aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Support/BranchProbability.cpp
blob: 9bba1b8f709da0d6d7136ac1513a2f6638500e3b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
//===-------------- lib/Support/BranchProbability.cpp -----------*- C++ -*-===// 
// 
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 
// See https://llvm.org/LICENSE.txt for license information. 
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 
// 
//===----------------------------------------------------------------------===// 
// 
// This file implements Branch Probability class. 
// 
//===----------------------------------------------------------------------===// 
 
#include "llvm/Support/BranchProbability.h" 
#include "llvm/Config/llvm-config.h" 
#include "llvm/Support/Debug.h" 
#include "llvm/Support/Format.h" 
#include "llvm/Support/raw_ostream.h" 
#include <cassert> 
 
using namespace llvm; 
 
constexpr uint32_t BranchProbability::D; 
 
raw_ostream &BranchProbability::print(raw_ostream &OS) const { 
  if (isUnknown()) 
    return OS << "?%"; 
 
  // Get a percentage rounded to two decimal digits. This avoids 
  // implementation-defined rounding inside printf. 
  double Percent = rint(((double)N / D) * 100.0 * 100.0) / 100.0; 
  return OS << format("0x%08" PRIx32 " / 0x%08" PRIx32 " = %.2f%%", N, D, 
                      Percent); 
} 
 
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 
LLVM_DUMP_METHOD void BranchProbability::dump() const { print(dbgs()) << '\n'; } 
#endif 
 
BranchProbability::BranchProbability(uint32_t Numerator, uint32_t Denominator) { 
  assert(Denominator > 0 && "Denominator cannot be 0!"); 
  assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); 
  if (Denominator == D) 
    N = Numerator; 
  else { 
    uint64_t Prob64 = 
        (Numerator * static_cast<uint64_t>(D) + Denominator / 2) / Denominator; 
    N = static_cast<uint32_t>(Prob64); 
  } 
} 
 
BranchProbability 
BranchProbability::getBranchProbability(uint64_t Numerator, 
                                        uint64_t Denominator) { 
  assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); 
  // Scale down Denominator to fit in a 32-bit integer. 
  int Scale = 0; 
  while (Denominator > UINT32_MAX) { 
    Denominator >>= 1; 
    Scale++; 
  } 
  return BranchProbability(Numerator >> Scale, Denominator); 
} 
 
// If ConstD is not zero, then replace D by ConstD so that division and modulo 
// operations by D can be optimized, in case this function is not inlined by the 
// compiler. 
template <uint32_t ConstD> 
static uint64_t scale(uint64_t Num, uint32_t N, uint32_t D) { 
  if (ConstD > 0) 
    D = ConstD; 
 
  assert(D && "divide by 0"); 
 
  // Fast path for multiplying by 1.0. 
  if (!Num || D == N) 
    return Num; 
 
  // Split Num into upper and lower parts to multiply, then recombine. 
  uint64_t ProductHigh = (Num >> 32) * N; 
  uint64_t ProductLow = (Num & UINT32_MAX) * N; 
 
  // Split into 32-bit digits. 
  uint32_t Upper32 = ProductHigh >> 32; 
  uint32_t Lower32 = ProductLow & UINT32_MAX; 
  uint32_t Mid32Partial = ProductHigh & UINT32_MAX; 
  uint32_t Mid32 = Mid32Partial + (ProductLow >> 32); 
 
  // Carry. 
  Upper32 += Mid32 < Mid32Partial; 
 
  uint64_t Rem = (uint64_t(Upper32) << 32) | Mid32; 
  uint64_t UpperQ = Rem / D; 
 
  // Check for overflow. 
  if (UpperQ > UINT32_MAX) 
    return UINT64_MAX; 
 
  Rem = ((Rem % D) << 32) | Lower32; 
  uint64_t LowerQ = Rem / D; 
  uint64_t Q = (UpperQ << 32) + LowerQ; 
 
  // Check for overflow. 
  return Q < LowerQ ? UINT64_MAX : Q; 
} 
 
uint64_t BranchProbability::scale(uint64_t Num) const { 
  return ::scale<D>(Num, N, D); 
} 
 
uint64_t BranchProbability::scaleByInverse(uint64_t Num) const { 
  return ::scale<0>(Num, D, N); 
}