aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Analysis/LoopAccessAnalysis.cpp
blob: 6e59f1fa1290136b028f8b6536b53248207c7bbf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The implementation for the loop memory dependence that was originally
// developed for the loop vectorizer.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-accesses"

static cl::opt<unsigned, true>
VectorizationFactor("force-vector-width", cl::Hidden,
                    cl::desc("Sets the SIMD width. Zero is autoselect."),
                    cl::location(VectorizerParams::VectorizationFactor));
unsigned VectorizerParams::VectorizationFactor;

static cl::opt<unsigned, true>
VectorizationInterleave("force-vector-interleave", cl::Hidden,
                        cl::desc("Sets the vectorization interleave count. "
                                 "Zero is autoselect."),
                        cl::location(
                            VectorizerParams::VectorizationInterleave));
unsigned VectorizerParams::VectorizationInterleave;

static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
    "runtime-memory-check-threshold", cl::Hidden,
    cl::desc("When performing memory disambiguation checks at runtime do not "
             "generate more than this number of comparisons (default = 8)."),
    cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
unsigned VectorizerParams::RuntimeMemoryCheckThreshold;

/// The maximum iterations used to merge memory checks
static cl::opt<unsigned> MemoryCheckMergeThreshold(
    "memory-check-merge-threshold", cl::Hidden,
    cl::desc("Maximum number of comparisons done when trying to merge "
             "runtime memory checks. (default = 100)"),
    cl::init(100));

/// Maximum SIMD width.
const unsigned VectorizerParams::MaxVectorWidth = 64;

/// We collect dependences up to this threshold.
static cl::opt<unsigned>
    MaxDependences("max-dependences", cl::Hidden,
                   cl::desc("Maximum number of dependences collected by "
                            "loop-access analysis (default = 100)"),
                   cl::init(100));

/// This enables versioning on the strides of symbolically striding memory
/// accesses in code like the following.
///   for (i = 0; i < N; ++i)
///     A[i * Stride1] += B[i * Stride2] ...
///
/// Will be roughly translated to
///    if (Stride1 == 1 && Stride2 == 1) {
///      for (i = 0; i < N; i+=4)
///       A[i:i+3] += ...
///    } else
///      ...
static cl::opt<bool> EnableMemAccessVersioning(
    "enable-mem-access-versioning", cl::init(true), cl::Hidden,
    cl::desc("Enable symbolic stride memory access versioning"));

/// Enable store-to-load forwarding conflict detection. This option can
/// be disabled for correctness testing.
static cl::opt<bool> EnableForwardingConflictDetection(
    "store-to-load-forwarding-conflict-detection", cl::Hidden,
    cl::desc("Enable conflict detection in loop-access analysis"),
    cl::init(true));

bool VectorizerParams::isInterleaveForced() {
  return ::VectorizationInterleave.getNumOccurrences() > 0;
}

Value *llvm::stripIntegerCast(Value *V) {
  if (auto *CI = dyn_cast<CastInst>(V))
    if (CI->getOperand(0)->getType()->isIntegerTy())
      return CI->getOperand(0);
  return V;
}

const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
                                            const ValueToValueMap &PtrToStride,
                                            Value *Ptr, Value *OrigPtr) {
  const SCEV *OrigSCEV = PSE.getSCEV(Ptr);

  // If there is an entry in the map return the SCEV of the pointer with the
  // symbolic stride replaced by one.
  ValueToValueMap::const_iterator SI =
      PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
  if (SI == PtrToStride.end()) 
    // For a non-symbolic stride, just return the original expression. 
    return OrigSCEV; 

  Value *StrideVal = stripIntegerCast(SI->second); 

  ScalarEvolution *SE = PSE.getSE(); 
  const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 
  const auto *CT = 
    static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 

  PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 
  auto *Expr = PSE.getSCEV(Ptr); 

  LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 
	     << " by: " << *Expr << "\n"); 
  return Expr; 
}

RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
    unsigned Index, RuntimePointerChecking &RtCheck)
    : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
      Low(RtCheck.Pointers[Index].Start) {
  Members.push_back(Index);
}

/// Calculate Start and End points of memory access.
/// Let's assume A is the first access and B is a memory access on N-th loop
/// iteration. Then B is calculated as:
///   B = A + Step*N .
/// Step value may be positive or negative.
/// N is a calculated back-edge taken count:
///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
/// Start and End points are calculated in the following way:
/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
/// where SizeOfElt is the size of single memory access in bytes.
///
/// There is no conflict when the intervals are disjoint:
/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr,
                                    unsigned DepSetId, unsigned ASId,
                                    const ValueToValueMap &Strides,
                                    PredicatedScalarEvolution &PSE) {
  // Get the stride replaced scev.
  const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
  ScalarEvolution *SE = PSE.getSE();

  const SCEV *ScStart;
  const SCEV *ScEnd;

  if (SE->isLoopInvariant(Sc, Lp))
    ScStart = ScEnd = Sc;
  else {
    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
    assert(AR && "Invalid addrec expression");
    const SCEV *Ex = PSE.getBackedgeTakenCount();

    ScStart = AR->getStart();
    ScEnd = AR->evaluateAtIteration(Ex, *SE);
    const SCEV *Step = AR->getStepRecurrence(*SE);

    // For expressions with negative step, the upper bound is ScStart and the
    // lower bound is ScEnd.
    if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
      if (CStep->getValue()->isNegative())
        std::swap(ScStart, ScEnd);
    } else {
      // Fallback case: the step is not constant, but we can still
      // get the upper and lower bounds of the interval by using min/max
      // expressions.
      ScStart = SE->getUMinExpr(ScStart, ScEnd);
      ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
    }
    // Add the size of the pointed element to ScEnd.
    auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 
    Type *IdxTy = DL.getIndexType(Ptr->getType()); 
    const SCEV *EltSizeSCEV = 
        SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType()); 
    ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
  }

  Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
}

SmallVector<RuntimePointerCheck, 4>
RuntimePointerChecking::generateChecks() const {
  SmallVector<RuntimePointerCheck, 4> Checks;

  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
      const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
      const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];

      if (needsChecking(CGI, CGJ))
        Checks.push_back(std::make_pair(&CGI, &CGJ));
    }
  }
  return Checks;
}

void RuntimePointerChecking::generateChecks(
    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
  assert(Checks.empty() && "Checks is not empty");
  groupChecks(DepCands, UseDependencies);
  Checks = generateChecks();
}

bool RuntimePointerChecking::needsChecking(
    const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
  for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
    for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
      if (needsChecking(M.Members[I], N.Members[J]))
        return true;
  return false;
}

/// Compare \p I and \p J and return the minimum.
/// Return nullptr in case we couldn't find an answer.
static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
                                   ScalarEvolution *SE) {
  const SCEV *Diff = SE->getMinusSCEV(J, I);
  const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);

  if (!C)
    return nullptr;
  if (C->getValue()->isNegative())
    return J;
  return I;
}

bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) {
  const SCEV *Start = RtCheck.Pointers[Index].Start;
  const SCEV *End = RtCheck.Pointers[Index].End;

  // Compare the starts and ends with the known minimum and maximum
  // of this set. We need to know how we compare against the min/max
  // of the set in order to be able to emit memchecks.
  const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE);
  if (!Min0)
    return false;

  const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE);
  if (!Min1)
    return false;

  // Update the low bound  expression if we've found a new min value.
  if (Min0 == Start)
    Low = Start;

  // Update the high bound expression if we've found a new max value.
  if (Min1 != End)
    High = End;

  Members.push_back(Index);
  return true;
}

void RuntimePointerChecking::groupChecks(
    MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
  // We build the groups from dependency candidates equivalence classes
  // because:
  //    - We know that pointers in the same equivalence class share
  //      the same underlying object and therefore there is a chance
  //      that we can compare pointers
  //    - We wouldn't be able to merge two pointers for which we need
  //      to emit a memcheck. The classes in DepCands are already
  //      conveniently built such that no two pointers in the same
  //      class need checking against each other.

  // We use the following (greedy) algorithm to construct the groups
  // For every pointer in the equivalence class:
  //   For each existing group:
  //   - if the difference between this pointer and the min/max bounds
  //     of the group is a constant, then make the pointer part of the
  //     group and update the min/max bounds of that group as required.

  CheckingGroups.clear();

  // If we need to check two pointers to the same underlying object
  // with a non-constant difference, we shouldn't perform any pointer
  // grouping with those pointers. This is because we can easily get
  // into cases where the resulting check would return false, even when
  // the accesses are safe.
  //
  // The following example shows this:
  // for (i = 0; i < 1000; ++i)
  //   a[5000 + i * m] = a[i] + a[i + 9000]
  //
  // Here grouping gives a check of (5000, 5000 + 1000 * m) against
  // (0, 10000) which is always false. However, if m is 1, there is no
  // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
  // us to perform an accurate check in this case.
  //
  // The above case requires that we have an UnknownDependence between
  // accesses to the same underlying object. This cannot happen unless
  // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
  // is also false. In this case we will use the fallback path and create
  // separate checking groups for all pointers.

  // If we don't have the dependency partitions, construct a new
  // checking pointer group for each pointer. This is also required
  // for correctness, because in this case we can have checking between
  // pointers to the same underlying object.
  if (!UseDependencies) {
    for (unsigned I = 0; I < Pointers.size(); ++I)
      CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
    return;
  }

  unsigned TotalComparisons = 0;

  DenseMap<Value *, unsigned> PositionMap;
  for (unsigned Index = 0; Index < Pointers.size(); ++Index)
    PositionMap[Pointers[Index].PointerValue] = Index;

  // We need to keep track of what pointers we've already seen so we
  // don't process them twice.
  SmallSet<unsigned, 2> Seen;

  // Go through all equivalence classes, get the "pointer check groups"
  // and add them to the overall solution. We use the order in which accesses
  // appear in 'Pointers' to enforce determinism.
  for (unsigned I = 0; I < Pointers.size(); ++I) {
    // We've seen this pointer before, and therefore already processed
    // its equivalence class.
    if (Seen.count(I))
      continue;

    MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
                                           Pointers[I].IsWritePtr);

    SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
    auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));

    // Because DepCands is constructed by visiting accesses in the order in
    // which they appear in alias sets (which is deterministic) and the
    // iteration order within an equivalence class member is only dependent on
    // the order in which unions and insertions are performed on the
    // equivalence class, the iteration order is deterministic.
    for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
         MI != ME; ++MI) {
      auto PointerI = PositionMap.find(MI->getPointer());
      assert(PointerI != PositionMap.end() &&
             "pointer in equivalence class not found in PositionMap");
      unsigned Pointer = PointerI->second;
      bool Merged = false;
      // Mark this pointer as seen.
      Seen.insert(Pointer);

      // Go through all the existing sets and see if we can find one
      // which can include this pointer.
      for (RuntimeCheckingPtrGroup &Group : Groups) {
        // Don't perform more than a certain amount of comparisons.
        // This should limit the cost of grouping the pointers to something
        // reasonable.  If we do end up hitting this threshold, the algorithm
        // will create separate groups for all remaining pointers.
        if (TotalComparisons > MemoryCheckMergeThreshold)
          break;

        TotalComparisons++;

        if (Group.addPointer(Pointer)) {
          Merged = true;
          break;
        }
      }

      if (!Merged)
        // We couldn't add this pointer to any existing set or the threshold
        // for the number of comparisons has been reached. Create a new group
        // to hold the current pointer.
        Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
    }

    // We've computed the grouped checks for this partition.
    // Save the results and continue with the next one.
    llvm::copy(Groups, std::back_inserter(CheckingGroups));
  }
}

bool RuntimePointerChecking::arePointersInSamePartition(
    const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
    unsigned PtrIdx2) {
  return (PtrToPartition[PtrIdx1] != -1 &&
          PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
}

bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
  const PointerInfo &PointerI = Pointers[I];
  const PointerInfo &PointerJ = Pointers[J];

  // No need to check if two readonly pointers intersect.
  if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
    return false;

  // Only need to check pointers between two different dependency sets.
  if (PointerI.DependencySetId == PointerJ.DependencySetId)
    return false;

  // Only need to check pointers in the same alias set.
  if (PointerI.AliasSetId != PointerJ.AliasSetId)
    return false;

  return true;
}

void RuntimePointerChecking::printChecks(
    raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
    unsigned Depth) const {
  unsigned N = 0;
  for (const auto &Check : Checks) {
    const auto &First = Check.first->Members, &Second = Check.second->Members;

    OS.indent(Depth) << "Check " << N++ << ":\n";

    OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
    for (unsigned K = 0; K < First.size(); ++K)
      OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";

    OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
    for (unsigned K = 0; K < Second.size(); ++K)
      OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
  }
}

void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {

  OS.indent(Depth) << "Run-time memory checks:\n";
  printChecks(OS, Checks, Depth);

  OS.indent(Depth) << "Grouped accesses:\n";
  for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
    const auto &CG = CheckingGroups[I];

    OS.indent(Depth + 2) << "Group " << &CG << ":\n";
    OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
                         << ")\n";
    for (unsigned J = 0; J < CG.Members.size(); ++J) {
      OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
                           << "\n";
    }
  }
}

namespace {

/// Analyses memory accesses in a loop.
///
/// Checks whether run time pointer checks are needed and builds sets for data
/// dependence checking.
class AccessAnalysis {
public:
  /// Read or write access location.
  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;

  AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 
                 MemoryDepChecker::DepCandidates &DA, 
                 PredicatedScalarEvolution &PSE)
      : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 
        IsRTCheckAnalysisNeeded(false), PSE(PSE) {}

  /// Register a load  and whether it is only read from.
  void addLoad(MemoryLocation &Loc, bool IsReadOnly) {
    Value *Ptr = const_cast<Value*>(Loc.Ptr);
    AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 
    Accesses.insert(MemAccessInfo(Ptr, false));
    if (IsReadOnly)
      ReadOnlyPtr.insert(Ptr);
  }

  /// Register a store.
  void addStore(MemoryLocation &Loc) {
    Value *Ptr = const_cast<Value*>(Loc.Ptr);
    AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 
    Accesses.insert(MemAccessInfo(Ptr, true));
  }

  /// Check if we can emit a run-time no-alias check for \p Access.
  ///
  /// Returns true if we can emit a run-time no alias check for \p Access.
  /// If we can check this access, this also adds it to a dependence set and
  /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
  /// we will attempt to use additional run-time checks in order to get
  /// the bounds of the pointer.
  bool createCheckForAccess(RuntimePointerChecking &RtCheck,
                            MemAccessInfo Access,
                            const ValueToValueMap &Strides,
                            DenseMap<Value *, unsigned> &DepSetId,
                            Loop *TheLoop, unsigned &RunningDepId,
                            unsigned ASId, bool ShouldCheckStride,
                            bool Assume);

  /// Check whether we can check the pointers at runtime for
  /// non-intersection.
  ///
  /// Returns true if we need no check or if we do and we can generate them
  /// (i.e. the pointers have computable bounds).
  bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
                       Loop *TheLoop, const ValueToValueMap &Strides,
                       bool ShouldCheckWrap = false);

  /// Goes over all memory accesses, checks whether a RT check is needed
  /// and builds sets of dependent accesses.
  void buildDependenceSets() {
    processMemAccesses();
  }

  /// Initial processing of memory accesses determined that we need to
  /// perform dependency checking.
  ///
  /// Note that this can later be cleared if we retry memcheck analysis without
  /// dependency checking (i.e. FoundNonConstantDistanceDependence).
  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }

  /// We decided that no dependence analysis would be used.  Reset the state.
  void resetDepChecks(MemoryDepChecker &DepChecker) {
    CheckDeps.clear();
    DepChecker.clearDependences();
  }

  MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }

private:
  typedef SetVector<MemAccessInfo> PtrAccessSet;

  /// Go over all memory access and check whether runtime pointer checks
  /// are needed and build sets of dependency check candidates.
  void processMemAccesses();

  /// Set of all accesses.
  PtrAccessSet Accesses;

  /// The loop being checked.
  const Loop *TheLoop;

  /// List of accesses that need a further dependence check.
  MemAccessInfoList CheckDeps;

  /// Set of pointers that are read only.
  SmallPtrSet<Value*, 16> ReadOnlyPtr;

  /// An alias set tracker to partition the access set by underlying object and
  //intrinsic property (such as TBAA metadata).
  AliasSetTracker AST;

  LoopInfo *LI;

  /// Sets of potentially dependent accesses - members of one set share an
  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
  /// dependence check.
  MemoryDepChecker::DepCandidates &DepCands;

  /// Initial processing of memory accesses determined that we may need
  /// to add memchecks.  Perform the analysis to determine the necessary checks.
  ///
  /// Note that, this is different from isDependencyCheckNeeded.  When we retry
  /// memcheck analysis without dependency checking
  /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
  /// cleared while this remains set if we have potentially dependent accesses.
  bool IsRTCheckAnalysisNeeded;

  /// The SCEV predicate containing all the SCEV-related assumptions.
  PredicatedScalarEvolution &PSE;
};

} // end anonymous namespace

/// Check whether a pointer can participate in a runtime bounds check.
/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
/// by adding run-time checks (overflow checks) if necessary.
static bool hasComputableBounds(PredicatedScalarEvolution &PSE,
                                const ValueToValueMap &Strides, Value *Ptr,
                                Loop *L, bool Assume) {
  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);

  // The bounds for loop-invariant pointer is trivial.
  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    return true;

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);

  if (!AR && Assume)
    AR = PSE.getAsAddRec(Ptr);

  if (!AR)
    return false;

  return AR->isAffine();
}

/// Check whether a pointer address cannot wrap.
static bool isNoWrap(PredicatedScalarEvolution &PSE,
                     const ValueToValueMap &Strides, Value *Ptr, Loop *L) {
  const SCEV *PtrScev = PSE.getSCEV(Ptr);
  if (PSE.getSE()->isLoopInvariant(PtrScev, L))
    return true;

  int64_t Stride = getPtrStride(PSE, Ptr, L, Strides);
  if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
    return true;

  return false;
}

bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
                                          MemAccessInfo Access,
                                          const ValueToValueMap &StridesMap,
                                          DenseMap<Value *, unsigned> &DepSetId,
                                          Loop *TheLoop, unsigned &RunningDepId,
                                          unsigned ASId, bool ShouldCheckWrap,
                                          bool Assume) {
  Value *Ptr = Access.getPointer();

  if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume))
    return false;

  // When we run after a failing dependency check we have to make sure
  // we don't have wrapping pointers.
  if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) {
    auto *Expr = PSE.getSCEV(Ptr);
    if (!Assume || !isa<SCEVAddRecExpr>(Expr))
      return false;
    PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
  }

  // The id of the dependence set.
  unsigned DepId;

  if (isDependencyCheckNeeded()) {
    Value *Leader = DepCands.getLeaderValue(Access).getPointer();
    unsigned &LeaderId = DepSetId[Leader];
    if (!LeaderId)
      LeaderId = RunningDepId++;
    DepId = LeaderId;
  } else
    // Each access has its own dependence set.
    DepId = RunningDepId++;

  bool IsWrite = Access.getInt();
  RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE);
  LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');

  return true;
 }

bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
                                     ScalarEvolution *SE, Loop *TheLoop,
                                     const ValueToValueMap &StridesMap,
                                     bool ShouldCheckWrap) {
  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  bool CanDoRT = true;

  bool MayNeedRTCheck = false;
  if (!IsRTCheckAnalysisNeeded) return true;

  bool IsDepCheckNeeded = isDependencyCheckNeeded();

  // We assign a consecutive id to access from different alias sets.
  // Accesses between different groups doesn't need to be checked.
  unsigned ASId = 0;
  for (auto &AS : AST) {
    int NumReadPtrChecks = 0;
    int NumWritePtrChecks = 0;
    bool CanDoAliasSetRT = true;
    ++ASId;

    // We assign consecutive id to access from different dependence sets.
    // Accesses within the same set don't need a runtime check.
    unsigned RunningDepId = 1;
    DenseMap<Value *, unsigned> DepSetId;

    SmallVector<MemAccessInfo, 4> Retries;

    // First, count how many write and read accesses are in the alias set. Also
    // collect MemAccessInfos for later.
    SmallVector<MemAccessInfo, 4> AccessInfos;
    for (const auto &A : AS) { 
      Value *Ptr = A.getValue();
      bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));

      if (IsWrite)
        ++NumWritePtrChecks;
      else
        ++NumReadPtrChecks;
      AccessInfos.emplace_back(Ptr, IsWrite);
    }

    // We do not need runtime checks for this alias set, if there are no writes
    // or a single write and no reads.
    if (NumWritePtrChecks == 0 ||
        (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
      assert((AS.size() <= 1 ||
              all_of(AS,
                     [this](auto AC) {
                       MemAccessInfo AccessWrite(AC.getValue(), true);
                       return DepCands.findValue(AccessWrite) == DepCands.end();
                     })) &&
             "Can only skip updating CanDoRT below, if all entries in AS "
             "are reads or there is at most 1 entry");
      continue;
    }

    for (auto &Access : AccessInfos) {
      if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop,
                                RunningDepId, ASId, ShouldCheckWrap, false)) {
        LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
                          << *Access.getPointer() << '\n');
        Retries.push_back(Access);
        CanDoAliasSetRT = false;
      }
    }

    // Note that this function computes CanDoRT and MayNeedRTCheck
    // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
    // we have a pointer for which we couldn't find the bounds but we don't
    // actually need to emit any checks so it does not matter.
    //
    // We need runtime checks for this alias set, if there are at least 2
    // dependence sets (in which case RunningDepId > 2) or if we need to re-try
    // any bound checks (because in that case the number of dependence sets is
    // incomplete).
    bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();

    // We need to perform run-time alias checks, but some pointers had bounds
    // that couldn't be checked.
    if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
      // Reset the CanDoSetRt flag and retry all accesses that have failed.
      // We know that we need these checks, so we can now be more aggressive
      // and add further checks if required (overflow checks).
      CanDoAliasSetRT = true;
      for (auto Access : Retries)
        if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId,
                                  TheLoop, RunningDepId, ASId,
                                  ShouldCheckWrap, /*Assume=*/true)) {
          CanDoAliasSetRT = false;
          break;
        }
    }

    CanDoRT &= CanDoAliasSetRT;
    MayNeedRTCheck |= NeedsAliasSetRTCheck;
    ++ASId;
  }

  // If the pointers that we would use for the bounds comparison have different
  // address spaces, assume the values aren't directly comparable, so we can't
  // use them for the runtime check. We also have to assume they could
  // overlap. In the future there should be metadata for whether address spaces
  // are disjoint.
  unsigned NumPointers = RtCheck.Pointers.size();
  for (unsigned i = 0; i < NumPointers; ++i) {
    for (unsigned j = i + 1; j < NumPointers; ++j) {
      // Only need to check pointers between two different dependency sets.
      if (RtCheck.Pointers[i].DependencySetId ==
          RtCheck.Pointers[j].DependencySetId)
       continue;
      // Only need to check pointers in the same alias set.
      if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
        continue;

      Value *PtrI = RtCheck.Pointers[i].PointerValue;
      Value *PtrJ = RtCheck.Pointers[j].PointerValue;

      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
      if (ASi != ASj) {
        LLVM_DEBUG(
            dbgs() << "LAA: Runtime check would require comparison between"
                      " different address spaces\n");
        return false;
      }
    }
  }

  if (MayNeedRTCheck && CanDoRT)
    RtCheck.generateChecks(DepCands, IsDepCheckNeeded);

  LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
                    << " pointer comparisons.\n");

  // If we can do run-time checks, but there are no checks, no runtime checks
  // are needed. This can happen when all pointers point to the same underlying
  // object for example.
  RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;

  bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
  if (!CanDoRTIfNeeded)
    RtCheck.reset();
  return CanDoRTIfNeeded;
}

void AccessAnalysis::processMemAccesses() {
  // We process the set twice: first we process read-write pointers, last we
  // process read-only pointers. This allows us to skip dependence tests for
  // read-only pointers.

  LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
  LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
  LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
  LLVM_DEBUG({
    for (auto A : Accesses)
      dbgs() << "\t" << *A.getPointer() << " (" <<
                (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
                                         "read-only" : "read")) << ")\n";
  });

  // The AliasSetTracker has nicely partitioned our pointers by metadata
  // compatibility and potential for underlying-object overlap. As a result, we
  // only need to check for potential pointer dependencies within each alias
  // set.
  for (const auto &AS : AST) { 
    // Note that both the alias-set tracker and the alias sets themselves used
    // linked lists internally and so the iteration order here is deterministic
    // (matching the original instruction order within each set).

    bool SetHasWrite = false;

    // Map of pointers to last access encountered.
    typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
    UnderlyingObjToAccessMap ObjToLastAccess;

    // Set of access to check after all writes have been processed.
    PtrAccessSet DeferredAccesses;

    // Iterate over each alias set twice, once to process read/write pointers,
    // and then to process read-only pointers.
    for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
      bool UseDeferred = SetIteration > 0;
      PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;

      for (const auto &AV : AS) { 
        Value *Ptr = AV.getValue();

        // For a single memory access in AliasSetTracker, Accesses may contain
        // both read and write, and they both need to be handled for CheckDeps.
        for (const auto &AC : S) { 
          if (AC.getPointer() != Ptr)
            continue;

          bool IsWrite = AC.getInt();

          // If we're using the deferred access set, then it contains only
          // reads.
          bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
          if (UseDeferred && !IsReadOnlyPtr)
            continue;
          // Otherwise, the pointer must be in the PtrAccessSet, either as a
          // read or a write.
          assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
                  S.count(MemAccessInfo(Ptr, false))) &&
                 "Alias-set pointer not in the access set?");

          MemAccessInfo Access(Ptr, IsWrite);
          DepCands.insert(Access);

          // Memorize read-only pointers for later processing and skip them in
          // the first round (they need to be checked after we have seen all
          // write pointers). Note: we also mark pointer that are not
          // consecutive as "read-only" pointers (so that we check
          // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
          if (!UseDeferred && IsReadOnlyPtr) {
            DeferredAccesses.insert(Access);
            continue;
          }

          // If this is a write - check other reads and writes for conflicts. If
          // this is a read only check other writes for conflicts (but only if
          // there is no other write to the ptr - this is an optimization to
          // catch "a[i] = a[i] + " without having to do a dependence check).
          if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
            CheckDeps.push_back(Access);
            IsRTCheckAnalysisNeeded = true;
          }

          if (IsWrite)
            SetHasWrite = true;

          // Create sets of pointers connected by a shared alias set and
          // underlying object.
          typedef SmallVector<const Value *, 16> ValueVector;
          ValueVector TempObjects;

          getUnderlyingObjects(Ptr, TempObjects, LI); 
          LLVM_DEBUG(dbgs()
                     << "Underlying objects for pointer " << *Ptr << "\n");
          for (const Value *UnderlyingObj : TempObjects) {
            // nullptr never alias, don't join sets for pointer that have "null"
            // in their UnderlyingObjects list.
            if (isa<ConstantPointerNull>(UnderlyingObj) &&
                !NullPointerIsDefined(
                    TheLoop->getHeader()->getParent(),
                    UnderlyingObj->getType()->getPointerAddressSpace()))
              continue;

            UnderlyingObjToAccessMap::iterator Prev =
                ObjToLastAccess.find(UnderlyingObj);
            if (Prev != ObjToLastAccess.end())
              DepCands.unionSets(Access, Prev->second);

            ObjToLastAccess[UnderlyingObj] = Access;
            LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
          }
        }
      }
    }
  }
}

static bool isInBoundsGep(Value *Ptr) {
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
    return GEP->isInBounds();
  return false;
}

/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
/// i.e. monotonically increasing/decreasing.
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
                           PredicatedScalarEvolution &PSE, const Loop *L) {
  // FIXME: This should probably only return true for NUW.
  if (AR->getNoWrapFlags(SCEV::NoWrapMask))
    return true;

  // Scalar evolution does not propagate the non-wrapping flags to values that
  // are derived from a non-wrapping induction variable because non-wrapping
  // could be flow-sensitive.
  //
  // Look through the potentially overflowing instruction to try to prove
  // non-wrapping for the *specific* value of Ptr.

  // The arithmetic implied by an inbounds GEP can't overflow.
  auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
  if (!GEP || !GEP->isInBounds())
    return false;

  // Make sure there is only one non-const index and analyze that.
  Value *NonConstIndex = nullptr;
  for (Value *Index : GEP->indices()) 
    if (!isa<ConstantInt>(Index)) {
      if (NonConstIndex)
        return false;
      NonConstIndex = Index;
    }
  if (!NonConstIndex)
    // The recurrence is on the pointer, ignore for now.
    return false;

  // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
  // AddRec using a NSW operation.
  if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
    if (OBO->hasNoSignedWrap() &&
        // Assume constant for other the operand so that the AddRec can be
        // easily found.
        isa<ConstantInt>(OBO->getOperand(1))) {
      auto *OpScev = PSE.getSCEV(OBO->getOperand(0));

      if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
        return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
    }

  return false;
}

/// Check whether the access through \p Ptr has a constant stride.
int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr,
                           const Loop *Lp, const ValueToValueMap &StridesMap,
                           bool Assume, bool ShouldCheckWrap) {
  Type *Ty = Ptr->getType();
  assert(Ty->isPointerTy() && "Unexpected non-ptr");

  // Make sure that the pointer does not point to aggregate types.
  auto *PtrTy = cast<PointerType>(Ty);
  if (PtrTy->getElementType()->isAggregateType()) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type"
                      << *Ptr << "\n");
    return 0;
  }

  const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);

  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Ptr);

  if (!AR) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
                      << " SCEV: " << *PtrScev << "\n");
    return 0;
  }

  // The access function must stride over the innermost loop.
  if (Lp != AR->getLoop()) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
                      << *Ptr << " SCEV: " << *AR << "\n");
    return 0;
  }

  // The address calculation must not wrap. Otherwise, a dependence could be
  // inverted.
  // An inbounds getelementptr that is a AddRec with a unit stride
  // cannot wrap per definition. The unit stride requirement is checked later.
  // An getelementptr without an inbounds attribute and unit stride would have
  // to access the pointer value "0" which is undefined behavior in address
  // space 0, therefore we can also vectorize this case.
  bool IsInBoundsGEP = isInBoundsGep(Ptr);
  bool IsNoWrapAddRec = !ShouldCheckWrap ||
    PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) ||
    isNoWrapAddRec(Ptr, AR, PSE, Lp);
  if (!IsNoWrapAddRec && !IsInBoundsGEP &&
      NullPointerIsDefined(Lp->getHeader()->getParent(),
                           PtrTy->getAddressSpace())) {
    if (Assume) {
      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
      IsNoWrapAddRec = true;
      LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n"
                        << "LAA:   Pointer: " << *Ptr << "\n"
                        << "LAA:   SCEV: " << *AR << "\n"
                        << "LAA:   Added an overflow assumption\n");
    } else {
      LLVM_DEBUG(
          dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
                 << *Ptr << " SCEV: " << *AR << "\n");
      return 0;
    }
  }

  // Check the step is constant.
  const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());

  // Calculate the pointer stride and check if it is constant.
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
  if (!C) {
    LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
                      << " SCEV: " << *AR << "\n");
    return 0;
  }

  auto &DL = Lp->getHeader()->getModule()->getDataLayout();
  int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
  const APInt &APStepVal = C->getAPInt();

  // Huge step value - give up.
  if (APStepVal.getBitWidth() > 64)
    return 0;

  int64_t StepVal = APStepVal.getSExtValue();

  // Strided access.
  int64_t Stride = StepVal / Size;
  int64_t Rem = StepVal % Size;
  if (Rem)
    return 0;

  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
  // know we can't "wrap around the address space". In case of address space
  // zero we know that this won't happen without triggering undefined behavior.
  if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 &&
      (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(),
                                              PtrTy->getAddressSpace()))) {
    if (Assume) {
      // We can avoid this case by adding a run-time check.
      LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either "
                        << "inbounds or in address space 0 may wrap:\n"
                        << "LAA:   Pointer: " << *Ptr << "\n"
                        << "LAA:   SCEV: " << *AR << "\n"
                        << "LAA:   Added an overflow assumption\n");
      PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
    } else
      return 0;
  }

  return Stride;
}

bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
                           ScalarEvolution &SE,
                           SmallVectorImpl<unsigned> &SortedIndices) {
  assert(llvm::all_of(
             VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
         "Expected list of pointer operands.");
  SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs;
  OffValPairs.reserve(VL.size());

  // Walk over the pointers, and map each of them to an offset relative to
  // first pointer in the array.
  Value *Ptr0 = VL[0];
  const SCEV *Scev0 = SE.getSCEV(Ptr0);
  Value *Obj0 = getUnderlyingObject(Ptr0); 

  llvm::SmallSet<int64_t, 4> Offsets;
  for (auto *Ptr : VL) {
    // TODO: Outline this code as a special, more time consuming, version of
    // computeConstantDifference() function.
    if (Ptr->getType()->getPointerAddressSpace() !=
        Ptr0->getType()->getPointerAddressSpace())
      return false;
    // If a pointer refers to a different underlying object, bail - the
    // pointers are by definition incomparable.
    Value *CurrObj = getUnderlyingObject(Ptr); 
    if (CurrObj != Obj0)
      return false;

    const SCEV *Scev = SE.getSCEV(Ptr);
    const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0));
    // The pointers may not have a constant offset from each other, or SCEV
    // may just not be smart enough to figure out they do. Regardless,
    // there's nothing we can do.
    if (!Diff)
      return false;

    // Check if the pointer with the same offset is found.
    int64_t Offset = Diff->getAPInt().getSExtValue();
    if (!Offsets.insert(Offset).second)
      return false;
    OffValPairs.emplace_back(Offset, Ptr);
  }
  SortedIndices.clear();
  SortedIndices.resize(VL.size());
  std::iota(SortedIndices.begin(), SortedIndices.end(), 0);

  // Sort the memory accesses and keep the order of their uses in UseOrder.
  llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) {
    return OffValPairs[Left].first < OffValPairs[Right].first;
  });

  // Check if the order is consecutive already.
  if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) {
        return I == SortedIndices[I];
      }))
    SortedIndices.clear();

  return true;
}

/// Take the address space operand from the Load/Store instruction.
/// Returns -1 if this is not a valid Load/Store instruction.
static unsigned getAddressSpaceOperand(Value *I) {
  if (LoadInst *L = dyn_cast<LoadInst>(I))
    return L->getPointerAddressSpace();
  if (StoreInst *S = dyn_cast<StoreInst>(I))
    return S->getPointerAddressSpace();
  return -1;
}

/// Returns true if the memory operations \p A and \p B are consecutive.
bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
                               ScalarEvolution &SE, bool CheckType) {
  Value *PtrA = getLoadStorePointerOperand(A);
  Value *PtrB = getLoadStorePointerOperand(B);
  unsigned ASA = getAddressSpaceOperand(A);
  unsigned ASB = getAddressSpaceOperand(B);

  // Check that the address spaces match and that the pointers are valid.
  if (!PtrA || !PtrB || (ASA != ASB))
    return false;

  // Make sure that A and B are different pointers.
  if (PtrA == PtrB)
    return false;

  // Make sure that A and B have the same type if required.
  if (CheckType && PtrA->getType() != PtrB->getType())
    return false;

  unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
  Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();

  APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
  PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
  PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);

  // Retrieve the address space again as pointer stripping now tracks through
  // `addrspacecast`.
  ASA = cast<PointerType>(PtrA->getType())->getAddressSpace();
  ASB = cast<PointerType>(PtrB->getType())->getAddressSpace();
  // Check that the address spaces match and that the pointers are valid.
  if (ASA != ASB)
    return false;

  IdxWidth = DL.getIndexSizeInBits(ASA);
  OffsetA = OffsetA.sextOrTrunc(IdxWidth);
  OffsetB = OffsetB.sextOrTrunc(IdxWidth);

  APInt Size(IdxWidth, DL.getTypeStoreSize(Ty));

  //  OffsetDelta = OffsetB - OffsetA;
  const SCEV *OffsetSCEVA = SE.getConstant(OffsetA);
  const SCEV *OffsetSCEVB = SE.getConstant(OffsetB);
  const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA);
  const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt();

  // Check if they are based on the same pointer. That makes the offsets
  // sufficient.
  if (PtrA == PtrB)
    return OffsetDelta == Size;

  // Compute the necessary base pointer delta to have the necessary final delta
  // equal to the size.
  // BaseDelta = Size - OffsetDelta;
  const SCEV *SizeSCEV = SE.getConstant(Size);
  const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV);

  // Otherwise compute the distance with SCEV between the base pointers.
  const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
  const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
  const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta);
  return X == PtrSCEVB;
}

MemoryDepChecker::VectorizationSafetyStatus
MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
  switch (Type) {
  case NoDep:
  case Forward:
  case BackwardVectorizable:
    return VectorizationSafetyStatus::Safe;

  case Unknown:
    return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
  case ForwardButPreventsForwarding:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return VectorizationSafetyStatus::Unsafe;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::Dependence::isBackward() const {
  switch (Type) {
  case NoDep:
  case Forward:
  case ForwardButPreventsForwarding:
  case Unknown:
    return false;

  case BackwardVectorizable:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return true;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
  return isBackward() || Type == Unknown;
}

bool MemoryDepChecker::Dependence::isForward() const {
  switch (Type) {
  case Forward:
  case ForwardButPreventsForwarding:
    return true;

  case NoDep:
  case Unknown:
  case BackwardVectorizable:
  case Backward:
  case BackwardVectorizableButPreventsForwarding:
    return false;
  }
  llvm_unreachable("unexpected DepType!");
}

bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
                                                    uint64_t TypeByteSize) {
  // If loads occur at a distance that is not a multiple of a feasible vector
  // factor store-load forwarding does not take place.
  // Positive dependences might cause troubles because vectorizing them might
  // prevent store-load forwarding making vectorized code run a lot slower.
  //   a[i] = a[i-3] ^ a[i-8];
  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
  //   hence on your typical architecture store-load forwarding does not take
  //   place. Vectorizing in such cases does not make sense.
  // Store-load forwarding distance.

  // After this many iterations store-to-load forwarding conflicts should not
  // cause any slowdowns.
  const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
  // Maximum vector factor.
  uint64_t MaxVFWithoutSLForwardIssues = std::min(
      VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes);

  // Compute the smallest VF at which the store and load would be misaligned.
  for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
       VF *= 2) {
    // If the number of vector iteration between the store and the load are
    // small we could incur conflicts.
    if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
      MaxVFWithoutSLForwardIssues = (VF >> 1); 
      break;
    }
  }

  if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
    LLVM_DEBUG(
        dbgs() << "LAA: Distance " << Distance
               << " that could cause a store-load forwarding conflict\n");
    return true;
  }

  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
      MaxVFWithoutSLForwardIssues !=
          VectorizerParams::MaxVectorWidth * TypeByteSize)
    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
  return false;
}

void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
  if (Status < S)
    Status = S;
}

/// Given a non-constant (unknown) dependence-distance \p Dist between two
/// memory accesses, that have the same stride whose absolute value is given
/// in \p Stride, and that have the same type size \p TypeByteSize,
/// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
/// possible to prove statically that the dependence distance is larger
/// than the range that the accesses will travel through the execution of
/// the loop. If so, return true; false otherwise. This is useful for
/// example in loops such as the following (PR31098):
///     for (i = 0; i < D; ++i) {
///                = out[i];
///       out[i+D] =
///     }
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
                                     const SCEV &BackedgeTakenCount,
                                     const SCEV &Dist, uint64_t Stride,
                                     uint64_t TypeByteSize) {

  // If we can prove that
  //      (**) |Dist| > BackedgeTakenCount * Step
  // where Step is the absolute stride of the memory accesses in bytes,
  // then there is no dependence.
  //
  // Rationale:
  // We basically want to check if the absolute distance (|Dist/Step|)
  // is >= the loop iteration count (or > BackedgeTakenCount).
  // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
  // Section 4.2.1); Note, that for vectorization it is sufficient to prove
  // that the dependence distance is >= VF; This is checked elsewhere.
  // But in some cases we can prune unknown dependence distances early, and
  // even before selecting the VF, and without a runtime test, by comparing
  // the distance against the loop iteration count. Since the vectorized code
  // will be executed only if LoopCount >= VF, proving distance >= LoopCount
  // also guarantees that distance >= VF.
  //
  const uint64_t ByteStride = Stride * TypeByteSize;
  const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
  const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);

  const SCEV *CastedDist = &Dist;
  const SCEV *CastedProduct = Product;
  uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType());
  uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType());

  // The dependence distance can be positive/negative, so we sign extend Dist;
  // The multiplication of the absolute stride in bytes and the
  // backedgeTakenCount is non-negative, so we zero extend Product.
  if (DistTypeSize > ProductTypeSize)
    CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
  else
    CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());

  // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
  // (If so, then we have proven (**) because |Dist| >= Dist)
  const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
  if (SE.isKnownPositive(Minus))
    return true;

  // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
  // (If so, then we have proven (**) because |Dist| >= -1*Dist)
  const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
  Minus = SE.getMinusSCEV(NegDist, CastedProduct);
  if (SE.isKnownPositive(Minus))
    return true;

  return false;
}

/// Check the dependence for two accesses with the same stride \p Stride.
/// \p Distance is the positive distance and \p TypeByteSize is type size in
/// bytes.
///
/// \returns true if they are independent.
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
                                          uint64_t TypeByteSize) {
  assert(Stride > 1 && "The stride must be greater than 1");
  assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
  assert(Distance > 0 && "The distance must be non-zero");

  // Skip if the distance is not multiple of type byte size.
  if (Distance % TypeByteSize)
    return false;

  uint64_t ScaledDist = Distance / TypeByteSize;

  // No dependence if the scaled distance is not multiple of the stride.
  // E.g.
  //      for (i = 0; i < 1024 ; i += 4)
  //        A[i+2] = A[i] + 1;
  //
  // Two accesses in memory (scaled distance is 2, stride is 4):
  //     | A[0] |      |      |      | A[4] |      |      |      |
  //     |      |      | A[2] |      |      |      | A[6] |      |
  //
  // E.g.
  //      for (i = 0; i < 1024 ; i += 3)
  //        A[i+4] = A[i] + 1;
  //
  // Two accesses in memory (scaled distance is 4, stride is 3):
  //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
  //     |      |      |      |      | A[4] |      |      | A[7] |      |
  return ScaledDist % Stride;
}

MemoryDepChecker::Dependence::DepType
MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
                              const MemAccessInfo &B, unsigned BIdx,
                              const ValueToValueMap &Strides) {
  assert (AIdx < BIdx && "Must pass arguments in program order");

  Value *APtr = A.getPointer();
  Value *BPtr = B.getPointer();
  bool AIsWrite = A.getInt();
  bool BIsWrite = B.getInt();

  // Two reads are independent.
  if (!AIsWrite && !BIsWrite)
    return Dependence::NoDep;

  // We cannot check pointers in different address spaces.
  if (APtr->getType()->getPointerAddressSpace() !=
      BPtr->getType()->getPointerAddressSpace())
    return Dependence::Unknown;

  int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true);
  int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true);

  const SCEV *Src = PSE.getSCEV(APtr);
  const SCEV *Sink = PSE.getSCEV(BPtr);

  // If the induction step is negative we have to invert source and sink of the
  // dependence.
  if (StrideAPtr < 0) {
    std::swap(APtr, BPtr);
    std::swap(Src, Sink);
    std::swap(AIsWrite, BIsWrite);
    std::swap(AIdx, BIdx);
    std::swap(StrideAPtr, StrideBPtr);
  }

  const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src);

  LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
                    << "(Induction step: " << StrideAPtr << ")\n");
  LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to "
                    << *InstMap[BIdx] << ": " << *Dist << "\n");

  // Need accesses with constant stride. We don't want to vectorize
  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
  // the address space.
  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
    LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
    return Dependence::Unknown;
  }

  Type *ATy = APtr->getType()->getPointerElementType();
  Type *BTy = BPtr->getType()->getPointerElementType();
  auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
  uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
  uint64_t Stride = std::abs(StrideAPtr);
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
  if (!C) {
    if (TypeByteSize == DL.getTypeAllocSize(BTy) &&
        isSafeDependenceDistance(DL, *(PSE.getSE()),
                                 *(PSE.getBackedgeTakenCount()), *Dist, Stride,
                                 TypeByteSize))
      return Dependence::NoDep;

    LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
    FoundNonConstantDistanceDependence = true;
    return Dependence::Unknown;
  }

  const APInt &Val = C->getAPInt();
  int64_t Distance = Val.getSExtValue();

  // Attempt to prove strided accesses independent.
  if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy &&
      areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
    LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
    return Dependence::NoDep;
  }

  // Negative distances are not plausible dependencies.
  if (Val.isNegative()) {
    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
    if (IsTrueDataDependence && EnableForwardingConflictDetection &&
        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
         ATy != BTy)) {
      LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
      return Dependence::ForwardButPreventsForwarding;
    }

    LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
    return Dependence::Forward;
  }

  // Write to the same location with the same size.
  // Could be improved to assert type sizes are the same (i32 == float, etc).
  if (Val == 0) {
    if (ATy == BTy)
      return Dependence::Forward;
    LLVM_DEBUG(
        dbgs() << "LAA: Zero dependence difference but different types\n");
    return Dependence::Unknown;
  }

  assert(Val.isStrictlyPositive() && "Expect a positive value");

  if (ATy != BTy) {
    LLVM_DEBUG(
        dbgs()
        << "LAA: ReadWrite-Write positive dependency with different types\n");
    return Dependence::Unknown;
  }

  // Bail out early if passed-in parameters make vectorization not feasible.
  unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
                           VectorizerParams::VectorizationFactor : 1);
  unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
                           VectorizerParams::VectorizationInterleave : 1);
  // The minimum number of iterations for a vectorized/unrolled version.
  unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);

  // It's not vectorizable if the distance is smaller than the minimum distance
  // needed for a vectroized/unrolled version. Vectorizing one iteration in
  // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
  // TypeByteSize (No need to plus the last gap distance).
  //
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
  //      foo(int *A) {
  //        int *B = (int *)((char *)A + 14);
  //        for (i = 0 ; i < 1024 ; i += 2)
  //          B[i] = A[i] + 1;
  //      }
  //
  // Two accesses in memory (stride is 2):
  //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
  //                              | B[0] |      | B[2] |      | B[4] |
  //
  // Distance needs for vectorizing iterations except the last iteration:
  // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
  // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
  //
  // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
  // 12, which is less than distance.
  //
  // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
  // the minimum distance needed is 28, which is greater than distance. It is
  // not safe to do vectorization.
  uint64_t MinDistanceNeeded =
      TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
  if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
    LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
                      << Distance << '\n');
    return Dependence::Backward;
  }

  // Unsafe if the minimum distance needed is greater than max safe distance.
  if (MinDistanceNeeded > MaxSafeDepDistBytes) {
    LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
                      << MinDistanceNeeded << " size in bytes");
    return Dependence::Backward;
  }

  // Positive distance bigger than max vectorization factor.
  // FIXME: Should use max factor instead of max distance in bytes, which could
  // not handle different types.
  // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
  //      void foo (int *A, char *B) {
  //        for (unsigned i = 0; i < 1024; i++) {
  //          A[i+2] = A[i] + 1;
  //          B[i+2] = B[i] + 1;
  //        }
  //      }
  //
  // This case is currently unsafe according to the max safe distance. If we
  // analyze the two accesses on array B, the max safe dependence distance
  // is 2. Then we analyze the accesses on array A, the minimum distance needed
  // is 8, which is less than 2 and forbidden vectorization, But actually
  // both A and B could be vectorized by 2 iterations.
  MaxSafeDepDistBytes =
      std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes);

  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
  if (IsTrueDataDependence && EnableForwardingConflictDetection &&
      couldPreventStoreLoadForward(Distance, TypeByteSize))
    return Dependence::BackwardVectorizableButPreventsForwarding;

  uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride);
  LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
                    << " with max VF = " << MaxVF << '\n');
  uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
  MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 
  return Dependence::BackwardVectorizable;
}

bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets,
                                   MemAccessInfoList &CheckDeps,
                                   const ValueToValueMap &Strides) {

  MaxSafeDepDistBytes = -1;
  SmallPtrSet<MemAccessInfo, 8> Visited;
  for (MemAccessInfo CurAccess : CheckDeps) {
    if (Visited.count(CurAccess))
      continue;

    // Get the relevant memory access set.
    EquivalenceClasses<MemAccessInfo>::iterator I =
      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));

    // Check accesses within this set.
    EquivalenceClasses<MemAccessInfo>::member_iterator AI =
        AccessSets.member_begin(I);
    EquivalenceClasses<MemAccessInfo>::member_iterator AE =
        AccessSets.member_end();

    // Check every access pair.
    while (AI != AE) {
      Visited.insert(*AI);
      bool AIIsWrite = AI->getInt();
      // Check loads only against next equivalent class, but stores also against
      // other stores in the same equivalence class - to the same address.
      EquivalenceClasses<MemAccessInfo>::member_iterator OI =
          (AIIsWrite ? AI : std::next(AI));
      while (OI != AE) {
        // Check every accessing instruction pair in program order.
        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
          // Scan all accesses of another equivalence class, but only the next
          // accesses of the same equivalent class.
          for (std::vector<unsigned>::iterator
                   I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
                   I2E = (OI == AI ? I1E : Accesses[*OI].end());
               I2 != I2E; ++I2) {
            auto A = std::make_pair(&*AI, *I1);
            auto B = std::make_pair(&*OI, *I2);

            assert(*I1 != *I2);
            if (*I1 > *I2)
              std::swap(A, B);

            Dependence::DepType Type =
                isDependent(*A.first, A.second, *B.first, B.second, Strides);
            mergeInStatus(Dependence::isSafeForVectorization(Type));

            // Gather dependences unless we accumulated MaxDependences
            // dependences.  In that case return as soon as we find the first
            // unsafe dependence.  This puts a limit on this quadratic
            // algorithm.
            if (RecordDependences) {
              if (Type != Dependence::NoDep)
                Dependences.push_back(Dependence(A.second, B.second, Type));

              if (Dependences.size() >= MaxDependences) {
                RecordDependences = false;
                Dependences.clear();
                LLVM_DEBUG(dbgs()
                           << "Too many dependences, stopped recording\n");
              }
            }
            if (!RecordDependences && !isSafeForVectorization())
              return false;
          }
        ++OI;
      }
      AI++;
    }
  }

  LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
  return isSafeForVectorization();
}

SmallVector<Instruction *, 4>
MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
  MemAccessInfo Access(Ptr, isWrite);
  auto &IndexVector = Accesses.find(Access)->second;

  SmallVector<Instruction *, 4> Insts;
  transform(IndexVector,
                 std::back_inserter(Insts),
                 [&](unsigned Idx) { return this->InstMap[Idx]; });
  return Insts;
}

const char *MemoryDepChecker::Dependence::DepName[] = {
    "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward",
    "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"};

void MemoryDepChecker::Dependence::print(
    raw_ostream &OS, unsigned Depth,
    const SmallVectorImpl<Instruction *> &Instrs) const {
  OS.indent(Depth) << DepName[Type] << ":\n";
  OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
  OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
}

bool LoopAccessInfo::canAnalyzeLoop() {
  // We need to have a loop header.
  LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
                    << TheLoop->getHeader()->getParent()->getName() << ": "
                    << TheLoop->getHeader()->getName() << '\n');

  // We can only analyze innermost loops.
  if (!TheLoop->isInnermost()) { 
    LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
    recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
    return false;
  }

  // We must have a single backedge.
  if (TheLoop->getNumBackEdges() != 1) {
    LLVM_DEBUG(
        dbgs() << "LAA: loop control flow is not understood by analyzer\n");
    recordAnalysis("CFGNotUnderstood")
        << "loop control flow is not understood by analyzer";
    return false;
  }

  // ScalarEvolution needs to be able to find the exit count.
  const SCEV *ExitCount = PSE->getBackedgeTakenCount();
  if (isa<SCEVCouldNotCompute>(ExitCount)) { 
    recordAnalysis("CantComputeNumberOfIterations")
        << "could not determine number of loop iterations";
    LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
    return false;
  }

  return true;
}

void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
                                 const TargetLibraryInfo *TLI,
                                 DominatorTree *DT) {
  typedef SmallPtrSet<Value*, 16> ValueSet;

  // Holds the Load and Store instructions.
  SmallVector<LoadInst *, 16> Loads;
  SmallVector<StoreInst *, 16> Stores;

  // Holds all the different accesses in the loop.
  unsigned NumReads = 0;
  unsigned NumReadWrites = 0;

  bool HasComplexMemInst = false;

  // A runtime check is only legal to insert if there are no convergent calls.
  HasConvergentOp = false;

  PtrRtChecking->Pointers.clear();
  PtrRtChecking->Need = false;

  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();

  const bool EnableMemAccessVersioningOfLoop =
      EnableMemAccessVersioning &&
      !TheLoop->getHeader()->getParent()->hasOptSize();

  // For each block.
  for (BasicBlock *BB : TheLoop->blocks()) {
    // Scan the BB and collect legal loads and stores. Also detect any
    // convergent instructions.
    for (Instruction &I : *BB) {
      if (auto *Call = dyn_cast<CallBase>(&I)) {
        if (Call->isConvergent())
          HasConvergentOp = true;
      }

      // With both a non-vectorizable memory instruction and a convergent
      // operation, found in this loop, no reason to continue the search.
      if (HasComplexMemInst && HasConvergentOp) {
        CanVecMem = false;
        return;
      }

      // Avoid hitting recordAnalysis multiple times.
      if (HasComplexMemInst)
        continue;

      // If this is a load, save it. If this instruction can read from memory
      // but is not a load, then we quit. Notice that we don't handle function
      // calls that read or write.
      if (I.mayReadFromMemory()) {
        // Many math library functions read the rounding mode. We will only
        // vectorize a loop if it contains known function calls that don't set
        // the flag. Therefore, it is safe to ignore this read from memory.
        auto *Call = dyn_cast<CallInst>(&I);
        if (Call && getVectorIntrinsicIDForCall(Call, TLI))
          continue;

        // If the function has an explicit vectorized counterpart, we can safely
        // assume that it can be vectorized.
        if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
            !VFDatabase::getMappings(*Call).empty())
          continue;

        auto *Ld = dyn_cast<LoadInst>(&I);
        if (!Ld) {
          recordAnalysis("CantVectorizeInstruction", Ld)
            << "instruction cannot be vectorized";
          HasComplexMemInst = true;
          continue;
        }
        if (!Ld->isSimple() && !IsAnnotatedParallel) {
          recordAnalysis("NonSimpleLoad", Ld)
              << "read with atomic ordering or volatile read";
          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
          HasComplexMemInst = true;
          continue;
        }
        NumLoads++;
        Loads.push_back(Ld);
        DepChecker->addAccess(Ld);
        if (EnableMemAccessVersioningOfLoop)
          collectStridedAccess(Ld);
        continue;
      }

      // Save 'store' instructions. Abort if other instructions write to memory.
      if (I.mayWriteToMemory()) {
        auto *St = dyn_cast<StoreInst>(&I);
        if (!St) {
          recordAnalysis("CantVectorizeInstruction", St)
              << "instruction cannot be vectorized";
          HasComplexMemInst = true;
          continue;
        }
        if (!St->isSimple() && !IsAnnotatedParallel) {
          recordAnalysis("NonSimpleStore", St)
              << "write with atomic ordering or volatile write";
          LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
          HasComplexMemInst = true;
          continue;
        }
        NumStores++;
        Stores.push_back(St);
        DepChecker->addAccess(St);
        if (EnableMemAccessVersioningOfLoop)
          collectStridedAccess(St);
      }
    } // Next instr.
  } // Next block.

  if (HasComplexMemInst) {
    CanVecMem = false;
    return;
  }

  // Now we have two lists that hold the loads and the stores.
  // Next, we find the pointers that they use.

  // Check if we see any stores. If there are no stores, then we don't
  // care if the pointers are *restrict*.
  if (!Stores.size()) {
    LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
    CanVecMem = true;
    return;
  }

  MemoryDepChecker::DepCandidates DependentAccesses;
  AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 

  // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 
  // multiple times on the same object. If the ptr is accessed twice, once
  // for read and once for write, it will only appear once (on the write
  // list). This is okay, since we are going to check for conflicts between
  // writes and between reads and writes, but not between reads and reads.
  ValueSet Seen;

  // Record uniform store addresses to identify if we have multiple stores
  // to the same address.
  ValueSet UniformStores;

  for (StoreInst *ST : Stores) {
    Value *Ptr = ST->getPointerOperand();

    if (isUniform(Ptr))
      HasDependenceInvolvingLoopInvariantAddress |=
          !UniformStores.insert(Ptr).second;

    // If we did *not* see this pointer before, insert it to  the read-write
    // list. At this phase it is only a 'write' list.
    if (Seen.insert(Ptr).second) {
      ++NumReadWrites;

      MemoryLocation Loc = MemoryLocation::get(ST);
      // The TBAA metadata could have a control dependency on the predication
      // condition, so we cannot rely on it when determining whether or not we
      // need runtime pointer checks.
      if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
        Loc.AATags.TBAA = nullptr;

      Accesses.addStore(Loc);
    }
  }

  if (IsAnnotatedParallel) {
    LLVM_DEBUG(
        dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
               << "checks.\n");
    CanVecMem = true;
    return;
  }

  for (LoadInst *LD : Loads) {
    Value *Ptr = LD->getPointerOperand();
    // If we did *not* see this pointer before, insert it to the
    // read list. If we *did* see it before, then it is already in
    // the read-write list. This allows us to vectorize expressions
    // such as A[i] += x;  Because the address of A[i] is a read-write
    // pointer. This only works if the index of A[i] is consecutive.
    // If the address of i is unknown (for example A[B[i]]) then we may
    // read a few words, modify, and write a few words, and some of the
    // words may be written to the same address.
    bool IsReadOnlyPtr = false;
    if (Seen.insert(Ptr).second ||
        !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) {
      ++NumReads;
      IsReadOnlyPtr = true;
    }

    // See if there is an unsafe dependency between a load to a uniform address and
    // store to the same uniform address.
    if (UniformStores.count(Ptr)) {
      LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
                           "load and uniform store to the same address!\n");
      HasDependenceInvolvingLoopInvariantAddress = true;
    }

    MemoryLocation Loc = MemoryLocation::get(LD);
    // The TBAA metadata could have a control dependency on the predication
    // condition, so we cannot rely on it when determining whether or not we
    // need runtime pointer checks.
    if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
      Loc.AATags.TBAA = nullptr;

    Accesses.addLoad(Loc, IsReadOnlyPtr);
  }

  // If we write (or read-write) to a single destination and there are no
  // other reads in this loop then is it safe to vectorize.
  if (NumReadWrites == 1 && NumReads == 0) {
    LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
    CanVecMem = true;
    return;
  }

  // Build dependence sets and check whether we need a runtime pointer bounds
  // check.
  Accesses.buildDependenceSets();

  // Find pointers with computable bounds. We are going to use this information
  // to place a runtime bound check.
  bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(),
                                                  TheLoop, SymbolicStrides);
  if (!CanDoRTIfNeeded) {
    recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds";
    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
                      << "the array bounds.\n");
    CanVecMem = false;
    return;
  }

  LLVM_DEBUG(
    dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");

  CanVecMem = true;
  if (Accesses.isDependencyCheckNeeded()) {
    LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
    CanVecMem = DepChecker->areDepsSafe(
        DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides);
    MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes();

    if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
      LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");

      // Clear the dependency checks. We assume they are not needed.
      Accesses.resetDepChecks(*DepChecker);

      PtrRtChecking->reset();
      PtrRtChecking->Need = true;

      auto *SE = PSE->getSE();
      CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop,
                                                 SymbolicStrides, true);

      // Check that we found the bounds for the pointer.
      if (!CanDoRTIfNeeded) {
        recordAnalysis("CantCheckMemDepsAtRunTime")
            << "cannot check memory dependencies at runtime";
        LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
        CanVecMem = false;
        return;
      }

      CanVecMem = true;
    }
  }

  if (HasConvergentOp) {
    recordAnalysis("CantInsertRuntimeCheckWithConvergent")
      << "cannot add control dependency to convergent operation";
    LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
                         "would be needed with a convergent operation\n");
    CanVecMem = false;
    return;
  }

  if (CanVecMem)
    LLVM_DEBUG(
        dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
               << (PtrRtChecking->Need ? "" : " don't")
               << " need runtime memory checks.\n");
  else {
    recordAnalysis("UnsafeMemDep")
        << "unsafe dependent memory operations in loop. Use "
           "#pragma loop distribute(enable) to allow loop distribution "
           "to attempt to isolate the offending operations into a separate "
           "loop";
    LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
  }
}

bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
                                           DominatorTree *DT)  {
  assert(TheLoop->contains(BB) && "Unknown block used");

  // Blocks that do not dominate the latch need predication.
  BasicBlock* Latch = TheLoop->getLoopLatch();
  return !DT->dominates(BB, Latch);
}

OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
                                                           Instruction *I) {
  assert(!Report && "Multiple reports generated");

  Value *CodeRegion = TheLoop->getHeader();
  DebugLoc DL = TheLoop->getStartLoc();

  if (I) {
    CodeRegion = I->getParent();
    // If there is no debug location attached to the instruction, revert back to
    // using the loop's.
    if (I->getDebugLoc())
      DL = I->getDebugLoc();
  }

  Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
                                                   CodeRegion);
  return *Report;
}

bool LoopAccessInfo::isUniform(Value *V) const {
  auto *SE = PSE->getSE();
  // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
  // never considered uniform.
  // TODO: Is this really what we want? Even without FP SCEV, we may want some
  // trivially loop-invariant FP values to be considered uniform.
  if (!SE->isSCEVable(V->getType()))
    return false;
  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}

void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
  Value *Ptr = getLoadStorePointerOperand(MemAccess); 
  if (!Ptr) 
    return;

  Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
  if (!Stride)
    return;

  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
                       "versioning:");
  LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");

  // Avoid adding the "Stride == 1" predicate when we know that
  // Stride >= Trip-Count. Such a predicate will effectively optimize a single
  // or zero iteration loop, as Trip-Count <= Stride == 1.
  //
  // TODO: We are currently not making a very informed decision on when it is
  // beneficial to apply stride versioning. It might make more sense that the
  // users of this analysis (such as the vectorizer) will trigger it, based on
  // their specific cost considerations; For example, in cases where stride
  // versioning does  not help resolving memory accesses/dependences, the
  // vectorizer should evaluate the cost of the runtime test, and the benefit
  // of various possible stride specializations, considering the alternatives
  // of using gather/scatters (if available).

  const SCEV *StrideExpr = PSE->getSCEV(Stride);
  const SCEV *BETakenCount = PSE->getBackedgeTakenCount();

  // Match the types so we can compare the stride and the BETakenCount.
  // The Stride can be positive/negative, so we sign extend Stride;
  // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
  const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
  uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType());
  uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType());
  const SCEV *CastedStride = StrideExpr;
  const SCEV *CastedBECount = BETakenCount;
  ScalarEvolution *SE = PSE->getSE();
  if (BETypeSize >= StrideTypeSize)
    CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
  else
    CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
  const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
  // Since TripCount == BackEdgeTakenCount + 1, checking:
  // "Stride >= TripCount" is equivalent to checking:
  // Stride - BETakenCount > 0
  if (SE->isKnownPositive(StrideMinusBETaken)) {
    LLVM_DEBUG(
        dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
                  "Stride==1 predicate will imply that the loop executes "
                  "at most once.\n");
    return;
  }
  LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.");

  SymbolicStrides[Ptr] = Stride;
  StrideSet.insert(Stride);
}

LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
                               const TargetLibraryInfo *TLI, AAResults *AA,
                               DominatorTree *DT, LoopInfo *LI)
    : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
      PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)),
      DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L),
      NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false),
      HasConvergentOp(false),
      HasDependenceInvolvingLoopInvariantAddress(false) {
  if (canAnalyzeLoop())
    analyzeLoop(AA, LI, TLI, DT);
}

void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
  if (CanVecMem) {
    OS.indent(Depth) << "Memory dependences are safe";
    if (MaxSafeDepDistBytes != -1ULL)
      OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes
         << " bytes";
    if (PtrRtChecking->Need)
      OS << " with run-time checks";
    OS << "\n";
  }

  if (HasConvergentOp)
    OS.indent(Depth) << "Has convergent operation in loop\n";

  if (Report)
    OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";

  if (auto *Dependences = DepChecker->getDependences()) {
    OS.indent(Depth) << "Dependences:\n";
    for (auto &Dep : *Dependences) {
      Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
      OS << "\n";
    }
  } else
    OS.indent(Depth) << "Too many dependences, not recorded\n";

  // List the pair of accesses need run-time checks to prove independence.
  PtrRtChecking->print(OS, Depth);
  OS << "\n";

  OS.indent(Depth) << "Non vectorizable stores to invariant address were "
                   << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
                   << "found in loop.\n";

  OS.indent(Depth) << "SCEV assumptions:\n";
  PSE->getUnionPredicate().print(OS, Depth);

  OS << "\n";

  OS.indent(Depth) << "Expressions re-written:\n";
  PSE->print(OS, Depth);
}

LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) {
  initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
}

const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) {
  auto &LAI = LoopAccessInfoMap[L];

  if (!LAI)
    LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI);

  return *LAI.get();
}

void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const {
  LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this);

  for (Loop *TopLevelLoop : *LI)
    for (Loop *L : depth_first(TopLevelLoop)) {
      OS.indent(2) << L->getHeader()->getName() << ":\n";
      auto &LAI = LAA.getInfo(L);
      LAI.print(OS, 4);
    }
}

bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) {
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
  TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

  return false;
}

void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();

    AU.setPreservesAll();
}

char LoopAccessLegacyAnalysis::ID = 0;
static const char laa_name[] = "Loop Access Analysis";
#define LAA_NAME "loop-accesses"

INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true)

AnalysisKey LoopAccessAnalysis::Key;

LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM,
                                       LoopStandardAnalysisResults &AR) {
  return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI);
}

namespace llvm {

  Pass *createLAAPass() {
    return new LoopAccessLegacyAnalysis();
  }

} // end namespace llvm