMap().find("!")->second); 
      Ret += Raw.substr(1); 
      return Ret; 
    } else if (Raw.startswith("!!")) { 
      Ret = std::string(Doc->getTagMap().find("!!")->second); 
      Ret += Raw.substr(2); 
      return Ret; 
    } else { 
      StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1); 
      std::map<StringRef, StringRef>::const_iterator It = 
          Doc->getTagMap().find(TagHandle); 
      if (It != Doc->getTagMap().end()) 
        Ret = std::string(It->second); 
      else { 
        Token T; 
        T.Kind = Token::TK_Tag; 
        T.Range = TagHandle; 
        setError(Twine("Unknown tag handle ") + TagHandle, T); 
      } 
      Ret += Raw.substr(Raw.find_last_of('!') + 1); 
      return Ret; 
    } 
  } 
 
  switch (getType()) { 
  case NK_Null: 
    return "tag:yaml.org,2002:null"; 
  case NK_Scalar: 
  case NK_BlockScalar: 
    // TODO: Tag resolution. 
    return "tag:yaml.org,2002:str"; 
  case NK_Mapping: 
    return "tag:yaml.org,2002:map"; 
  case NK_Sequence: 
    return "tag:yaml.org,2002:seq"; 
  } 
 
  return ""; 
} 
 
Token &Node::peekNext() { 
  return Doc->peekNext(); 
} 
 
Token Node::getNext() { 
  return Doc->getNext(); 
} 
 
Node *Node::parseBlockNode() { 
  return Doc->parseBlockNode(); 
} 
 
BumpPtrAllocator &Node::getAllocator() { 
  return Doc->NodeAllocator; 
} 
 
void Node::setError(const Twine &Msg, Token &Tok) const { 
  Doc->setError(Msg, Tok); 
} 
 
bool Node::failed() const { 
  return Doc->failed(); 
} 
 
StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const { 
  // TODO: Handle newlines properly. We need to remove leading whitespace. 
  if (Value[0] == '"') { // Double quoted. 
    // Pull off the leading and trailing "s. 
    StringRef UnquotedValue = Value.substr(1, Value.size() - 2); 
    // Search for characters that would require unescaping the value. 
    StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n"); 
    if (i != StringRef::npos) 
      return unescapeDoubleQuoted(UnquotedValue, i, Storage); 
    return UnquotedValue; 
  } else if (Value[0] == '\'') { // Single quoted. 
    // Pull off the leading and trailing 's. 
    StringRef UnquotedValue = Value.substr(1, Value.size() - 2); 
    StringRef::size_type i = UnquotedValue.find('\''); 
    if (i != StringRef::npos) { 
      // We're going to need Storage. 
      Storage.clear(); 
      Storage.reserve(UnquotedValue.size()); 
      for (; i != StringRef::npos; i = UnquotedValue.find('\'')) { 
        StringRef Valid(UnquotedValue.begin(), i); 
        llvm::append_range(Storage, Valid);
        Storage.push_back('\''); 
        UnquotedValue = UnquotedValue.substr(i + 2); 
      } 
      llvm::append_range(Storage, UnquotedValue);
      return StringRef(Storage.begin(), Storage.size()); 
    } 
    return UnquotedValue; 
  } 
  // Plain or block. 
  return Value.rtrim(' '); 
} 
 
StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue 
                                          , StringRef::size_type i 
                                          , SmallVectorImpl<char> &Storage) 
                                          const { 
  // Use Storage to build proper value. 
  Storage.clear(); 
  Storage.reserve(UnquotedValue.size()); 
  for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) { 
    // Insert all previous chars into Storage. 
    StringRef Valid(UnquotedValue.begin(), i); 
    llvm::append_range(Storage, Valid);
    // Chop off inserted chars. 
    UnquotedValue = UnquotedValue.substr(i); 
 
    assert(!UnquotedValue.empty() && "Can't be empty!"); 
 
    // Parse escape or line break. 
    switch (UnquotedValue[0]) { 
    case '\r': 
    case '\n': 
      Storage.push_back('\n'); 
      if (   UnquotedValue.size() > 1 
          && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n')) 
        UnquotedValue = UnquotedValue.substr(1); 
      UnquotedValue = UnquotedValue.substr(1); 
      break; 
    default: 
      if (UnquotedValue.size() == 1) { 
        Token T; 
        T.Range = StringRef(UnquotedValue.begin(), 1); 
        setError("Unrecognized escape code", T); 
        return ""; 
      } 
      UnquotedValue = UnquotedValue.substr(1); 
      switch (UnquotedValue[0]) { 
      default: { 
          Token T; 
          T.Range = StringRef(UnquotedValue.begin(), 1); 
          setError("Unrecognized escape code", T); 
          return ""; 
        } 
      case '\r': 
      case '\n': 
        // Remove the new line. 
        if (   UnquotedValue.size() > 1 
            && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n')) 
          UnquotedValue = UnquotedValue.substr(1); 
        // If this was just a single byte newline, it will get skipped 
        // below. 
        break; 
      case '0': 
        Storage.push_back(0x00); 
        break; 
      case 'a': 
        Storage.push_back(0x07); 
        break; 
      case 'b': 
        Storage.push_back(0x08); 
        break; 
      case 't': 
      case 0x09: 
        Storage.push_back(0x09); 
        break; 
      case 'n': 
        Storage.push_back(0x0A); 
        break; 
      case 'v': 
        Storage.push_back(0x0B); 
        break; 
      case 'f': 
        Storage.push_back(0x0C); 
        break; 
      case 'r': 
        Storage.push_back(0x0D); 
        break; 
      case 'e': 
        Storage.push_back(0x1B); 
        break; 
      case ' ': 
        Storage.push_back(0x20); 
        break; 
      case '"': 
        Storage.push_back(0x22); 
        break; 
      case '/': 
        Storage.push_back(0x2F); 
        break; 
      case '\\': 
        Storage.push_back(0x5C); 
        break; 
      case 'N': 
        encodeUTF8(0x85, Storage); 
        break; 
      case '_': 
        encodeUTF8(0xA0, Storage); 
        break; 
      case 'L': 
        encodeUTF8(0x2028, Storage); 
        break; 
      case 'P': 
        encodeUTF8(0x2029, Storage); 
        break; 
      case 'x': { 
          if (UnquotedValue.size() < 3) 
            // TODO: Report error. 
            break; 
          unsigned int UnicodeScalarValue; 
          if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue)) 
            // TODO: Report error. 
            UnicodeScalarValue = 0xFFFD; 
          encodeUTF8(UnicodeScalarValue, Storage); 
          UnquotedValue = UnquotedValue.substr(2); 
          break; 
        } 
      case 'u': { 
          if (UnquotedValue.size() < 5) 
            // TODO: Report error. 
            break; 
          unsigned int UnicodeScalarValue; 
          if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue)) 
            // TODO: Report error. 
            UnicodeScalarValue = 0xFFFD; 
          encodeUTF8(UnicodeScalarValue, Storage); 
          UnquotedValue = UnquotedValue.substr(4); 
          break; 
        } 
      case 'U': { 
          if (UnquotedValue.size() < 9) 
            // TODO: Report error. 
            break; 
          unsigned int UnicodeScalarValue; 
          if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue)) 
            // TODO: Report error. 
            UnicodeScalarValue = 0xFFFD; 
          encodeUTF8(UnicodeScalarValue, Storage); 
          UnquotedValue = UnquotedValue.substr(8); 
          break; 
        } 
      } 
      UnquotedValue = UnquotedValue.substr(1); 
    } 
  } 
  llvm::append_range(Storage, UnquotedValue);
  return StringRef(Storage.begin(), Storage.size()); 
} 
 
Node *KeyValueNode::getKey() { 
  if (Key) 
    return Key; 
  // Handle implicit null keys. 
  { 
    Token &t = peekNext(); 
    if (   t.Kind == Token::TK_BlockEnd 
        || t.Kind == Token::TK_Value 
        || t.Kind == Token::TK_Error) { 
      return Key = new (getAllocator()) NullNode(Doc); 
    } 
    if (t.Kind == Token::TK_Key) 
      getNext(); // skip TK_Key. 
  } 
 
  // Handle explicit null keys. 
  Token &t = peekNext(); 
  if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) { 
    return Key = new (getAllocator()) NullNode(Doc); 
  } 
 
  // We've got a normal key. 
  return Key = parseBlockNode(); 
} 
 
Node *KeyValueNode::getValue() { 
  if (Value) 
    return Value; 
 
  if (Node* Key = getKey()) 
    Key->skip(); 
  else { 
    setError("Null key in Key Value.", peekNext()); 
    return Value = new (getAllocator()) NullNode(Doc); 
  } 
 
  if (failed()) 
    return Value = new (getAllocator()) NullNode(Doc); 
 
  // Handle implicit null values. 
  { 
    Token &t = peekNext(); 
    if (   t.Kind == Token::TK_BlockEnd 
        || t.Kind == Token::TK_FlowMappingEnd 
        || t.Kind == Token::TK_Key 
        || t.Kind == Token::TK_FlowEntry 
        || t.Kind == Token::TK_Error) { 
      return Value = new (getAllocator()) NullNode(Doc); 
    } 
 
    if (t.Kind != Token::TK_Value) { 
      setError("Unexpected token in Key Value.", t); 
      return Value = new (getAllocator()) NullNode(Doc); 
    } 
    getNext(); // skip TK_Value. 
  } 
 
  // Handle explicit null values. 
  Token &t = peekNext(); 
  if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) { 
    return Value = new (getAllocator()) NullNode(Doc); 
  } 
 
  // We got a normal value. 
  return Value = parseBlockNode(); 
} 
 
void MappingNode::increment() { 
  if (failed()) { 
    IsAtEnd = true; 
    CurrentEntry = nullptr; 
    return; 
  } 
  if (CurrentEntry) { 
    CurrentEntry->skip(); 
    if (Type == MT_Inline) { 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
      return; 
    } 
  } 
  Token T = peekNext(); 
  if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) { 
    // KeyValueNode eats the TK_Key. That way it can detect null keys. 
    CurrentEntry = new (getAllocator()) KeyValueNode(Doc); 
  } else if (Type == MT_Block) { 
    switch (T.Kind) { 
    case Token::TK_BlockEnd: 
      getNext(); 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
      break; 
    default: 
      setError("Unexpected token. Expected Key or Block End", T); 
      LLVM_FALLTHROUGH; 
    case Token::TK_Error: 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
    } 
  } else { 
    switch (T.Kind) { 
    case Token::TK_FlowEntry: 
      // Eat the flow entry and recurse. 
      getNext(); 
      return increment(); 
    case Token::TK_FlowMappingEnd: 
      getNext(); 
      LLVM_FALLTHROUGH; 
    case Token::TK_Error: 
      // Set this to end iterator. 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
      break; 
    default: 
      setError( "Unexpected token. Expected Key, Flow Entry, or Flow " 
                "Mapping End." 
              , T); 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
    } 
  } 
} 
 
void SequenceNode::increment() { 
  if (failed()) { 
    IsAtEnd = true; 
    CurrentEntry = nullptr; 
    return; 
  } 
  if (CurrentEntry) 
    CurrentEntry->skip(); 
  Token T = peekNext(); 
  if (SeqType == ST_Block) { 
    switch (T.Kind) { 
    case Token::TK_BlockEntry: 
      getNext(); 
      CurrentEntry = parseBlockNode(); 
      if (!CurrentEntry) { // An error occurred. 
        IsAtEnd = true; 
        CurrentEntry = nullptr; 
      } 
      break; 
    case Token::TK_BlockEnd: 
      getNext(); 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
      break; 
    default: 
      setError( "Unexpected token. Expected Block Entry or Block End." 
              , T); 
      LLVM_FALLTHROUGH; 
    case Token::TK_Error: 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
    } 
  } else if (SeqType == ST_Indentless) { 
    switch (T.Kind) { 
    case Token::TK_BlockEntry: 
      getNext(); 
      CurrentEntry = parseBlockNode(); 
      if (!CurrentEntry) { // An error occurred. 
        IsAtEnd = true; 
        CurrentEntry = nullptr; 
      } 
      break; 
    default: 
    case Token::TK_Error: 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
    } 
  } else if (SeqType == ST_Flow) { 
    switch (T.Kind) { 
    case Token::TK_FlowEntry: 
      // Eat the flow entry and recurse. 
      getNext(); 
      WasPreviousTokenFlowEntry = true; 
      return increment(); 
    case Token::TK_FlowSequenceEnd: 
      getNext(); 
      LLVM_FALLTHROUGH; 
    case Token::TK_Error: 
      // Set this to end iterator. 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
      break; 
    case Token::TK_StreamEnd: 
    case Token::TK_DocumentEnd: 
    case Token::TK_DocumentStart: 
      setError("Could not find closing ]!", T); 
      // Set this to end iterator. 
      IsAtEnd = true; 
      CurrentEntry = nullptr; 
      break; 
    default: 
      if (!WasPreviousTokenFlowEntry) { 
        setError("Expected , between entries!", T); 
        IsAtEnd = true; 
        CurrentEntry = nullptr; 
        break; 
      } 
      // Otherwise it must be a flow entry. 
      CurrentEntry = parseBlockNode(); 
      if (!CurrentEntry) { 
        IsAtEnd = true; 
      } 
      WasPreviousTokenFlowEntry = false; 
      break; 
    } 
  } 
} 
 
Document::Document(Stream &S) : stream(S), Root(nullptr) { 
  // Tag maps starts with two default mappings. 
  TagMap["!"] = "!"; 
  TagMap["!!"] = "tag:yaml.org,2002:"; 
 
  if (parseDirectives()) 
    expectToken(Token::TK_DocumentStart); 
  Token &T = peekNext(); 
  if (T.Kind == Token::TK_DocumentStart) 
    getNext(); 
} 
 
bool Document::skip()  { 
  if (stream.scanner->failed()) 
    return false; 
  if (!Root && !getRoot()) 
    return false; 
  Root->skip(); 
  Token &T = peekNext(); 
  if (T.Kind == Token::TK_StreamEnd) 
    return false; 
  if (T.Kind == Token::TK_DocumentEnd) { 
    getNext(); 
    return skip(); 
  } 
  return true; 
} 
 
Token &Document::peekNext() { 
  return stream.scanner->peekNext(); 
} 
 
Token Document::getNext() { 
  return stream.scanner->getNext(); 
} 
 
void Document::setError(const Twine &Message, Token &Location) const { 
  stream.scanner->setError(Message, Location.Range.begin()); 
} 
 
bool Document::failed() const { 
  return stream.scanner->failed(); 
} 
 
Node *Document::parseBlockNode() { 
  Token T = peekNext(); 
  // Handle properties. 
  Token AnchorInfo; 
  Token TagInfo; 
parse_property: 
  switch (T.Kind) { 
  case Token::TK_Alias: 
    getNext(); 
    return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1)); 
  case Token::TK_Anchor: 
    if (AnchorInfo.Kind == Token::TK_Anchor) { 
      setError("Already encountered an anchor for this node!", T); 
      return nullptr; 
    } 
    AnchorInfo = getNext(); // Consume TK_Anchor. 
    T = peekNext(); 
    goto parse_property; 
  case Token::TK_Tag: 
    if (TagInfo.Kind == Token::TK_Tag) { 
      setError("Already encountered a tag for this node!", T); 
      return nullptr; 
    } 
    TagInfo = getNext(); // Consume TK_Tag. 
    T = peekNext(); 
    goto parse_property; 
  default: 
    break; 
  } 
 
  switch (T.Kind) { 
  case Token::TK_BlockEntry: 
    // We got an unindented BlockEntry sequence. This is not terminated with 
    // a BlockEnd. 
    // Don't eat the TK_BlockEntry, SequenceNode needs it. 
    return new (NodeAllocator) SequenceNode( stream.CurrentDoc 
                                           , AnchorInfo.Range.substr(1) 
                                           , TagInfo.Range 
                                           , SequenceNode::ST_Indentless); 
  case Token::TK_BlockSequenceStart: 
    getNext(); 
    return new (NodeAllocator) 
      SequenceNode( stream.CurrentDoc 
                  , AnchorInfo.Range.substr(1) 
                  , TagInfo.Range 
                  , SequenceNode::ST_Block); 
  case Token::TK_BlockMappingStart: 
    getNext(); 
    return new (NodeAllocator) 
      MappingNode( stream.CurrentDoc 
                 , AnchorInfo.Range.substr(1) 
                 , TagInfo.Range 
                 , MappingNode::MT_Block); 
  case Token::TK_FlowSequenceStart: 
    getNext(); 
    return new (NodeAllocator) 
      SequenceNode( stream.CurrentDoc 
                  , AnchorInfo.Range.substr(1) 
                  , TagInfo.Range 
                  , SequenceNode::ST_Flow); 
  case Token::TK_FlowMappingStart: 
    getNext(); 
    return new (NodeAllocator) 
      MappingNode( stream.CurrentDoc 
                 , AnchorInfo.Range.substr(1) 
                 , TagInfo.Range 
                 , MappingNode::MT_Flow); 
  case Token::TK_Scalar: 
    getNext(); 
    return new (NodeAllocator) 
      ScalarNode( stream.CurrentDoc 
                , AnchorInfo.Range.substr(1) 
                , TagInfo.Range 
                , T.Range); 
  case Token::TK_BlockScalar: { 
    getNext(); 
    StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1); 
    StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back(); 
    return new (NodeAllocator) 
        BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1), 
                        TagInfo.Range, StrCopy, T.Range); 
  } 
  case Token::TK_Key: 
    // Don't eat the TK_Key, KeyValueNode expects it. 
    return new (NodeAllocator) 
      MappingNode( stream.CurrentDoc 
                 , AnchorInfo.Range.substr(1) 
                 , TagInfo.Range 
                 , MappingNode::MT_Inline); 
  case Token::TK_DocumentStart: 
  case Token::TK_DocumentEnd: 
  case Token::TK_StreamEnd: 
  default: 
    // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not 
    //       !!null null. 
    return new (NodeAllocator) NullNode(stream.CurrentDoc); 
  case Token::TK_FlowMappingEnd: 
  case Token::TK_FlowSequenceEnd: 
  case Token::TK_FlowEntry: { 
    if (Root && (isa<MappingNode>(Root) || isa<SequenceNode>(Root))) 
      return new (NodeAllocator) NullNode(stream.CurrentDoc); 
 
    setError("Unexpected token", T); 
    return nullptr; 
  } 
  case Token::TK_Error: 
    return nullptr; 
  } 
  llvm_unreachable("Control flow shouldn't reach here."); 
  return nullptr; 
} 
 
bool Document::parseDirectives() { 
  bool isDirective = false; 
  while (true) { 
    Token T = peekNext(); 
    if (T.Kind == Token::TK_TagDirective) { 
      parseTAGDirective(); 
      isDirective = true; 
    } else if (T.Kind == Token::TK_VersionDirective) { 
      parseYAMLDirective(); 
      isDirective = true; 
    } else 
      break; 
  } 
  return isDirective; 
} 
 
void Document::parseYAMLDirective() { 
  getNext(); // Eat %YAML <version> 
} 
 
void Document::parseTAGDirective() { 
  Token Tag = getNext(); // %TAG <handle> <prefix> 
  StringRef T = Tag.Range; 
  // Strip %TAG 
  T = T.substr(T.find_first_of(" \t")).ltrim(" \t"); 
  std::size_t HandleEnd = T.find_first_of(" \t"); 
  StringRef TagHandle = T.substr(0, HandleEnd); 
  StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t"); 
  TagMap[TagHandle] = TagPrefix; 
} 
 
bool Document::expectToken(int TK) { 
  Token T = getNext(); 
  if (T.Kind != TK) { 
    setError("Unexpected token", T); 
    return false; 
  } 
  return true; 
}