aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/ImplicitNullChecks.cpp
blob: 93b4c06ae644b9e54ff48fe1a5d2aa643f21779c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
//===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass turns explicit null checks of the form
//
//   test %r10, %r10
//   je throw_npe
//   movl (%r10), %esi
//   ...
//
// to
//
//   faulting_load_op("movl (%r10), %esi", throw_npe)
//   ...
//
// With the help of a runtime that understands the .fault_maps section,
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
// a page fault.
// Store and LoadStore are also supported.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/FaultMaps.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include <cassert>
#include <cstdint>
#include <iterator>

using namespace llvm;

static cl::opt<int> PageSize("imp-null-check-page-size",
                             cl::desc("The page size of the target in bytes"),
                             cl::init(4096), cl::Hidden);

static cl::opt<unsigned> MaxInstsToConsider(
    "imp-null-max-insts-to-consider",
    cl::desc("The max number of instructions to consider hoisting loads over "
             "(the algorithm is quadratic over this number)"),
    cl::Hidden, cl::init(8));

#define DEBUG_TYPE "implicit-null-checks"

STATISTIC(NumImplicitNullChecks,
          "Number of explicit null checks made implicit");

namespace {

class ImplicitNullChecks : public MachineFunctionPass {
  /// Return true if \c computeDependence can process \p MI.
  static bool canHandle(const MachineInstr *MI);

  /// Helper function for \c computeDependence.  Return true if \p A
  /// and \p B do not have any dependences between them, and can be
  /// re-ordered without changing program semantics.
  bool canReorder(const MachineInstr *A, const MachineInstr *B);

  /// A data type for representing the result computed by \c
  /// computeDependence.  States whether it is okay to reorder the
  /// instruction passed to \c computeDependence with at most one
  /// dependency.
  struct DependenceResult {
    /// Can we actually re-order \p MI with \p Insts (see \c
    /// computeDependence).
    bool CanReorder;

    /// If non-None, then an instruction in \p Insts that also must be
    /// hoisted.
    Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;

    /*implicit*/ DependenceResult(
        bool CanReorder,
        Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
        : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
      assert((!PotentialDependence || CanReorder) &&
             "!CanReorder && PotentialDependence.hasValue() not allowed!");
    }
  };

  /// Compute a result for the following question: can \p MI be
  /// re-ordered from after \p Insts to before it.
  ///
  /// \c canHandle should return true for all instructions in \p
  /// Insts.
  DependenceResult computeDependence(const MachineInstr *MI,
                                     ArrayRef<MachineInstr *> Block);

  /// Represents one null check that can be made implicit.
  class NullCheck {
    // The memory operation the null check can be folded into.
    MachineInstr *MemOperation;

    // The instruction actually doing the null check (Ptr != 0).
    MachineInstr *CheckOperation;

    // The block the check resides in.
    MachineBasicBlock *CheckBlock;

    // The block branched to if the pointer is non-null.
    MachineBasicBlock *NotNullSucc;

    // The block branched to if the pointer is null.
    MachineBasicBlock *NullSucc;

    // If this is non-null, then MemOperation has a dependency on this
    // instruction; and it needs to be hoisted to execute before MemOperation.
    MachineInstr *OnlyDependency;

  public:
    explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
                       MachineBasicBlock *checkBlock,
                       MachineBasicBlock *notNullSucc,
                       MachineBasicBlock *nullSucc,
                       MachineInstr *onlyDependency)
        : MemOperation(memOperation), CheckOperation(checkOperation),
          CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
          OnlyDependency(onlyDependency) {}

    MachineInstr *getMemOperation() const { return MemOperation; }

    MachineInstr *getCheckOperation() const { return CheckOperation; }

    MachineBasicBlock *getCheckBlock() const { return CheckBlock; }

    MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }

    MachineBasicBlock *getNullSucc() const { return NullSucc; }

    MachineInstr *getOnlyDependency() const { return OnlyDependency; }
  };

  const TargetInstrInfo *TII = nullptr;
  const TargetRegisterInfo *TRI = nullptr;
  AliasAnalysis *AA = nullptr;
  MachineFrameInfo *MFI = nullptr;

  bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
                                 SmallVectorImpl<NullCheck> &NullCheckList);
  MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
                                    MachineBasicBlock *HandlerMBB);
  void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);

  enum AliasResult {
    AR_NoAlias,
    AR_MayAlias,
    AR_WillAliasEverything
  };

  /// Returns AR_NoAlias if \p MI memory operation does not alias with
  /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
  /// they may alias and any further memory operation may alias with \p PrevMI.
  AliasResult areMemoryOpsAliased(const MachineInstr &MI,
                                  const MachineInstr *PrevMI) const;

  enum SuitabilityResult {
    SR_Suitable,
    SR_Unsuitable,
    SR_Impossible
  };

  /// Return SR_Suitable if \p MI a memory operation that can be used to
  /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
  /// \p MI cannot be used to null check and SR_Impossible if there is
  /// no sense to continue lookup due to any other instruction will not be able
  /// to be used. \p PrevInsts is the set of instruction seen since
  /// the explicit null check on \p PointerReg.
  SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
                                       unsigned PointerReg,
                                       ArrayRef<MachineInstr *> PrevInsts);

  /// Returns true if \p DependenceMI can clobber the liveIns in NullSucc block 
  /// if it was hoisted to the NullCheck block. This is used by caller 
  /// canHoistInst to decide if DependenceMI can be hoisted safely. 
  bool canDependenceHoistingClobberLiveIns(MachineInstr *DependenceMI, 
                                           MachineBasicBlock *NullSucc); 
 
  /// Return true if \p FaultingMI can be hoisted from after the
  /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
  /// non-null value if we also need to (and legally can) hoist a dependency. 
  bool canHoistInst(MachineInstr *FaultingMI, 
                    ArrayRef<MachineInstr *> InstsSeenSoFar,
                    MachineBasicBlock *NullSucc, MachineInstr *&Dependence);

public:
  static char ID;

  ImplicitNullChecks() : MachineFunctionPass(ID) {
    initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AAResultsWrapperPass>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
};

} // end anonymous namespace

bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
  if (MI->isCall() || MI->mayRaiseFPException() ||
      MI->hasUnmodeledSideEffects())
    return false;
  auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
  (void)IsRegMask;

  assert(!llvm::any_of(MI->operands(), IsRegMask) &&
         "Calls were filtered out above!");

  auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
  return llvm::all_of(MI->memoperands(), IsUnordered);
}

ImplicitNullChecks::DependenceResult
ImplicitNullChecks::computeDependence(const MachineInstr *MI,
                                      ArrayRef<MachineInstr *> Block) {
  assert(llvm::all_of(Block, canHandle) && "Check this first!");
  assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");

  Optional<ArrayRef<MachineInstr *>::iterator> Dep;

  for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
    if (canReorder(*I, MI))
      continue;

    if (Dep == None) {
      // Found one possible dependency, keep track of it.
      Dep = I;
    } else {
      // We found two dependencies, so bail out.
      return {false, None};
    }
  }

  return {true, Dep};
}

bool ImplicitNullChecks::canReorder(const MachineInstr *A,
                                    const MachineInstr *B) {
  assert(canHandle(A) && canHandle(B) && "Precondition!");

  // canHandle makes sure that we _can_ correctly analyze the dependencies
  // between A and B here -- for instance, we should not be dealing with heap
  // load-store dependencies here.

  for (const auto &MOA : A->operands()) { 
    if (!(MOA.isReg() && MOA.getReg()))
      continue;

    Register RegA = MOA.getReg();
    for (const auto &MOB : B->operands()) { 
      if (!(MOB.isReg() && MOB.getReg()))
        continue;

      Register RegB = MOB.getReg();

      if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
        return false;
    }
  }

  return true;
}

bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getRegInfo().getTargetRegisterInfo();
  MFI = &MF.getFrameInfo();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();

  SmallVector<NullCheck, 16> NullCheckList;

  for (auto &MBB : MF)
    analyzeBlockForNullChecks(MBB, NullCheckList);

  if (!NullCheckList.empty())
    rewriteNullChecks(NullCheckList);

  return !NullCheckList.empty();
}

// Return true if any register aliasing \p Reg is live-in into \p MBB.
static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
                           MachineBasicBlock *MBB, unsigned Reg) {
  for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
       ++AR)
    if (MBB->isLiveIn(*AR))
      return true;
  return false;
}

ImplicitNullChecks::AliasResult
ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
                                        const MachineInstr *PrevMI) const {
  // If it is not memory access, skip the check.
  if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
    return AR_NoAlias;
  // Load-Load may alias
  if (!(MI.mayStore() || PrevMI->mayStore()))
    return AR_NoAlias;
  // We lost info, conservatively alias. If it was store then no sense to
  // continue because we won't be able to check against it further.
  if (MI.memoperands_empty())
    return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
  if (PrevMI->memoperands_empty())
    return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;

  for (MachineMemOperand *MMO1 : MI.memoperands()) {
    // MMO1 should have a value due it comes from operation we'd like to use
    // as implicit null check.
    assert(MMO1->getValue() && "MMO1 should have a Value!");
    for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
      if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
        if (PSV->mayAlias(MFI))
          return AR_MayAlias;
        continue;
      }
      llvm::AliasResult AAResult = AA->alias( 
          MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), 
          MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())); 
      if (AAResult != NoAlias)
        return AR_MayAlias;
    }
  }
  return AR_NoAlias;
}

ImplicitNullChecks::SuitabilityResult
ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
                                       unsigned PointerReg,
                                       ArrayRef<MachineInstr *> PrevInsts) {
  // Implementation restriction for faulting_op insertion 
  // TODO: This could be relaxed if we find a test case which warrants it. 
  if (MI.getDesc().getNumDefs() > 1) 
   return SR_Unsuitable; 

  if (!MI.mayLoadOrStore() || MI.isPredicable()) 
    return SR_Unsuitable; 
  auto AM = TII->getAddrModeFromMemoryOp(MI, TRI); 
  if (!AM) 
    return SR_Unsuitable; 
  auto AddrMode = *AM; 
  const Register BaseReg = AddrMode.BaseReg, ScaledReg = AddrMode.ScaledReg; 
  int64_t Displacement = AddrMode.Displacement; 

  // We need the base of the memory instruction to be same as the register 
  // where the null check is performed (i.e. PointerReg). 
  if (BaseReg != PointerReg && ScaledReg != PointerReg) 
    return SR_Unsuitable;
  const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 
  unsigned PointerRegSizeInBits = TRI->getRegSizeInBits(PointerReg, MRI); 
  // Bail out of the sizes of BaseReg, ScaledReg and PointerReg are not the 
  // same. 
  if ((BaseReg && 
       TRI->getRegSizeInBits(BaseReg, MRI) != PointerRegSizeInBits) || 
      (ScaledReg && 
       TRI->getRegSizeInBits(ScaledReg, MRI) != PointerRegSizeInBits)) 
    return SR_Unsuitable; 

  // Returns true if RegUsedInAddr is used for calculating the displacement 
  // depending on addressing mode. Also calculates the Displacement. 
  auto CalculateDisplacementFromAddrMode = [&](Register RegUsedInAddr, 
                                               int64_t Multiplier) { 
    // The register can be NoRegister, which is defined as zero for all targets. 
    // Consider instruction of interest as `movq 8(,%rdi,8), %rax`. Here the 
    // ScaledReg is %rdi, while there is no BaseReg. 
    if (!RegUsedInAddr) 
      return false; 
    assert(Multiplier && "expected to be non-zero!"); 
    MachineInstr *ModifyingMI = nullptr; 
    for (auto It = std::next(MachineBasicBlock::const_reverse_iterator(&MI)); 
         It != MI.getParent()->rend(); It++) { 
      const MachineInstr *CurrMI = &*It; 
      if (CurrMI->modifiesRegister(RegUsedInAddr, TRI)) { 
        ModifyingMI = const_cast<MachineInstr *>(CurrMI); 
        break; 
      } 
    } 
    if (!ModifyingMI) 
      return false; 
    // Check for the const value defined in register by ModifyingMI. This means 
    // all other previous values for that register has been invalidated. 
    int64_t ImmVal; 
    if (!TII->getConstValDefinedInReg(*ModifyingMI, RegUsedInAddr, ImmVal)) 
      return false; 
    // Calculate the reg size in bits, since this is needed for bailing out in 
    // case of overflow. 
    int32_t RegSizeInBits = TRI->getRegSizeInBits(RegUsedInAddr, MRI); 
    APInt ImmValC(RegSizeInBits, ImmVal, true /*IsSigned*/); 
    APInt MultiplierC(RegSizeInBits, Multiplier); 
    assert(MultiplierC.isStrictlyPositive() && 
           "expected to be a positive value!"); 
    bool IsOverflow; 
    // Sign of the product depends on the sign of the ImmVal, since Multiplier 
    // is always positive. 
    APInt Product = ImmValC.smul_ov(MultiplierC, IsOverflow); 
    if (IsOverflow) 
      return false; 
    APInt DisplacementC(64, Displacement, true /*isSigned*/); 
    DisplacementC = Product.sadd_ov(DisplacementC, IsOverflow); 
    if (IsOverflow) 
      return false; 
 
    // We only handle diplacements upto 64 bits wide. 
    if (DisplacementC.getActiveBits() > 64) 
      return false; 
    Displacement = DisplacementC.getSExtValue(); 
    return true; 
  }; 
 
  // If a register used in the address is constant, fold it's effect into the 
  // displacement for ease of analysis. 
  bool BaseRegIsConstVal = false, ScaledRegIsConstVal = false; 
  if (CalculateDisplacementFromAddrMode(BaseReg, 1)) 
    BaseRegIsConstVal = true; 
  if (CalculateDisplacementFromAddrMode(ScaledReg, AddrMode.Scale)) 
    ScaledRegIsConstVal = true; 
 
  // The register which is not null checked should be part of the Displacement 
  // calculation, otherwise we do not know whether the Displacement is made up 
  // by some symbolic values. 
  // This matters because we do not want to incorrectly assume that load from 
  // falls in the zeroth faulting page in the "sane offset check" below. 
  if ((BaseReg && BaseReg != PointerReg && !BaseRegIsConstVal) || 
      (ScaledReg && ScaledReg != PointerReg && !ScaledRegIsConstVal)) 
    return SR_Unsuitable;

  // We want the mem access to be issued at a sane offset from PointerReg,
  // so that if PointerReg is null then the access reliably page faults.
  if (!(-PageSize < Displacement && Displacement < PageSize)) 
    return SR_Unsuitable;

  // Finally, check whether the current memory access aliases with previous one.
  for (auto *PrevMI : PrevInsts) {
    AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
    if (AR == AR_WillAliasEverything)
      return SR_Impossible;
    if (AR == AR_MayAlias)
      return SR_Unsuitable;
  }
  return SR_Suitable;
}

bool ImplicitNullChecks::canDependenceHoistingClobberLiveIns( 
    MachineInstr *DependenceMI, MachineBasicBlock *NullSucc) { 
  for (const auto &DependenceMO : DependenceMI->operands()) { 
    if (!(DependenceMO.isReg() && DependenceMO.getReg())) 
      continue; 
 
    // Make sure that we won't clobber any live ins to the sibling block by 
    // hoisting Dependency.  For instance, we can't hoist INST to before the 
    // null check (even if it safe, and does not violate any dependencies in 
    // the non_null_block) if %rdx is live in to _null_block. 
    // 
    //    test %rcx, %rcx 
    //    je _null_block 
    //  _non_null_block: 
    //    %rdx = INST 
    //    ... 
    // 
    // This restriction does not apply to the faulting load inst because in 
    // case the pointer loaded from is in the null page, the load will not 
    // semantically execute, and affect machine state.  That is, if the load 
    // was loading into %rax and it faults, the value of %rax should stay the 
    // same as it would have been had the load not have executed and we'd have 
    // branched to NullSucc directly. 
    if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) 
      return true; 
 
  } 
 
  // The dependence does not clobber live-ins in NullSucc block. 
  return false; 
} 
 
bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
                                      ArrayRef<MachineInstr *> InstsSeenSoFar,
                                      MachineBasicBlock *NullSucc,
                                      MachineInstr *&Dependence) {
  auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
  if (!DepResult.CanReorder)
    return false;

  if (!DepResult.PotentialDependence) {
    Dependence = nullptr;
    return true;
  }

  auto DependenceItr = *DepResult.PotentialDependence;
  auto *DependenceMI = *DependenceItr;

  // We don't want to reason about speculating loads.  Note -- at this point
  // we should have already filtered out all of the other non-speculatable
  // things, like calls and stores.
  // We also do not want to hoist stores because it might change the memory
  // while the FaultingMI may result in faulting.
  assert(canHandle(DependenceMI) && "Should never have reached here!");
  if (DependenceMI->mayLoadOrStore())
    return false;

  if (canDependenceHoistingClobberLiveIns(DependenceMI, NullSucc)) 
    return false; 

  auto DepDepResult =
      computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});

  if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
    return false;

  Dependence = DependenceMI;
  return true;
}

/// Analyze MBB to check if its terminating branch can be turned into an
/// implicit null check.  If yes, append a description of the said null check to
/// NullCheckList and return true, else return false.
bool ImplicitNullChecks::analyzeBlockForNullChecks(
    MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;

  MDNode *BranchMD = nullptr;
  if (auto *BB = MBB.getBasicBlock())
    BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);

  if (!BranchMD)
    return false;

  MachineBranchPredicate MBP;

  if (TII->analyzeBranchPredicate(MBB, MBP, true))
    return false;

  // Is the predicate comparing an integer to zero?
  if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
        (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
         MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
    return false;

  // If there is a separate condition generation instruction, we chose not to 
  // transform unless we can remove both condition and consuming branch. 
  if (MBP.ConditionDef && !MBP.SingleUseCondition) 
    return false;

  MachineBasicBlock *NotNullSucc, *NullSucc;

  if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
    NotNullSucc = MBP.TrueDest;
    NullSucc = MBP.FalseDest;
  } else {
    NotNullSucc = MBP.FalseDest;
    NullSucc = MBP.TrueDest;
  }

  // We handle the simplest case for now.  We can potentially do better by using
  // the machine dominator tree.
  if (NotNullSucc->pred_size() != 1)
    return false;

  const Register PointerReg = MBP.LHS.getReg();

  if (MBP.ConditionDef) { 
    // To prevent the invalid transformation of the following code: 
    // 
    //   mov %rax, %rcx 
    //   test %rax, %rax 
    //   %rax = ... 
    //   je throw_npe 
    //   mov(%rcx), %r9 
    //   mov(%rax), %r10 
    // 
    // into: 
    // 
    //   mov %rax, %rcx 
    //   %rax = .... 
    //   faulting_load_op("movl (%rax), %r10", throw_npe) 
    //   mov(%rcx), %r9 
    // 
    // we must ensure that there are no instructions between the 'test' and 
    // conditional jump that modify %rax. 
    assert(MBP.ConditionDef->getParent() ==  &MBB && 
           "Should be in basic block"); 

    for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I) 
      if (I->modifiesRegister(PointerReg, TRI)) 
        return false; 
  } 
  // Starting with a code fragment like:
  //
  //   test %rax, %rax
  //   jne LblNotNull
  //
  //  LblNull:
  //   callq throw_NullPointerException
  //
  //  LblNotNull:
  //   Inst0
  //   Inst1
  //   ...
  //   Def = Load (%rax + <offset>)
  //   ...
  //
  //
  // we want to end up with
  //
  //   Def = FaultingLoad (%rax + <offset>), LblNull
  //   jmp LblNotNull ;; explicit or fallthrough
  //
  //  LblNotNull:
  //   Inst0
  //   Inst1
  //   ...
  //
  //  LblNull:
  //   callq throw_NullPointerException
  //
  //
  // To see why this is legal, consider the two possibilities:
  //
  //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
  //     load instruction dereferences the null page, causing a segmentation
  //     fault.
  //
  //  2. %rax is not null: in this case we know that the load cannot fault, as
  //     otherwise the load would've faulted in the original program too and the
  //     original program would've been undefined.
  //
  // This reasoning cannot be extended to justify hoisting through arbitrary
  // control flow.  For instance, in the example below (in pseudo-C)
  //
  //    if (ptr == null) { throw_npe(); unreachable; }
  //    if (some_cond) { return 42; }
  //    v = ptr->field;  // LD
  //    ...
  //
  // we cannot (without code duplication) use the load marked "LD" to null check
  // ptr -- clause (2) above does not apply in this case.  In the above program
  // the safety of ptr->field can be dependent on some_cond; and, for instance,
  // ptr could be some non-null invalid reference that never gets loaded from
  // because some_cond is always true.

  SmallVector<MachineInstr *, 8> InstsSeenSoFar;

  for (auto &MI : *NotNullSucc) {
    if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
      return false;

    MachineInstr *Dependence;
    SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
    if (SR == SR_Impossible)
      return false;
    if (SR == SR_Suitable &&
        canHoistInst(&MI, InstsSeenSoFar, NullSucc, Dependence)) { 
      NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
                                 NullSucc, Dependence);
      return true;
    }

    // If MI re-defines the PointerReg in a way that changes the value of 
    // PointerReg if it was null, then we cannot move further. 
    if (!TII->preservesZeroValueInReg(&MI, PointerReg, TRI)) 
      return false;
    InstsSeenSoFar.push_back(&MI);
  }

  return false;
}

/// Wrap a machine instruction, MI, into a FAULTING machine instruction.
/// The FAULTING instruction does the same load/store as MI
/// (defining the same register), and branches to HandlerMBB if the mem access
/// faults.  The FAULTING instruction is inserted at the end of MBB.
MachineInstr *ImplicitNullChecks::insertFaultingInstr(
    MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
  const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
                                 // all targets.

  DebugLoc DL;
  unsigned NumDefs = MI->getDesc().getNumDefs();
  assert(NumDefs <= 1 && "other cases unhandled!");

  unsigned DefReg = NoRegister;
  if (NumDefs != 0) {
    DefReg = MI->getOperand(0).getReg();
    assert(NumDefs == 1 && "expected exactly one def!");
  }

  FaultMaps::FaultKind FK;
  if (MI->mayLoad())
    FK =
        MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
  else
    FK = FaultMaps::FaultingStore;

  auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
                 .addImm(FK)
                 .addMBB(HandlerMBB)
                 .addImm(MI->getOpcode());

  for (auto &MO : MI->uses()) {
    if (MO.isReg()) {
      MachineOperand NewMO = MO;
      if (MO.isUse()) {
        NewMO.setIsKill(false);
      } else {
        assert(MO.isDef() && "Expected def or use");
        NewMO.setIsDead(false);
      }
      MIB.add(NewMO);
    } else {
      MIB.add(MO);
    }
  }

  MIB.setMemRefs(MI->memoperands());

  return MIB;
}

/// Rewrite the null checks in NullCheckList into implicit null checks.
void ImplicitNullChecks::rewriteNullChecks(
    ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
  DebugLoc DL;

  for (auto &NC : NullCheckList) {
    // Remove the conditional branch dependent on the null check.
    unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
    (void)BranchesRemoved;
    assert(BranchesRemoved > 0 && "expected at least one branch!");

    if (auto *DepMI = NC.getOnlyDependency()) {
      DepMI->removeFromParent();
      NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
    }

    // Insert a faulting instruction where the conditional branch was
    // originally. We check earlier ensures that this bit of code motion
    // is legal.  We do not touch the successors list for any basic block
    // since we haven't changed control flow, we've just made it implicit.
    MachineInstr *FaultingInstr = insertFaultingInstr(
        NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
    // Now the values defined by MemOperation, if any, are live-in of
    // the block of MemOperation.
    // The original operation may define implicit-defs alongside
    // the value.
    MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
    for (const MachineOperand &MO : FaultingInstr->operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register Reg = MO.getReg();
      if (!Reg || MBB->isLiveIn(Reg))
        continue;
      MBB->addLiveIn(Reg);
    }

    if (auto *DepMI = NC.getOnlyDependency()) {
      for (auto &MO : DepMI->operands()) {
        if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
          continue;
        if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
          NC.getNotNullSucc()->addLiveIn(MO.getReg());
      }
    }

    NC.getMemOperation()->eraseFromParent();
    if (auto *CheckOp = NC.getCheckOperation()) 
      CheckOp->eraseFromParent(); 

    // Insert an *unconditional* branch to not-null successor - we expect 
    // block placement to remove fallthroughs later. 
    TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
                      /*Cond=*/None, DL);

    NumImplicitNullChecks++;
  }
}

char ImplicitNullChecks::ID = 0;

char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;

INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
                      "Implicit null checks", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
                    "Implicit null checks", false, false)