aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/ShrinkWrap.cpp
blob: 068c1466f5d86a45f4ab219b934467eadea48a2e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass looks for safe point where the prologue and epilogue can be
// inserted.
// The safe point for the prologue (resp. epilogue) is called Save
// (resp. Restore).
// A point is safe for prologue (resp. epilogue) if and only if
// it 1) dominates (resp. post-dominates) all the frame related operations and
// between 2) two executions of the Save (resp. Restore) point there is an
// execution of the Restore (resp. Save) point.
//
// For instance, the following points are safe:
// for (int i = 0; i < 10; ++i) {
//   Save
//   ...
//   Restore
// }
// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
// And the following points are not:
// for (int i = 0; i < 10; ++i) {
//   Save
//   ...
// }
// for (int i = 0; i < 10; ++i) {
//   ...
//   Restore
// }
// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
//
// This pass also ensures that the safe points are 3) cheaper than the regular
// entry and exits blocks.
//
// Property #1 is ensured via the use of MachineDominatorTree and
// MachinePostDominatorTree.
// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
// points must be in the same loop.
// Property #3 is ensured via the MachineBlockFrequencyInfo.
//
// If this pass found points matching all these properties, then
// MachineFrameInfo is updated with this information.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstdint>
#include <memory>

using namespace llvm;

#define DEBUG_TYPE "shrink-wrap"

STATISTIC(NumFunc, "Number of functions");
STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
STATISTIC(NumCandidatesDropped,
          "Number of shrink-wrapping candidates dropped because of frequency");

static cl::opt<cl::boolOrDefault>
EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
                    cl::desc("enable the shrink-wrapping pass"));

namespace {

/// Class to determine where the safe point to insert the
/// prologue and epilogue are.
/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
/// shrink-wrapping term for prologue/epilogue placement, this pass
/// does not rely on expensive data-flow analysis. Instead we use the
/// dominance properties and loop information to decide which point
/// are safe for such insertion.
class ShrinkWrap : public MachineFunctionPass {
  /// Hold callee-saved information.
  RegisterClassInfo RCI;
  MachineDominatorTree *MDT;
  MachinePostDominatorTree *MPDT;

  /// Current safe point found for the prologue.
  /// The prologue will be inserted before the first instruction
  /// in this basic block.
  MachineBasicBlock *Save;

  /// Current safe point found for the epilogue.
  /// The epilogue will be inserted before the first terminator instruction
  /// in this basic block.
  MachineBasicBlock *Restore;

  /// Hold the information of the basic block frequency.
  /// Use to check the profitability of the new points.
  MachineBlockFrequencyInfo *MBFI;

  /// Hold the loop information. Used to determine if Save and Restore
  /// are in the same loop.
  MachineLoopInfo *MLI;

  // Emit remarks.
  MachineOptimizationRemarkEmitter *ORE = nullptr;

  /// Frequency of the Entry block.
  uint64_t EntryFreq;

  /// Current opcode for frame setup.
  unsigned FrameSetupOpcode;

  /// Current opcode for frame destroy.
  unsigned FrameDestroyOpcode;

  /// Stack pointer register, used by llvm.{savestack,restorestack}
  Register SP; 

  /// Entry block.
  const MachineBasicBlock *Entry;

  using SetOfRegs = SmallSetVector<unsigned, 16>;

  /// Registers that need to be saved for the current function.
  mutable SetOfRegs CurrentCSRs;

  /// Current MachineFunction.
  MachineFunction *MachineFunc;

  /// Check if \p MI uses or defines a callee-saved register or
  /// a frame index. If this is the case, this means \p MI must happen
  /// after Save and before Restore.
  bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;

  const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
    if (CurrentCSRs.empty()) {
      BitVector SavedRegs;
      const TargetFrameLowering *TFI =
          MachineFunc->getSubtarget().getFrameLowering();

      TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);

      for (int Reg = SavedRegs.find_first(); Reg != -1;
           Reg = SavedRegs.find_next(Reg))
        CurrentCSRs.insert((unsigned)Reg);
    }
    return CurrentCSRs;
  }

  /// Update the Save and Restore points such that \p MBB is in
  /// the region that is dominated by Save and post-dominated by Restore
  /// and Save and Restore still match the safe point definition.
  /// Such point may not exist and Save and/or Restore may be null after
  /// this call.
  void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);

  /// Initialize the pass for \p MF.
  void init(MachineFunction &MF) {
    RCI.runOnMachineFunction(MF);
    MDT = &getAnalysis<MachineDominatorTree>();
    MPDT = &getAnalysis<MachinePostDominatorTree>();
    Save = nullptr;
    Restore = nullptr;
    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
    MLI = &getAnalysis<MachineLoopInfo>();
    ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
    EntryFreq = MBFI->getEntryFreq();
    const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
    const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
    FrameSetupOpcode = TII.getCallFrameSetupOpcode();
    FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
    SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
    Entry = &MF.front();
    CurrentCSRs.clear();
    MachineFunc = &MF;

    ++NumFunc;
  }

  /// Check whether or not Save and Restore points are still interesting for
  /// shrink-wrapping.
  bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }

  /// Check if shrink wrapping is enabled for this target and function.
  static bool isShrinkWrapEnabled(const MachineFunction &MF);

public:
  static char ID;

  ShrinkWrap() : MachineFunctionPass(ID) {
    initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
    AU.addRequired<MachineBlockFrequencyInfo>();
    AU.addRequired<MachineDominatorTree>();
    AU.addRequired<MachinePostDominatorTree>();
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<MachineOptimizationRemarkEmitterPass>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
      MachineFunctionProperties::Property::NoVRegs);
  }

  StringRef getPassName() const override { return "Shrink Wrapping analysis"; }

  /// Perform the shrink-wrapping analysis and update
  /// the MachineFrameInfo attached to \p MF with the results.
  bool runOnMachineFunction(MachineFunction &MF) override;
};

} // end anonymous namespace

char ShrinkWrap::ID = 0;

char &llvm::ShrinkWrapID = ShrinkWrap::ID;

INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)

bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
                                 RegScavenger *RS) const {
  // This prevents premature stack popping when occurs a indirect stack
  // access. It is overly aggressive for the moment.
  // TODO: - Obvious non-stack loads and store, such as global values,
  //         are known to not access the stack.
  //       - Further, data dependency and alias analysis can validate
  //         that load and stores never derive from the stack pointer.
  if (MI.mayLoadOrStore())
    return true;

  if (MI.getOpcode() == FrameSetupOpcode ||
      MI.getOpcode() == FrameDestroyOpcode) {
    LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
    return true;
  }
  for (const MachineOperand &MO : MI.operands()) {
    bool UseOrDefCSR = false;
    if (MO.isReg()) {
      // Ignore instructions like DBG_VALUE which don't read/def the register.
      if (!MO.isDef() && !MO.readsReg())
        continue;
      Register PhysReg = MO.getReg();
      if (!PhysReg)
        continue;
      assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!");
      // The stack pointer is not normally described as a callee-saved register
      // in calling convention definitions, so we need to watch for it
      // separately. An SP mentioned by a call instruction, we can ignore,
      // though, as it's harmless and we do not want to effectively disable tail
      // calls by forcing the restore point to post-dominate them.
      UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
                    RCI.getLastCalleeSavedAlias(PhysReg);
    } else if (MO.isRegMask()) {
      // Check if this regmask clobbers any of the CSRs.
      for (unsigned Reg : getCurrentCSRs(RS)) {
        if (MO.clobbersPhysReg(Reg)) {
          UseOrDefCSR = true;
          break;
        }
      }
    }
    // Skip FrameIndex operands in DBG_VALUE instructions.
    if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
      LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
                        << MO.isFI() << "): " << MI << '\n');
      return true;
    }
  }
  return false;
}

/// Helper function to find the immediate (post) dominator.
template <typename ListOfBBs, typename DominanceAnalysis>
static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
                                   DominanceAnalysis &Dom) {
  MachineBasicBlock *IDom = &Block;
  for (MachineBasicBlock *BB : BBs) {
    IDom = Dom.findNearestCommonDominator(IDom, BB);
    if (!IDom)
      break;
  }
  if (IDom == &Block)
    return nullptr;
  return IDom;
}

void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
                                         RegScavenger *RS) {
  // Get rid of the easy cases first.
  if (!Save)
    Save = &MBB;
  else
    Save = MDT->findNearestCommonDominator(Save, &MBB);
  assert(Save); 

  if (!Restore)
    Restore = &MBB;
  else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
                                // means the block never returns. If that's the
                                // case, we don't want to call
                                // `findNearestCommonDominator`, which will
                                // return `Restore`.
    Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
  else
    Restore = nullptr; // Abort, we can't find a restore point in this case.

  // Make sure we would be able to insert the restore code before the
  // terminator.
  if (Restore == &MBB) {
    for (const MachineInstr &Terminator : MBB.terminators()) {
      if (!useOrDefCSROrFI(Terminator, RS))
        continue;
      // One of the terminator needs to happen before the restore point.
      if (MBB.succ_empty()) {
        Restore = nullptr; // Abort, we can't find a restore point in this case.
        break;
      }
      // Look for a restore point that post-dominates all the successors.
      // The immediate post-dominator is what we are looking for.
      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
      break;
    }
  }

  if (!Restore) {
    LLVM_DEBUG(
        dbgs() << "Restore point needs to be spanned on several blocks\n");
    return;
  }

  // Make sure Save and Restore are suitable for shrink-wrapping:
  // 1. all path from Save needs to lead to Restore before exiting.
  // 2. all path to Restore needs to go through Save from Entry.
  // We achieve that by making sure that:
  // A. Save dominates Restore.
  // B. Restore post-dominates Save.
  // C. Save and Restore are in the same loop.
  bool SaveDominatesRestore = false;
  bool RestorePostDominatesSave = false;
  while (Restore && 
         (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
          !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
          // Post-dominance is not enough in loops to ensure that all uses/defs
          // are after the prologue and before the epilogue at runtime.
          // E.g.,
          // while(1) {
          //  Save
          //  Restore
          //   if (...)
          //     break;
          //  use/def CSRs
          // }
          // All the uses/defs of CSRs are dominated by Save and post-dominated
          // by Restore. However, the CSRs uses are still reachable after
          // Restore and before Save are executed.
          //
          // For now, just push the restore/save points outside of loops.
          // FIXME: Refine the criteria to still find interesting cases
          // for loops.
          MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
    // Fix (A).
    if (!SaveDominatesRestore) {
      Save = MDT->findNearestCommonDominator(Save, Restore);
      continue;
    }
    // Fix (B).
    if (!RestorePostDominatesSave)
      Restore = MPDT->findNearestCommonDominator(Restore, Save);

    // Fix (C).
    if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { 
      if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
        // Push Save outside of this loop if immediate dominator is different
        // from save block. If immediate dominator is not different, bail out.
        Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
        if (!Save)
          break;
      } else {
        // If the loop does not exit, there is no point in looking
        // for a post-dominator outside the loop.
        SmallVector<MachineBasicBlock*, 4> ExitBlocks;
        MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
        // Push Restore outside of this loop.
        // Look for the immediate post-dominator of the loop exits.
        MachineBasicBlock *IPdom = Restore;
        for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
          IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
          if (!IPdom)
            break;
        }
        // If the immediate post-dominator is not in a less nested loop,
        // then we are stuck in a program with an infinite loop.
        // In that case, we will not find a safe point, hence, bail out.
        if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
          Restore = IPdom;
        else {
          Restore = nullptr;
          break;
        }
      }
    }
  }
}

static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
                              StringRef RemarkName, StringRef RemarkMessage,
                              const DiagnosticLocation &Loc,
                              const MachineBasicBlock *MBB) {
  ORE->emit([&]() {
    return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
           << RemarkMessage;
  });

  LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
  return false;
}

bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
    return false;

  LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');

  init(MF);

  ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
  if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
    // If MF is irreducible, a block may be in a loop without
    // MachineLoopInfo reporting it. I.e., we may use the
    // post-dominance property in loops, which lead to incorrect
    // results. Moreover, we may miss that the prologue and
    // epilogue are not in the same loop, leading to unbalanced
    // construction/deconstruction of the stack frame.
    return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
                             "Irreducible CFGs are not supported yet.",
                             MF.getFunction().getSubprogram(), &MF.front());
  }

  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
  std::unique_ptr<RegScavenger> RS(
      TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);

  for (MachineBasicBlock &MBB : MF) {
    LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
                      << MBB.getName() << '\n');

    if (MBB.isEHFuncletEntry())
      return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
                               "EH Funclets are not supported yet.",
                               MBB.front().getDebugLoc(), &MBB);

    if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) {
      // Push the prologue and epilogue outside of the region that may throw (or
      // jump out via inlineasm_br), by making sure that all the landing pads
      // are at least at the boundary of the save and restore points.  The
      // problem is that a basic block can jump out from the middle in these
      // cases, which we do not handle.
      updateSaveRestorePoints(MBB, RS.get());
      if (!ArePointsInteresting()) {
        LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n");
        return false;
      }
      continue;
    }

    for (const MachineInstr &MI : MBB) {
      if (!useOrDefCSROrFI(MI, RS.get()))
        continue;
      // Save (resp. restore) point must dominate (resp. post dominate)
      // MI. Look for the proper basic block for those.
      updateSaveRestorePoints(MBB, RS.get());
      // If we are at a point where we cannot improve the placement of
      // save/restore instructions, just give up.
      if (!ArePointsInteresting()) {
        LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
        return false;
      }
      // No need to look for other instructions, this basic block
      // will already be part of the handled region.
      break;
    }
  }
  if (!ArePointsInteresting()) {
    // If the points are not interesting at this point, then they must be null
    // because it means we did not encounter any frame/CSR related code.
    // Otherwise, we would have returned from the previous loop.
    assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
    LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
                    << '\n');

  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
  do {
    LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
                      << Save->getNumber() << ' ' << Save->getName() << ' '
                      << MBFI->getBlockFreq(Save).getFrequency()
                      << "\nRestore: " << Restore->getNumber() << ' '
                      << Restore->getName() << ' '
                      << MBFI->getBlockFreq(Restore).getFrequency() << '\n');

    bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
    if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
         EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
        ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
         TFI->canUseAsEpilogue(*Restore)))
      break;
    LLVM_DEBUG(
        dbgs() << "New points are too expensive or invalid for the target\n");
    MachineBasicBlock *NewBB;
    if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
      Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
      if (!Save)
        break;
      NewBB = Save;
    } else {
      // Restore is expensive.
      Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
      if (!Restore)
        break;
      NewBB = Restore;
    }
    updateSaveRestorePoints(*NewBB, RS.get());
  } while (Save && Restore);

  if (!ArePointsInteresting()) {
    ++NumCandidatesDropped;
    return false;
  }

  LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
                    << Save->getNumber() << ' ' << Save->getName()
                    << "\nRestore: " << Restore->getNumber() << ' '
                    << Restore->getName() << '\n');

  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setSavePoint(Save);
  MFI.setRestorePoint(Restore);
  ++NumCandidates;
  return false;
}

bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
  const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();

  switch (EnableShrinkWrapOpt) {
  case cl::BOU_UNSET:
    return TFI->enableShrinkWrapping(MF) &&
           // Windows with CFI has some limitations that make it impossible
           // to use shrink-wrapping.
           !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
           // Sanitizers look at the value of the stack at the location
           // of the crash. Since a crash can happen anywhere, the
           // frame must be lowered before anything else happen for the
           // sanitizers to be able to get a correct stack frame.
           !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
             MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
             MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
             MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
  // If EnableShrinkWrap is set, it takes precedence on whatever the
  // target sets. The rational is that we assume we want to test
  // something related to shrink-wrapping.
  case cl::BOU_TRUE:
    return true;
  case cl::BOU_FALSE:
    return false;
  }
  llvm_unreachable("Invalid shrink-wrapping state");
}