aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Analysis/InlineCost.cpp
blob: d937665464bf1e21b935f3c329d0b0c8d04a209e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
//===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements inline cost analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/InlineCost.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "inline-cost"

STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");

static cl::opt<int>
    DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
                     cl::ZeroOrMore,
                     cl::desc("Default amount of inlining to perform"));

static cl::opt<bool> PrintInstructionComments(
    "print-instruction-comments", cl::Hidden, cl::init(false),
    cl::desc("Prints comments for instruction based on inline cost analysis"));

static cl::opt<int> InlineThreshold(
    "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
    cl::desc("Control the amount of inlining to perform (default = 225)"));

static cl::opt<int> HintThreshold(
    "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
    cl::desc("Threshold for inlining functions with inline hint"));

static cl::opt<int>
    ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
                          cl::init(45), cl::ZeroOrMore,
                          cl::desc("Threshold for inlining cold callsites"));

static cl::opt<bool> InlineEnableCostBenefitAnalysis( 
    "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 
    cl::desc("Enable the cost-benefit analysis for the inliner")); 
 
static cl::opt<int> InlineSavingsMultiplier( 
    "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 
    cl::desc("Multiplier to multiply cycle savings by during inlining")); 
 
static cl::opt<int> 
    InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 
                        cl::ZeroOrMore, 
                        cl::desc("The maximum size of a callee that get's " 
                                 "inlined without sufficient cycle savings")); 
 
// We introduce this threshold to help performance of instrumentation based
// PGO before we actually hook up inliner with analysis passes such as BPI and
// BFI.
static cl::opt<int> ColdThreshold(
    "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
    cl::desc("Threshold for inlining functions with cold attribute"));

static cl::opt<int>
    HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
                         cl::ZeroOrMore,
                         cl::desc("Threshold for hot callsites "));

static cl::opt<int> LocallyHotCallSiteThreshold(
    "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
    cl::desc("Threshold for locally hot callsites "));

static cl::opt<int> ColdCallSiteRelFreq(
    "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
    cl::desc("Maximum block frequency, expressed as a percentage of caller's "
             "entry frequency, for a callsite to be cold in the absence of "
             "profile information."));

static cl::opt<int> HotCallSiteRelFreq(
    "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
    cl::desc("Minimum block frequency, expressed as a multiple of caller's "
             "entry frequency, for a callsite to be hot in the absence of "
             "profile information."));

static cl::opt<bool> OptComputeFullInlineCost(
    "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
    cl::desc("Compute the full inline cost of a call site even when the cost "
             "exceeds the threshold."));

static cl::opt<bool> InlineCallerSupersetNoBuiltin(
    "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
    cl::ZeroOrMore,
    cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
             "attributes."));

static cl::opt<bool> DisableGEPConstOperand(
    "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
    cl::desc("Disables evaluation of GetElementPtr with constant operands"));

namespace {
class InlineCostCallAnalyzer;

// This struct is used to store information about inline cost of a
// particular instruction
struct InstructionCostDetail {
  int CostBefore = 0;
  int CostAfter = 0;
  int ThresholdBefore = 0;
  int ThresholdAfter = 0;

  int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }

  int getCostDelta() const { return CostAfter - CostBefore; }

  bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
};

class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
private:
  InlineCostCallAnalyzer *const ICCA;

public:
  InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
  virtual void emitInstructionAnnot(const Instruction *I,
                                    formatted_raw_ostream &OS) override;
};

/// Carry out call site analysis, in order to evaluate inlinability.
/// NOTE: the type is currently used as implementation detail of functions such
/// as llvm::getInlineCost. Note the function_ref constructor parameters - the
/// expectation is that they come from the outer scope, from the wrapper
/// functions. If we want to support constructing CallAnalyzer objects where
/// lambdas are provided inline at construction, or where the object needs to
/// otherwise survive past the scope of the provided functions, we need to
/// revisit the argument types.
class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
  typedef InstVisitor<CallAnalyzer, bool> Base;
  friend class InstVisitor<CallAnalyzer, bool>;

protected:
  virtual ~CallAnalyzer() {}
  /// The TargetTransformInfo available for this compilation.
  const TargetTransformInfo &TTI;

  /// Getter for the cache of @llvm.assume intrinsics.
  function_ref<AssumptionCache &(Function &)> GetAssumptionCache;

  /// Getter for BlockFrequencyInfo
  function_ref<BlockFrequencyInfo &(Function &)> GetBFI;

  /// Profile summary information.
  ProfileSummaryInfo *PSI;

  /// The called function.
  Function &F;

  // Cache the DataLayout since we use it a lot.
  const DataLayout &DL;

  /// The OptimizationRemarkEmitter available for this compilation.
  OptimizationRemarkEmitter *ORE;

  /// The candidate callsite being analyzed. Please do not use this to do
  /// analysis in the caller function; we want the inline cost query to be
  /// easily cacheable. Instead, use the cover function paramHasAttr.
  CallBase &CandidateCall;

  /// Extension points for handling callsite features.
  // Called before a basic block was analyzed. 
  virtual void onBlockStart(const BasicBlock *BB) {} 
 
  /// Called after a basic block was analyzed.
  virtual void onBlockAnalyzed(const BasicBlock *BB) {}

  /// Called before an instruction was analyzed
  virtual void onInstructionAnalysisStart(const Instruction *I) {}

  /// Called after an instruction was analyzed
  virtual void onInstructionAnalysisFinish(const Instruction *I) {}

  /// Called at the end of the analysis of the callsite. Return the outcome of
  /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
  /// the reason it can't.
  virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
  /// Called when we're about to start processing a basic block, and every time
  /// we are done processing an instruction. Return true if there is no point in
  /// continuing the analysis (e.g. we've determined already the call site is
  /// too expensive to inline)
  virtual bool shouldStop() { return false; }

  /// Called before the analysis of the callee body starts (with callsite
  /// contexts propagated).  It checks callsite-specific information. Return a
  /// reason analysis can't continue if that's the case, or 'true' if it may
  /// continue.
  virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
  /// Called if the analysis engine decides SROA cannot be done for the given
  /// alloca.
  virtual void onDisableSROA(AllocaInst *Arg) {}

  /// Called the analysis engine determines load elimination won't happen.
  virtual void onDisableLoadElimination() {}

  /// Called to account for a call.
  virtual void onCallPenalty() {}

  /// Called to account for the expectation the inlining would result in a load
  /// elimination.
  virtual void onLoadEliminationOpportunity() {}

  /// Called to account for the cost of argument setup for the Call in the
  /// callee's body (not the callsite currently under analysis).
  virtual void onCallArgumentSetup(const CallBase &Call) {}

  /// Called to account for a load relative intrinsic.
  virtual void onLoadRelativeIntrinsic() {}

  /// Called to account for a lowered call.
  virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
  }

  /// Account for a jump table of given size. Return false to stop further
  /// processing the switch instruction
  virtual bool onJumpTable(unsigned JumpTableSize) { return true; }

  /// Account for a case cluster of given size. Return false to stop further
  /// processing of the instruction.
  virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }

  /// Called at the end of processing a switch instruction, with the given
  /// number of case clusters.
  virtual void onFinalizeSwitch(unsigned JumpTableSize,
                                unsigned NumCaseCluster) {}

  /// Called to account for any other instruction not specifically accounted
  /// for.
  virtual void onMissedSimplification() {}

  /// Start accounting potential benefits due to SROA for the given alloca.
  virtual void onInitializeSROAArg(AllocaInst *Arg) {}

  /// Account SROA savings for the AllocaInst value.
  virtual void onAggregateSROAUse(AllocaInst *V) {}

  bool handleSROA(Value *V, bool DoNotDisable) {
    // Check for SROA candidates in comparisons.
    if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
      if (DoNotDisable) {
        onAggregateSROAUse(SROAArg);
        return true;
      }
      disableSROAForArg(SROAArg);
    }
    return false;
  }

  bool IsCallerRecursive = false;
  bool IsRecursiveCall = false;
  bool ExposesReturnsTwice = false;
  bool HasDynamicAlloca = false;
  bool ContainsNoDuplicateCall = false;
  bool HasReturn = false;
  bool HasIndirectBr = false;
  bool HasUninlineableIntrinsic = false;
  bool InitsVargArgs = false;

  /// Number of bytes allocated statically by the callee.
  uint64_t AllocatedSize = 0;
  unsigned NumInstructions = 0;
  unsigned NumVectorInstructions = 0;

  /// While we walk the potentially-inlined instructions, we build up and
  /// maintain a mapping of simplified values specific to this callsite. The
  /// idea is to propagate any special information we have about arguments to
  /// this call through the inlinable section of the function, and account for
  /// likely simplifications post-inlining. The most important aspect we track
  /// is CFG altering simplifications -- when we prove a basic block dead, that
  /// can cause dramatic shifts in the cost of inlining a function.
  DenseMap<Value *, Constant *> SimplifiedValues;

  /// Keep track of the values which map back (through function arguments) to
  /// allocas on the caller stack which could be simplified through SROA.
  DenseMap<Value *, AllocaInst *> SROAArgValues;

  /// Keep track of Allocas for which we believe we may get SROA optimization.
  DenseSet<AllocaInst *> EnabledSROAAllocas;

  /// Keep track of values which map to a pointer base and constant offset.
  DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;

  /// Keep track of dead blocks due to the constant arguments.
  SetVector<BasicBlock *> DeadBlocks;

  /// The mapping of the blocks to their known unique successors due to the
  /// constant arguments.
  DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;

  /// Model the elimination of repeated loads that is expected to happen
  /// whenever we simplify away the stores that would otherwise cause them to be
  /// loads.
  bool EnableLoadElimination;
  SmallPtrSet<Value *, 16> LoadAddrSet;

  AllocaInst *getSROAArgForValueOrNull(Value *V) const {
    auto It = SROAArgValues.find(V);
    if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
      return nullptr;
    return It->second;
  }

  // Custom simplification helper routines.
  bool isAllocaDerivedArg(Value *V);
  void disableSROAForArg(AllocaInst *SROAArg);
  void disableSROA(Value *V);
  void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
  void disableLoadElimination();
  bool isGEPFree(GetElementPtrInst &GEP);
  bool canFoldInboundsGEP(GetElementPtrInst &I);
  bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
  bool simplifyCallSite(Function *F, CallBase &Call);
  template <typename Callable>
  bool simplifyInstruction(Instruction &I, Callable Evaluate);
  ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);

  /// Return true if the given argument to the function being considered for
  /// inlining has the given attribute set either at the call site or the
  /// function declaration.  Primarily used to inspect call site specific
  /// attributes since these can be more precise than the ones on the callee
  /// itself.
  bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);

  /// Return true if the given value is known non null within the callee if
  /// inlined through this particular callsite.
  bool isKnownNonNullInCallee(Value *V);

  /// Return true if size growth is allowed when inlining the callee at \p Call.
  bool allowSizeGrowth(CallBase &Call);

  // Custom analysis routines.
  InlineResult analyzeBlock(BasicBlock *BB,
                            SmallPtrSetImpl<const Value *> &EphValues);

  // Disable several entry points to the visitor so we don't accidentally use
  // them by declaring but not defining them here.
  void visit(Module *);
  void visit(Module &);
  void visit(Function *);
  void visit(Function &);
  void visit(BasicBlock *);
  void visit(BasicBlock &);

  // Provide base case for our instruction visit.
  bool visitInstruction(Instruction &I);

  // Our visit overrides.
  bool visitAlloca(AllocaInst &I);
  bool visitPHI(PHINode &I);
  bool visitGetElementPtr(GetElementPtrInst &I);
  bool visitBitCast(BitCastInst &I);
  bool visitPtrToInt(PtrToIntInst &I);
  bool visitIntToPtr(IntToPtrInst &I);
  bool visitCastInst(CastInst &I);
  bool visitUnaryInstruction(UnaryInstruction &I);
  bool visitCmpInst(CmpInst &I);
  bool visitSub(BinaryOperator &I);
  bool visitBinaryOperator(BinaryOperator &I);
  bool visitFNeg(UnaryOperator &I);
  bool visitLoad(LoadInst &I);
  bool visitStore(StoreInst &I);
  bool visitExtractValue(ExtractValueInst &I);
  bool visitInsertValue(InsertValueInst &I);
  bool visitCallBase(CallBase &Call);
  bool visitReturnInst(ReturnInst &RI);
  bool visitBranchInst(BranchInst &BI);
  bool visitSelectInst(SelectInst &SI);
  bool visitSwitchInst(SwitchInst &SI);
  bool visitIndirectBrInst(IndirectBrInst &IBI);
  bool visitResumeInst(ResumeInst &RI);
  bool visitCleanupReturnInst(CleanupReturnInst &RI);
  bool visitCatchReturnInst(CatchReturnInst &RI);
  bool visitUnreachableInst(UnreachableInst &I);

public:
  CallAnalyzer(
      Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
      function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
      function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
      ProfileSummaryInfo *PSI = nullptr,
      OptimizationRemarkEmitter *ORE = nullptr)
      : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
        PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
        CandidateCall(Call), EnableLoadElimination(true) {}

  InlineResult analyze();

  Optional<Constant*> getSimplifiedValue(Instruction *I) {
    if (SimplifiedValues.find(I) != SimplifiedValues.end())
      return SimplifiedValues[I];
    return None;
  }

  // Keep a bunch of stats about the cost savings found so we can print them
  // out when debugging.
  unsigned NumConstantArgs = 0;
  unsigned NumConstantOffsetPtrArgs = 0;
  unsigned NumAllocaArgs = 0;
  unsigned NumConstantPtrCmps = 0;
  unsigned NumConstantPtrDiffs = 0;
  unsigned NumInstructionsSimplified = 0;

  void dump();
};

/// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
/// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
class InlineCostCallAnalyzer final : public CallAnalyzer {
  const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
  const bool ComputeFullInlineCost;
  int LoadEliminationCost = 0;
  /// Bonus to be applied when percentage of vector instructions in callee is
  /// high (see more details in updateThreshold).
  int VectorBonus = 0;
  /// Bonus to be applied when the callee has only one reachable basic block.
  int SingleBBBonus = 0;

  /// Tunable parameters that control the analysis.
  const InlineParams &Params;

  // This DenseMap stores the delta change in cost and threshold after
  // accounting for the given instruction. The map is filled only with the
  // flag PrintInstructionComments on.
  DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;

  /// Upper bound for the inlining cost. Bonuses are being applied to account
  /// for speculative "expected profit" of the inlining decision.
  int Threshold = 0;

  /// Attempt to evaluate indirect calls to boost its inline cost.
  const bool BoostIndirectCalls;

  /// Ignore the threshold when finalizing analysis.
  const bool IgnoreThreshold;

  // True if the cost-benefit-analysis-based inliner is enabled. 
  const bool CostBenefitAnalysisEnabled; 
 
  /// Inlining cost measured in abstract units, accounts for all the
  /// instructions expected to be executed for a given function invocation.
  /// Instructions that are statically proven to be dead based on call-site
  /// arguments are not counted here.
  int Cost = 0;

  // The cumulative cost at the beginning of the basic block being analyzed.  At 
  // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 
  // the size of that basic block. 
  int CostAtBBStart = 0; 
 
  // The static size of live but cold basic blocks.  This is "static" in the 
  // sense that it's not weighted by profile counts at all. 
  int ColdSize = 0; 
 
  bool SingleBB = true;

  unsigned SROACostSavings = 0;
  unsigned SROACostSavingsLost = 0;

  /// The mapping of caller Alloca values to their accumulated cost savings. If
  /// we have to disable SROA for one of the allocas, this tells us how much
  /// cost must be added.
  DenseMap<AllocaInst *, int> SROAArgCosts;

  /// Return true if \p Call is a cold callsite.
  bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);

  /// Update Threshold based on callsite properties such as callee
  /// attributes and callee hotness for PGO builds. The Callee is explicitly
  /// passed to support analyzing indirect calls whose target is inferred by
  /// analysis.
  void updateThreshold(CallBase &Call, Function &Callee);
  /// Return a higher threshold if \p Call is a hot callsite.
  Optional<int> getHotCallSiteThreshold(CallBase &Call,
                                        BlockFrequencyInfo *CallerBFI);

  /// Handle a capped 'int' increment for Cost.
  void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
    assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
    Cost = (int)std::min(UpperBound, Cost + Inc);
  }

  void onDisableSROA(AllocaInst *Arg) override {
    auto CostIt = SROAArgCosts.find(Arg);
    if (CostIt == SROAArgCosts.end())
      return;
    addCost(CostIt->second);
    SROACostSavings -= CostIt->second;
    SROACostSavingsLost += CostIt->second;
    SROAArgCosts.erase(CostIt);
  }

  void onDisableLoadElimination() override {
    addCost(LoadEliminationCost);
    LoadEliminationCost = 0;
  }
  void onCallPenalty() override { addCost(InlineConstants::CallPenalty); }
  void onCallArgumentSetup(const CallBase &Call) override {
    // Pay the price of the argument setup. We account for the average 1
    // instruction per call argument setup here.
    addCost(Call.arg_size() * InlineConstants::InstrCost);
  }
  void onLoadRelativeIntrinsic() override {
    // This is normally lowered to 4 LLVM instructions.
    addCost(3 * InlineConstants::InstrCost);
  }
  void onLoweredCall(Function *F, CallBase &Call,
                     bool IsIndirectCall) override {
    // We account for the average 1 instruction per call argument setup here.
    addCost(Call.arg_size() * InlineConstants::InstrCost);

    // If we have a constant that we are calling as a function, we can peer
    // through it and see the function target. This happens not infrequently
    // during devirtualization and so we want to give it a hefty bonus for
    // inlining, but cap that bonus in the event that inlining wouldn't pan out.
    // Pretend to inline the function, with a custom threshold.
    if (IsIndirectCall && BoostIndirectCalls) {
      auto IndirectCallParams = Params;
      IndirectCallParams.DefaultThreshold =
          InlineConstants::IndirectCallThreshold;
      /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
      /// to instantiate the derived class.
      InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
                                GetAssumptionCache, GetBFI, PSI, ORE, false);
      if (CA.analyze().isSuccess()) {
        // We were able to inline the indirect call! Subtract the cost from the
        // threshold to get the bonus we want to apply, but don't go below zero.
        Cost -= std::max(0, CA.getThreshold() - CA.getCost());
      }
    } else
      // Otherwise simply add the cost for merely making the call.
      addCost(InlineConstants::CallPenalty);
  }

  void onFinalizeSwitch(unsigned JumpTableSize,
                        unsigned NumCaseCluster) override {
    // If suitable for a jump table, consider the cost for the table size and
    // branch to destination.
    // Maximum valid cost increased in this function.
    if (JumpTableSize) {
      int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
                       4 * InlineConstants::InstrCost;

      addCost(JTCost, (int64_t)CostUpperBound);
      return;
    }
    // Considering forming a binary search, we should find the number of nodes
    // which is same as the number of comparisons when lowered. For a given
    // number of clusters, n, we can define a recursive function, f(n), to find
    // the number of nodes in the tree. The recursion is :
    // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
    // and f(n) = n, when n <= 3.
    // This will lead a binary tree where the leaf should be either f(2) or f(3)
    // when n > 3.  So, the number of comparisons from leaves should be n, while
    // the number of non-leaf should be :
    //   2^(log2(n) - 1) - 1
    //   = 2^log2(n) * 2^-1 - 1
    //   = n / 2 - 1.
    // Considering comparisons from leaf and non-leaf nodes, we can estimate the
    // number of comparisons in a simple closed form :
    //   n + n / 2 - 1 = n * 3 / 2 - 1
    if (NumCaseCluster <= 3) {
      // Suppose a comparison includes one compare and one conditional branch.
      addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
      return;
    }

    int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
    int64_t SwitchCost =
        ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;

    addCost(SwitchCost, (int64_t)CostUpperBound);
  }
  void onMissedSimplification() override {
    addCost(InlineConstants::InstrCost);
  }

  void onInitializeSROAArg(AllocaInst *Arg) override {
    assert(Arg != nullptr &&
           "Should not initialize SROA costs for null value.");
    SROAArgCosts[Arg] = 0;
  }

  void onAggregateSROAUse(AllocaInst *SROAArg) override {
    auto CostIt = SROAArgCosts.find(SROAArg);
    assert(CostIt != SROAArgCosts.end() &&
           "expected this argument to have a cost");
    CostIt->second += InlineConstants::InstrCost;
    SROACostSavings += InlineConstants::InstrCost;
  }

  void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 
 
  void onBlockAnalyzed(const BasicBlock *BB) override {
    if (CostBenefitAnalysisEnabled) { 
      // Keep track of the static size of live but cold basic blocks.  For now, 
      // we define a cold basic block to be one that's never executed. 
      assert(GetBFI && "GetBFI must be available"); 
      BlockFrequencyInfo *BFI = &(GetBFI(F)); 
      assert(BFI && "BFI must be available"); 
      auto ProfileCount = BFI->getBlockProfileCount(BB); 
      assert(ProfileCount.hasValue()); 
      if (ProfileCount.getValue() == 0) 
        ColdSize += Cost - CostAtBBStart; 
    } 
 
    auto *TI = BB->getTerminator();
    // If we had any successors at this point, than post-inlining is likely to
    // have them as well. Note that we assume any basic blocks which existed
    // due to branches or switches which folded above will also fold after
    // inlining.
    if (SingleBB && TI->getNumSuccessors() > 1) {
      // Take off the bonus we applied to the threshold.
      Threshold -= SingleBBBonus;
      SingleBB = false;
    }
  }

  void onInstructionAnalysisStart(const Instruction *I) override {
    // This function is called to store the initial cost of inlining before
    // the given instruction was assessed.
    if (!PrintInstructionComments)
      return;
    InstructionCostDetailMap[I].CostBefore = Cost;
    InstructionCostDetailMap[I].ThresholdBefore = Threshold;
  }

  void onInstructionAnalysisFinish(const Instruction *I) override {
    // This function is called to find new values of cost and threshold after
    // the instruction has been assessed.
    if (!PrintInstructionComments)
      return;
    InstructionCostDetailMap[I].CostAfter = Cost;
    InstructionCostDetailMap[I].ThresholdAfter = Threshold;
  }

  bool isCostBenefitAnalysisEnabled() { 
    if (!InlineEnableCostBenefitAnalysis) 
      return false; 
 
    if (!PSI || !PSI->hasProfileSummary()) 
      return false; 
 
    if (!GetBFI) 
      return false; 
 
    auto *Caller = CandidateCall.getParent()->getParent(); 
    if (!Caller->getEntryCount()) 
      return false; 
 
    BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 
    if (!CallerBFI) 
      return false; 
 
    // For now, limit to hot call site. 
    if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 
      return false; 
 
    if (!F.getEntryCount()) 
      return false; 
 
    BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 
    if (!CalleeBFI) 
      return false; 
 
    return true; 
  } 
 
  // Determine whether we should inline the given call site, taking into account 
  // both the size cost and the cycle savings.  Return None if we don't have 
  // suficient profiling information to determine. 
  Optional<bool> costBenefitAnalysis() { 
    if (!CostBenefitAnalysisEnabled) 
      return None; 
 
    // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 
    // for the prelink phase of the AutoFDO + ThinLTO build.  Honor the logic by 
    // falling back to the cost-based metric. 
    // TODO: Improve this hacky condition. 
    if (Threshold == 0) 
      return None; 
 
    assert(GetBFI); 
    BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 
    assert(CalleeBFI); 
 
    // The cycle savings expressed as the sum of InlineConstants::InstrCost 
    // multiplied by the estimated dynamic count of each instruction we can 
    // avoid.  Savings come from the call site cost, such as argument setup and 
    // the call instruction, as well as the instructions that are folded. 
    // 
    // We use 128-bit APInt here to avoid potential overflow.  This variable 
    // should stay well below 10^^24 (or 2^^80) in practice.  This "worst" case 
    // assumes that we can avoid or fold a billion instructions, each with a 
    // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 
    // period on a 4GHz machine. 
    APInt CycleSavings(128, 0); 
 
    for (auto &BB : F) { 
      APInt CurrentSavings(128, 0); 
      for (auto &I : BB) { 
        if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 
          // Count a conditional branch as savings if it becomes unconditional. 
          if (BI->isConditional() && 
              dyn_cast_or_null<ConstantInt>( 
                  SimplifiedValues.lookup(BI->getCondition()))) { 
            CurrentSavings += InlineConstants::InstrCost; 
          } 
        } else if (Value *V = dyn_cast<Value>(&I)) { 
          // Count an instruction as savings if we can fold it. 
          if (SimplifiedValues.count(V)) { 
            CurrentSavings += InlineConstants::InstrCost; 
          } 
        } 
        // TODO: Consider other forms of savings like switch statements, 
        // indirect calls becoming direct, SROACostSavings, LoadEliminationCost, 
        // etc. 
      } 
 
      auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 
      assert(ProfileCount.hasValue()); 
      CurrentSavings *= ProfileCount.getValue(); 
      CycleSavings += CurrentSavings; 
    } 
 
    // Compute the cycle savings per call. 
    auto EntryProfileCount = F.getEntryCount(); 
    assert(EntryProfileCount.hasValue()); 
    auto EntryCount = EntryProfileCount.getCount(); 
    CycleSavings += EntryCount / 2; 
    CycleSavings = CycleSavings.udiv(EntryCount); 
 
    // Compute the total savings for the call site. 
    auto *CallerBB = CandidateCall.getParent(); 
    BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 
    CycleSavings += getCallsiteCost(this->CandidateCall, DL); 
    CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 
 
    // Remove the cost of the cold basic blocks. 
    int Size = Cost - ColdSize; 
 
    // Allow tiny callees to be inlined regardless of whether they meet the 
    // savings threshold. 
    Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 
 
    // Return true if the savings justify the cost of inlining.  Specifically, 
    // we evaluate the following inequality: 
    // 
    //  CycleSavings      PSI->getOrCompHotCountThreshold() 
    // -------------- >= ----------------------------------- 
    //       Size              InlineSavingsMultiplier 
    // 
    // Note that the left hand side is specific to a call site.  The right hand 
    // side is a constant for the entire executable. 
    APInt LHS = CycleSavings; 
    LHS *= InlineSavingsMultiplier; 
    APInt RHS(128, PSI->getOrCompHotCountThreshold()); 
    RHS *= Size; 
    return LHS.uge(RHS); 
  } 
 
  InlineResult finalizeAnalysis() override {
    // Loops generally act a lot like calls in that they act like barriers to
    // movement, require a certain amount of setup, etc. So when optimising for
    // size, we penalise any call sites that perform loops. We do this after all
    // other costs here, so will likely only be dealing with relatively small
    // functions (and hence DT and LI will hopefully be cheap).
    auto *Caller = CandidateCall.getFunction();
    if (Caller->hasMinSize()) {
      DominatorTree DT(F);
      LoopInfo LI(DT);
      int NumLoops = 0;
      for (Loop *L : LI) {
        // Ignore loops that will not be executed
        if (DeadBlocks.count(L->getHeader()))
          continue;
        NumLoops++;
      }
      addCost(NumLoops * InlineConstants::CallPenalty);
    }

    // We applied the maximum possible vector bonus at the beginning. Now,
    // subtract the excess bonus, if any, from the Threshold before
    // comparing against Cost.
    if (NumVectorInstructions <= NumInstructions / 10)
      Threshold -= VectorBonus;
    else if (NumVectorInstructions <= NumInstructions / 2)
      Threshold -= VectorBonus / 2;

    if (auto Result = costBenefitAnalysis()) { 
      if (Result.getValue()) 
        return InlineResult::success(); 
      else 
        return InlineResult::failure("Cost over threshold."); 
    } 
 
    if (IgnoreThreshold || Cost < std::max(1, Threshold))
      return InlineResult::success();
    return InlineResult::failure("Cost over threshold.");
  }
  bool shouldStop() override {
    // Bail out the moment we cross the threshold. This means we'll under-count
    // the cost, but only when undercounting doesn't matter.
    return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost;
  }

  void onLoadEliminationOpportunity() override {
    LoadEliminationCost += InlineConstants::InstrCost;
  }

  InlineResult onAnalysisStart() override {
    // Perform some tweaks to the cost and threshold based on the direct
    // callsite information.

    // We want to more aggressively inline vector-dense kernels, so up the
    // threshold, and we'll lower it if the % of vector instructions gets too
    // low. Note that these bonuses are some what arbitrary and evolved over
    // time by accident as much as because they are principled bonuses.
    //
    // FIXME: It would be nice to remove all such bonuses. At least it would be
    // nice to base the bonus values on something more scientific.
    assert(NumInstructions == 0);
    assert(NumVectorInstructions == 0);

    // Update the threshold based on callsite properties
    updateThreshold(CandidateCall, F);

    // While Threshold depends on commandline options that can take negative
    // values, we want to enforce the invariant that the computed threshold and
    // bonuses are non-negative.
    assert(Threshold >= 0);
    assert(SingleBBBonus >= 0);
    assert(VectorBonus >= 0);

    // Speculatively apply all possible bonuses to Threshold. If cost exceeds
    // this Threshold any time, and cost cannot decrease, we can stop processing
    // the rest of the function body.
    Threshold += (SingleBBBonus + VectorBonus);

    // Give out bonuses for the callsite, as the instructions setting them up
    // will be gone after inlining.
    addCost(-getCallsiteCost(this->CandidateCall, DL));

    // If this function uses the coldcc calling convention, prefer not to inline
    // it.
    if (F.getCallingConv() == CallingConv::Cold)
      Cost += InlineConstants::ColdccPenalty;

    // Check if we're done. This can happen due to bonuses and penalties.
    if (Cost >= Threshold && !ComputeFullInlineCost)
      return InlineResult::failure("high cost");

    return InlineResult::success();
  }

public:
  InlineCostCallAnalyzer(
      Function &Callee, CallBase &Call, const InlineParams &Params,
      const TargetTransformInfo &TTI,
      function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
      function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
      ProfileSummaryInfo *PSI = nullptr,
      OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
      bool IgnoreThreshold = false)
      : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
        ComputeFullInlineCost(OptComputeFullInlineCost ||
                              Params.ComputeFullInlineCost || ORE || 
                              isCostBenefitAnalysisEnabled()), 
        Params(Params), Threshold(Params.DefaultThreshold),
        BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
        CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 
        Writer(this) {}

  /// Annotation Writer for instruction details
  InlineCostAnnotationWriter Writer;

  void dump();

  // Prints the same analysis as dump(), but its definition is not dependent
  // on the build.
  void print();

  Optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
    if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end())
      return InstructionCostDetailMap[I];
    return None;
  }

  virtual ~InlineCostCallAnalyzer() {}
  int getThreshold() { return Threshold; }
  int getCost() { return Cost; }
};
} // namespace

/// Test whether the given value is an Alloca-derived function argument.
bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
  return SROAArgValues.count(V);
}

void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
  onDisableSROA(SROAArg);
  EnabledSROAAllocas.erase(SROAArg);
  disableLoadElimination();
}

void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I,
                                                formatted_raw_ostream &OS) {
  // The cost of inlining of the given instruction is printed always.
  // The threshold delta is printed only when it is non-zero. It happens
  // when we decided to give a bonus at a particular instruction.
  Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
  if (!Record)
    OS << "; No analysis for the instruction";
  else {
    OS << "; cost before = " << Record->CostBefore
       << ", cost after = " << Record->CostAfter
       << ", threshold before = " << Record->ThresholdBefore
       << ", threshold after = " << Record->ThresholdAfter << ", ";
    OS << "cost delta = " << Record->getCostDelta();
    if (Record->hasThresholdChanged())
      OS << ", threshold delta = " << Record->getThresholdDelta();
  }
  auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
  if (C) {
    OS << ", simplified to ";
    C.getValue()->print(OS, true);
  }
  OS << "\n";
}

/// If 'V' maps to a SROA candidate, disable SROA for it.
void CallAnalyzer::disableSROA(Value *V) {
  if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
    disableSROAForArg(SROAArg);
  }
}

void CallAnalyzer::disableLoadElimination() {
  if (EnableLoadElimination) {
    onDisableLoadElimination();
    EnableLoadElimination = false;
  }
}

/// Accumulate a constant GEP offset into an APInt if possible.
///
/// Returns false if unable to compute the offset for any reason. Respects any
/// simplified values known during the analysis of this callsite.
bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
  unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
  assert(IntPtrWidth == Offset.getBitWidth());

  for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
       GTI != GTE; ++GTI) {
    ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    if (!OpC)
      if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
        OpC = dyn_cast<ConstantInt>(SimpleOp);
    if (!OpC)
      return false;
    if (OpC->isZero())
      continue;

    // Handle a struct index, which adds its field offset to the pointer.
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      unsigned ElementIdx = OpC->getZExtValue();
      const StructLayout *SL = DL.getStructLayout(STy);
      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
      continue;
    }

    APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
  }
  return true;
}

/// Use TTI to check whether a GEP is free.
///
/// Respects any simplified values known during the analysis of this callsite.
bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
  SmallVector<Value *, 4> Operands;
  Operands.push_back(GEP.getOperand(0));
  for (const Use &Op : GEP.indices()) 
    if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 
      Operands.push_back(SimpleOp);
    else
      Operands.push_back(Op); 
  return TargetTransformInfo::TCC_Free ==
         TTI.getUserCost(&GEP, Operands,
                         TargetTransformInfo::TCK_SizeAndLatency);
}

bool CallAnalyzer::visitAlloca(AllocaInst &I) {
  // Check whether inlining will turn a dynamic alloca into a static
  // alloca and handle that case.
  if (I.isArrayAllocation()) {
    Constant *Size = SimplifiedValues.lookup(I.getArraySize());
    if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
      // Sometimes a dynamic alloca could be converted into a static alloca
      // after this constant prop, and become a huge static alloca on an
      // unconditional CFG path. Avoid inlining if this is going to happen above
      // a threshold.
      // FIXME: If the threshold is removed or lowered too much, we could end up
      // being too pessimistic and prevent inlining non-problematic code. This
      // could result in unintended perf regressions. A better overall strategy
      // is needed to track stack usage during inlining.
      Type *Ty = I.getAllocatedType();
      AllocatedSize = SaturatingMultiplyAdd(
          AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getKnownMinSize(), 
          AllocatedSize);
      if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) {
        HasDynamicAlloca = true;
        return false;
      }
      return Base::visitAlloca(I);
    }
  }

  // Accumulate the allocated size.
  if (I.isStaticAlloca()) {
    Type *Ty = I.getAllocatedType();
    AllocatedSize =
        SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 
  }

  // We will happily inline static alloca instructions.
  if (I.isStaticAlloca())
    return Base::visitAlloca(I);

  // FIXME: This is overly conservative. Dynamic allocas are inefficient for
  // a variety of reasons, and so we would like to not inline them into
  // functions which don't currently have a dynamic alloca. This simply
  // disables inlining altogether in the presence of a dynamic alloca.
  HasDynamicAlloca = true;
  return false;
}

bool CallAnalyzer::visitPHI(PHINode &I) {
  // FIXME: We need to propagate SROA *disabling* through phi nodes, even
  // though we don't want to propagate it's bonuses. The idea is to disable
  // SROA if it *might* be used in an inappropriate manner.

  // Phi nodes are always zero-cost.
  // FIXME: Pointer sizes may differ between different address spaces, so do we
  // need to use correct address space in the call to getPointerSizeInBits here?
  // Or could we skip the getPointerSizeInBits call completely? As far as I can
  // see the ZeroOffset is used as a dummy value, so we can probably use any
  // bit width for the ZeroOffset?
  APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
  bool CheckSROA = I.getType()->isPointerTy();

  // Track the constant or pointer with constant offset we've seen so far.
  Constant *FirstC = nullptr;
  std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
  Value *FirstV = nullptr;

  for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
    BasicBlock *Pred = I.getIncomingBlock(i);
    // If the incoming block is dead, skip the incoming block.
    if (DeadBlocks.count(Pred))
      continue;
    // If the parent block of phi is not the known successor of the incoming
    // block, skip the incoming block.
    BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
    if (KnownSuccessor && KnownSuccessor != I.getParent())
      continue;

    Value *V = I.getIncomingValue(i);
    // If the incoming value is this phi itself, skip the incoming value.
    if (&I == V)
      continue;

    Constant *C = dyn_cast<Constant>(V);
    if (!C)
      C = SimplifiedValues.lookup(V);

    std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
    if (!C && CheckSROA)
      BaseAndOffset = ConstantOffsetPtrs.lookup(V);

    if (!C && !BaseAndOffset.first)
      // The incoming value is neither a constant nor a pointer with constant
      // offset, exit early.
      return true;

    if (FirstC) {
      if (FirstC == C)
        // If we've seen a constant incoming value before and it is the same
        // constant we see this time, continue checking the next incoming value.
        continue;
      // Otherwise early exit because we either see a different constant or saw
      // a constant before but we have a pointer with constant offset this time.
      return true;
    }

    if (FirstV) {
      // The same logic as above, but check pointer with constant offset here.
      if (FirstBaseAndOffset == BaseAndOffset)
        continue;
      return true;
    }

    if (C) {
      // This is the 1st time we've seen a constant, record it.
      FirstC = C;
      continue;
    }

    // The remaining case is that this is the 1st time we've seen a pointer with
    // constant offset, record it.
    FirstV = V;
    FirstBaseAndOffset = BaseAndOffset;
  }

  // Check if we can map phi to a constant.
  if (FirstC) {
    SimplifiedValues[&I] = FirstC;
    return true;
  }

  // Check if we can map phi to a pointer with constant offset.
  if (FirstBaseAndOffset.first) {
    ConstantOffsetPtrs[&I] = FirstBaseAndOffset;

    if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
      SROAArgValues[&I] = SROAArg;
  }

  return true;
}

/// Check we can fold GEPs of constant-offset call site argument pointers.
/// This requires target data and inbounds GEPs.
///
/// \return true if the specified GEP can be folded.
bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
  // Check if we have a base + offset for the pointer.
  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(I.getPointerOperand());
  if (!BaseAndOffset.first)
    return false;

  // Check if the offset of this GEP is constant, and if so accumulate it
  // into Offset.
  if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
    return false;

  // Add the result as a new mapping to Base + Offset.
  ConstantOffsetPtrs[&I] = BaseAndOffset;

  return true;
}

bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
  auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());

  // Lambda to check whether a GEP's indices are all constant.
  auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
    for (const Use &Op : GEP.indices()) 
      if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 
        return false;
    return true;
  };

  if (!DisableGEPConstOperand)
    if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        SmallVector<Constant *, 2> Indices;
        for (unsigned int Index = 1 ; Index < COps.size() ; ++Index)
            Indices.push_back(COps[Index]);
        return ConstantExpr::getGetElementPtr(I.getSourceElementType(), COps[0],
                                              Indices, I.isInBounds());
        }))
      return true;

  if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
    if (SROAArg)
      SROAArgValues[&I] = SROAArg;

    // Constant GEPs are modeled as free.
    return true;
  }

  // Variable GEPs will require math and will disable SROA.
  if (SROAArg)
    disableSROAForArg(SROAArg);
  return isGEPFree(I);
}

/// Simplify \p I if its operands are constants and update SimplifiedValues.
/// \p Evaluate is a callable specific to instruction type that evaluates the
/// instruction when all the operands are constants.
template <typename Callable>
bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
  SmallVector<Constant *, 2> COps;
  for (Value *Op : I.operands()) {
    Constant *COp = dyn_cast<Constant>(Op);
    if (!COp)
      COp = SimplifiedValues.lookup(Op);
    if (!COp)
      return false;
    COps.push_back(COp);
  }
  auto *C = Evaluate(COps);
  if (!C)
    return false;
  SimplifiedValues[&I] = C;
  return true;
}

bool CallAnalyzer::visitBitCast(BitCastInst &I) {
  // Propagate constants through bitcasts.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getBitCast(COps[0], I.getType());
      }))
    return true;

  // Track base/offsets through casts
  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(I.getOperand(0));
  // Casts don't change the offset, just wrap it up.
  if (BaseAndOffset.first)
    ConstantOffsetPtrs[&I] = BaseAndOffset;

  // Also look for SROA candidates here.
  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
    SROAArgValues[&I] = SROAArg;

  // Bitcasts are always zero cost.
  return true;
}

bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
  // Propagate constants through ptrtoint.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getPtrToInt(COps[0], I.getType());
      }))
    return true;

  // Track base/offset pairs when converted to a plain integer provided the
  // integer is large enough to represent the pointer.
  unsigned IntegerSize = I.getType()->getScalarSizeInBits();
  unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
  if (IntegerSize == DL.getPointerSizeInBits(AS)) { 
    std::pair<Value *, APInt> BaseAndOffset =
        ConstantOffsetPtrs.lookup(I.getOperand(0));
    if (BaseAndOffset.first)
      ConstantOffsetPtrs[&I] = BaseAndOffset;
  }

  // This is really weird. Technically, ptrtoint will disable SROA. However,
  // unless that ptrtoint is *used* somewhere in the live basic blocks after
  // inlining, it will be nuked, and SROA should proceed. All of the uses which
  // would block SROA would also block SROA if applied directly to a pointer,
  // and so we can just add the integer in here. The only places where SROA is
  // preserved either cannot fire on an integer, or won't in-and-of themselves
  // disable SROA (ext) w/o some later use that we would see and disable.
  if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
    SROAArgValues[&I] = SROAArg;

  return TargetTransformInfo::TCC_Free ==
         TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
}

bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
  // Propagate constants through ptrtoint.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getIntToPtr(COps[0], I.getType());
      }))
    return true;

  // Track base/offset pairs when round-tripped through a pointer without
  // modifications provided the integer is not too large.
  Value *Op = I.getOperand(0);
  unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
  if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
    std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
    if (BaseAndOffset.first)
      ConstantOffsetPtrs[&I] = BaseAndOffset;
  }

  // "Propagate" SROA here in the same manner as we do for ptrtoint above.
  if (auto *SROAArg = getSROAArgForValueOrNull(Op))
    SROAArgValues[&I] = SROAArg;

  return TargetTransformInfo::TCC_Free ==
         TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
}

bool CallAnalyzer::visitCastInst(CastInst &I) {
  // Propagate constants through casts.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
      }))
    return true;

  // Disable SROA in the face of arbitrary casts we don't explicitly list
  // elsewhere.
  disableSROA(I.getOperand(0));

  // If this is a floating-point cast, and the target says this operation
  // is expensive, this may eventually become a library call. Treat the cost
  // as such.
  switch (I.getOpcode()) {
  case Instruction::FPTrunc:
  case Instruction::FPExt:
  case Instruction::UIToFP:
  case Instruction::SIToFP:
  case Instruction::FPToUI:
  case Instruction::FPToSI:
    if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
      onCallPenalty();
    break;
  default:
    break;
  }

  return TargetTransformInfo::TCC_Free ==
         TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
}

bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
  Value *Operand = I.getOperand(0);
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantFoldInstOperands(&I, COps[0], DL);
      }))
    return true;

  // Disable any SROA on the argument to arbitrary unary instructions.
  disableSROA(Operand);

  return false;
}

bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
  return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
}

bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
  // Does the *call site* have the NonNull attribute set on an argument?  We
  // use the attribute on the call site to memoize any analysis done in the
  // caller. This will also trip if the callee function has a non-null
  // parameter attribute, but that's a less interesting case because hopefully
  // the callee would already have been simplified based on that.
  if (Argument *A = dyn_cast<Argument>(V))
    if (paramHasAttr(A, Attribute::NonNull))
      return true;

  // Is this an alloca in the caller?  This is distinct from the attribute case
  // above because attributes aren't updated within the inliner itself and we
  // always want to catch the alloca derived case.
  if (isAllocaDerivedArg(V))
    // We can actually predict the result of comparisons between an
    // alloca-derived value and null. Note that this fires regardless of
    // SROA firing.
    return true;

  return false;
}

bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
  // If the normal destination of the invoke or the parent block of the call
  // site is unreachable-terminated, there is little point in inlining this
  // unless there is literally zero cost.
  // FIXME: Note that it is possible that an unreachable-terminated block has a
  // hot entry. For example, in below scenario inlining hot_call_X() may be
  // beneficial :
  // main() {
  //   hot_call_1();
  //   ...
  //   hot_call_N()
  //   exit(0);
  // }
  // For now, we are not handling this corner case here as it is rare in real
  // code. In future, we should elaborate this based on BPI and BFI in more
  // general threshold adjusting heuristics in updateThreshold().
  if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
    if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
      return false;
  } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
    return false;

  return true;
}

bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
                                            BlockFrequencyInfo *CallerBFI) {
  // If global profile summary is available, then callsite's coldness is
  // determined based on that.
  if (PSI && PSI->hasProfileSummary())
    return PSI->isColdCallSite(Call, CallerBFI);

  // Otherwise we need BFI to be available.
  if (!CallerBFI)
    return false;

  // Determine if the callsite is cold relative to caller's entry. We could
  // potentially cache the computation of scaled entry frequency, but the added
  // complexity is not worth it unless this scaling shows up high in the
  // profiles.
  const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
  auto CallSiteBB = Call.getParent();
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
  auto CallerEntryFreq =
      CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
  return CallSiteFreq < CallerEntryFreq * ColdProb;
}

Optional<int>
InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
                                                BlockFrequencyInfo *CallerBFI) {

  // If global profile summary is available, then callsite's hotness is
  // determined based on that.
  if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
    return Params.HotCallSiteThreshold;

  // Otherwise we need BFI to be available and to have a locally hot callsite
  // threshold.
  if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
    return None;

  // Determine if the callsite is hot relative to caller's entry. We could
  // potentially cache the computation of scaled entry frequency, but the added
  // complexity is not worth it unless this scaling shows up high in the
  // profiles.
  auto CallSiteBB = Call.getParent();
  auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
  auto CallerEntryFreq = CallerBFI->getEntryFreq();
  if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
    return Params.LocallyHotCallSiteThreshold;

  // Otherwise treat it normally.
  return None;
}

void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
  // If no size growth is allowed for this inlining, set Threshold to 0.
  if (!allowSizeGrowth(Call)) {
    Threshold = 0;
    return;
  }

  Function *Caller = Call.getCaller();

  // return min(A, B) if B is valid.
  auto MinIfValid = [](int A, Optional<int> B) {
    return B ? std::min(A, B.getValue()) : A;
  };

  // return max(A, B) if B is valid.
  auto MaxIfValid = [](int A, Optional<int> B) {
    return B ? std::max(A, B.getValue()) : A;
  };

  // Various bonus percentages. These are multiplied by Threshold to get the
  // bonus values.
  // SingleBBBonus: This bonus is applied if the callee has a single reachable
  // basic block at the given callsite context. This is speculatively applied
  // and withdrawn if more than one basic block is seen.
  //
  // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
  // of the last call to a static function as inlining such functions is
  // guaranteed to reduce code size.
  //
  // These bonus percentages may be set to 0 based on properties of the caller
  // and the callsite.
  int SingleBBBonusPercent = 50;
  int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
  int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;

  // Lambda to set all the above bonus and bonus percentages to 0.
  auto DisallowAllBonuses = [&]() {
    SingleBBBonusPercent = 0;
    VectorBonusPercent = 0;
    LastCallToStaticBonus = 0;
  };

  // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
  // and reduce the threshold if the caller has the necessary attribute.
  if (Caller->hasMinSize()) {
    Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
    // For minsize, we want to disable the single BB bonus and the vector
    // bonuses, but not the last-call-to-static bonus. Inlining the last call to
    // a static function will, at the minimum, eliminate the parameter setup and
    // call/return instructions.
    SingleBBBonusPercent = 0;
    VectorBonusPercent = 0;
  } else if (Caller->hasOptSize())
    Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);

  // Adjust the threshold based on inlinehint attribute and profile based
  // hotness information if the caller does not have MinSize attribute.
  if (!Caller->hasMinSize()) {
    if (Callee.hasFnAttribute(Attribute::InlineHint))
      Threshold = MaxIfValid(Threshold, Params.HintThreshold);

    // FIXME: After switching to the new passmanager, simplify the logic below
    // by checking only the callsite hotness/coldness as we will reliably
    // have local profile information.
    //
    // Callsite hotness and coldness can be determined if sample profile is
    // used (which adds hotness metadata to calls) or if caller's
    // BlockFrequencyInfo is available.
    BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
    auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
    if (!Caller->hasOptSize() && HotCallSiteThreshold) {
      LLVM_DEBUG(dbgs() << "Hot callsite.\n");
      // FIXME: This should update the threshold only if it exceeds the
      // current threshold, but AutoFDO + ThinLTO currently relies on this
      // behavior to prevent inlining of hot callsites during ThinLTO
      // compile phase.
      Threshold = HotCallSiteThreshold.getValue();
    } else if (isColdCallSite(Call, CallerBFI)) {
      LLVM_DEBUG(dbgs() << "Cold callsite.\n");
      // Do not apply bonuses for a cold callsite including the
      // LastCallToStatic bonus. While this bonus might result in code size
      // reduction, it can cause the size of a non-cold caller to increase
      // preventing it from being inlined.
      DisallowAllBonuses();
      Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
    } else if (PSI) {
      // Use callee's global profile information only if we have no way of
      // determining this via callsite information.
      if (PSI->isFunctionEntryHot(&Callee)) {
        LLVM_DEBUG(dbgs() << "Hot callee.\n");
        // If callsite hotness can not be determined, we may still know
        // that the callee is hot and treat it as a weaker hint for threshold
        // increase.
        Threshold = MaxIfValid(Threshold, Params.HintThreshold);
      } else if (PSI->isFunctionEntryCold(&Callee)) {
        LLVM_DEBUG(dbgs() << "Cold callee.\n");
        // Do not apply bonuses for a cold callee including the
        // LastCallToStatic bonus. While this bonus might result in code size
        // reduction, it can cause the size of a non-cold caller to increase
        // preventing it from being inlined.
        DisallowAllBonuses();
        Threshold = MinIfValid(Threshold, Params.ColdThreshold);
      }
    }
  }

  // Finally, take the target-specific inlining threshold multiplier into
  // account.
  Threshold *= TTI.getInliningThresholdMultiplier();
  Threshold += TTI.adjustInliningThreshold(&Call); 

  SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
  VectorBonus = Threshold * VectorBonusPercent / 100;

  bool OnlyOneCallAndLocalLinkage =
      F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
  // If there is only one call of the function, and it has internal linkage,
  // the cost of inlining it drops dramatically. It may seem odd to update
  // Cost in updateThreshold, but the bonus depends on the logic in this method.
  if (OnlyOneCallAndLocalLinkage)
    Cost -= LastCallToStaticBonus;
}

bool CallAnalyzer::visitCmpInst(CmpInst &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  // First try to handle simplified comparisons.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
      }))
    return true;

  if (I.getOpcode() == Instruction::FCmp)
    return false;

  // Otherwise look for a comparison between constant offset pointers with
  // a common base.
  Value *LHSBase, *RHSBase;
  APInt LHSOffset, RHSOffset;
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
  if (LHSBase) {
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    if (RHSBase && LHSBase == RHSBase) {
      // We have common bases, fold the icmp to a constant based on the
      // offsets.
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
      if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
        SimplifiedValues[&I] = C;
        ++NumConstantPtrCmps;
        return true;
      }
    }
  }

  // If the comparison is an equality comparison with null, we can simplify it
  // if we know the value (argument) can't be null
  if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
      isKnownNonNullInCallee(I.getOperand(0))) {
    bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
    SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
                                      : ConstantInt::getFalse(I.getType());
    return true;
  }
  return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
}

bool CallAnalyzer::visitSub(BinaryOperator &I) {
  // Try to handle a special case: we can fold computing the difference of two
  // constant-related pointers.
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Value *LHSBase, *RHSBase;
  APInt LHSOffset, RHSOffset;
  std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
  if (LHSBase) {
    std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    if (RHSBase && LHSBase == RHSBase) {
      // We have common bases, fold the subtract to a constant based on the
      // offsets.
      Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
      Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
      if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
        SimplifiedValues[&I] = C;
        ++NumConstantPtrDiffs;
        return true;
      }
    }
  }

  // Otherwise, fall back to the generic logic for simplifying and handling
  // instructions.
  return Base::visitSub(I);
}

bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
  Constant *CLHS = dyn_cast<Constant>(LHS);
  if (!CLHS)
    CLHS = SimplifiedValues.lookup(LHS);
  Constant *CRHS = dyn_cast<Constant>(RHS);
  if (!CRHS)
    CRHS = SimplifiedValues.lookup(RHS);

  Value *SimpleV = nullptr;
  if (auto FI = dyn_cast<FPMathOperator>(&I))
    SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
                            FI->getFastMathFlags(), DL);
  else
    SimpleV =
        SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);

  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
    SimplifiedValues[&I] = C;

  if (SimpleV)
    return true;

  // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
  disableSROA(LHS);
  disableSROA(RHS);

  // If the instruction is floating point, and the target says this operation
  // is expensive, this may eventually become a library call. Treat the cost
  // as such. Unless it's fneg which can be implemented with an xor.
  using namespace llvm::PatternMatch;
  if (I.getType()->isFloatingPointTy() &&
      TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
      !match(&I, m_FNeg(m_Value())))
    onCallPenalty();

  return false;
}

bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
  Value *Op = I.getOperand(0);
  Constant *COp = dyn_cast<Constant>(Op);
  if (!COp)
    COp = SimplifiedValues.lookup(Op);

  Value *SimpleV = SimplifyFNegInst(
      COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);

  if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
    SimplifiedValues[&I] = C;

  if (SimpleV)
    return true;

  // Disable any SROA on arguments to arbitrary, unsimplified fneg.
  disableSROA(Op);

  return false;
}

bool CallAnalyzer::visitLoad(LoadInst &I) {
  if (handleSROA(I.getPointerOperand(), I.isSimple()))
    return true;

  // If the data is already loaded from this address and hasn't been clobbered
  // by any stores or calls, this load is likely to be redundant and can be
  // eliminated.
  if (EnableLoadElimination &&
      !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
    onLoadEliminationOpportunity();
    return true;
  }

  return false;
}

bool CallAnalyzer::visitStore(StoreInst &I) {
  if (handleSROA(I.getPointerOperand(), I.isSimple()))
    return true;

  // The store can potentially clobber loads and prevent repeated loads from
  // being eliminated.
  // FIXME:
  // 1. We can probably keep an initial set of eliminatable loads substracted
  // from the cost even when we finally see a store. We just need to disable
  // *further* accumulation of elimination savings.
  // 2. We should probably at some point thread MemorySSA for the callee into
  // this and then use that to actually compute *really* precise savings.
  disableLoadElimination();
  return false;
}

bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
  // Constant folding for extract value is trivial.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getExtractValue(COps[0], I.getIndices());
      }))
    return true;

  // SROA can look through these but give them a cost.
  return false;
}

bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
  // Constant folding for insert value is trivial.
  if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
        return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
                                            /*InsertedValueOperand*/ COps[1],
                                            I.getIndices());
      }))
    return true;

  // SROA can look through these but give them a cost.
  return false;
}

/// Try to simplify a call site.
///
/// Takes a concrete function and callsite and tries to actually simplify it by
/// analyzing the arguments and call itself with instsimplify. Returns true if
/// it has simplified the callsite to some other entity (a constant), making it
/// free.
bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
  // FIXME: Using the instsimplify logic directly for this is inefficient
  // because we have to continually rebuild the argument list even when no
  // simplifications can be performed. Until that is fixed with remapping
  // inside of instsimplify, directly constant fold calls here.
  if (!canConstantFoldCallTo(&Call, F))
    return false;

  // Try to re-map the arguments to constants.
  SmallVector<Constant *, 4> ConstantArgs;
  ConstantArgs.reserve(Call.arg_size());
  for (Value *I : Call.args()) {
    Constant *C = dyn_cast<Constant>(I);
    if (!C)
      C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
    if (!C)
      return false; // This argument doesn't map to a constant.

    ConstantArgs.push_back(C);
  }
  if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
    SimplifiedValues[&Call] = C;
    return true;
  }

  return false;
}

bool CallAnalyzer::visitCallBase(CallBase &Call) {
  if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
      !F.hasFnAttribute(Attribute::ReturnsTwice)) {
    // This aborts the entire analysis.
    ExposesReturnsTwice = true;
    return false;
  }
  if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
    ContainsNoDuplicateCall = true;

  Value *Callee = Call.getCalledOperand();
  Function *F = dyn_cast_or_null<Function>(Callee);
  bool IsIndirectCall = !F;
  if (IsIndirectCall) {
    // Check if this happens to be an indirect function call to a known function
    // in this inline context. If not, we've done all we can.
    F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
    if (!F) {
      onCallArgumentSetup(Call);

      if (!Call.onlyReadsMemory())
        disableLoadElimination();
      return Base::visitCallBase(Call);
    }
  }

  assert(F && "Expected a call to a known function");

  // When we have a concrete function, first try to simplify it directly.
  if (simplifyCallSite(F, Call))
    return true;

  // Next check if it is an intrinsic we know about.
  // FIXME: Lift this into part of the InstVisitor.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
    switch (II->getIntrinsicID()) {
    default:
      if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
        disableLoadElimination();
      return Base::visitCallBase(Call);

    case Intrinsic::load_relative:
      onLoadRelativeIntrinsic();
      return false;

    case Intrinsic::memset:
    case Intrinsic::memcpy:
    case Intrinsic::memmove:
      disableLoadElimination();
      // SROA can usually chew through these intrinsics, but they aren't free.
      return false;
    case Intrinsic::icall_branch_funnel:
    case Intrinsic::localescape:
      HasUninlineableIntrinsic = true;
      return false;
    case Intrinsic::vastart:
      InitsVargArgs = true;
      return false;
    }
  }

  if (F == Call.getFunction()) {
    // This flag will fully abort the analysis, so don't bother with anything
    // else.
    IsRecursiveCall = true;
    return false;
  }

  if (TTI.isLoweredToCall(F)) {
    onLoweredCall(F, Call, IsIndirectCall);
  }

  if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
    disableLoadElimination();
  return Base::visitCallBase(Call);
}

bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
  // At least one return instruction will be free after inlining.
  bool Free = !HasReturn;
  HasReturn = true;
  return Free;
}

bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
  // We model unconditional branches as essentially free -- they really
  // shouldn't exist at all, but handling them makes the behavior of the
  // inliner more regular and predictable. Interestingly, conditional branches
  // which will fold away are also free.
  return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
         dyn_cast_or_null<ConstantInt>(
             SimplifiedValues.lookup(BI.getCondition()));
}

bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
  bool CheckSROA = SI.getType()->isPointerTy();
  Value *TrueVal = SI.getTrueValue();
  Value *FalseVal = SI.getFalseValue();

  Constant *TrueC = dyn_cast<Constant>(TrueVal);
  if (!TrueC)
    TrueC = SimplifiedValues.lookup(TrueVal);
  Constant *FalseC = dyn_cast<Constant>(FalseVal);
  if (!FalseC)
    FalseC = SimplifiedValues.lookup(FalseVal);
  Constant *CondC =
      dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));

  if (!CondC) {
    // Select C, X, X => X
    if (TrueC == FalseC && TrueC) {
      SimplifiedValues[&SI] = TrueC;
      return true;
    }

    if (!CheckSROA)
      return Base::visitSelectInst(SI);

    std::pair<Value *, APInt> TrueBaseAndOffset =
        ConstantOffsetPtrs.lookup(TrueVal);
    std::pair<Value *, APInt> FalseBaseAndOffset =
        ConstantOffsetPtrs.lookup(FalseVal);
    if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
      ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;

      if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
        SROAArgValues[&SI] = SROAArg;
      return true;
    }

    return Base::visitSelectInst(SI);
  }

  // Select condition is a constant.
  Value *SelectedV = CondC->isAllOnesValue()
                         ? TrueVal
                         : (CondC->isNullValue()) ? FalseVal : nullptr;
  if (!SelectedV) {
    // Condition is a vector constant that is not all 1s or all 0s.  If all
    // operands are constants, ConstantExpr::getSelect() can handle the cases
    // such as select vectors.
    if (TrueC && FalseC) {
      if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
        SimplifiedValues[&SI] = C;
        return true;
      }
    }
    return Base::visitSelectInst(SI);
  }

  // Condition is either all 1s or all 0s. SI can be simplified.
  if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
    SimplifiedValues[&SI] = SelectedC;
    return true;
  }

  if (!CheckSROA)
    return true;

  std::pair<Value *, APInt> BaseAndOffset =
      ConstantOffsetPtrs.lookup(SelectedV);
  if (BaseAndOffset.first) {
    ConstantOffsetPtrs[&SI] = BaseAndOffset;

    if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
      SROAArgValues[&SI] = SROAArg;
  }

  return true;
}

bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
  // We model unconditional switches as free, see the comments on handling
  // branches.
  if (isa<ConstantInt>(SI.getCondition()))
    return true;
  if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
    if (isa<ConstantInt>(V))
      return true;

  // Assume the most general case where the switch is lowered into
  // either a jump table, bit test, or a balanced binary tree consisting of
  // case clusters without merging adjacent clusters with the same
  // destination. We do not consider the switches that are lowered with a mix
  // of jump table/bit test/binary search tree. The cost of the switch is
  // proportional to the size of the tree or the size of jump table range.
  //
  // NB: We convert large switches which are just used to initialize large phi
  // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
  // inlining those. It will prevent inlining in cases where the optimization
  // does not (yet) fire.

  unsigned JumpTableSize = 0;
  BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
  unsigned NumCaseCluster =
      TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);

  onFinalizeSwitch(JumpTableSize, NumCaseCluster);
  return false;
}

bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
  // We never want to inline functions that contain an indirectbr.  This is
  // incorrect because all the blockaddress's (in static global initializers
  // for example) would be referring to the original function, and this
  // indirect jump would jump from the inlined copy of the function into the
  // original function which is extremely undefined behavior.
  // FIXME: This logic isn't really right; we can safely inline functions with
  // indirectbr's as long as no other function or global references the
  // blockaddress of a block within the current function.
  HasIndirectBr = true;
  return false;
}

bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a resume instruction.
  return false;
}

bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a cleanupret instruction.
  return false;
}

bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
  // FIXME: It's not clear that a single instruction is an accurate model for
  // the inline cost of a catchret instruction.
  return false;
}

bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
  // FIXME: It might be reasonably to discount the cost of instructions leading
  // to unreachable as they have the lowest possible impact on both runtime and
  // code size.
  return true; // No actual code is needed for unreachable.
}

bool CallAnalyzer::visitInstruction(Instruction &I) {
  // Some instructions are free. All of the free intrinsics can also be
  // handled by SROA, etc.
  if (TargetTransformInfo::TCC_Free ==
      TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency))
    return true;

  // We found something we don't understand or can't handle. Mark any SROA-able
  // values in the operand list as no longer viable.
  for (const Use &Op : I.operands()) 
    disableSROA(Op); 

  return false;
}

/// Analyze a basic block for its contribution to the inline cost.
///
/// This method walks the analyzer over every instruction in the given basic
/// block and accounts for their cost during inlining at this callsite. It
/// aborts early if the threshold has been exceeded or an impossible to inline
/// construct has been detected. It returns false if inlining is no longer
/// viable, and true if inlining remains viable.
InlineResult
CallAnalyzer::analyzeBlock(BasicBlock *BB,
                           SmallPtrSetImpl<const Value *> &EphValues) {
  for (Instruction &I : *BB) { 
    // FIXME: Currently, the number of instructions in a function regardless of
    // our ability to simplify them during inline to constants or dead code,
    // are actually used by the vector bonus heuristic. As long as that's true,
    // we have to special case debug intrinsics here to prevent differences in
    // inlining due to debug symbols. Eventually, the number of unsimplified
    // instructions shouldn't factor into the cost computation, but until then,
    // hack around it here.
    if (isa<DbgInfoIntrinsic>(I))
      continue;

    // Skip pseudo-probes. 
    if (isa<PseudoProbeInst>(I)) 
      continue; 
 
    // Skip ephemeral values.
    if (EphValues.count(&I)) 
      continue;

    ++NumInstructions;
    if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 
      ++NumVectorInstructions;

    // If the instruction simplified to a constant, there is no cost to this
    // instruction. Visit the instructions using our InstVisitor to account for
    // all of the per-instruction logic. The visit tree returns true if we
    // consumed the instruction in any way, and false if the instruction's base
    // cost should count against inlining.
    onInstructionAnalysisStart(&I); 

    if (Base::visit(&I)) 
      ++NumInstructionsSimplified;
    else
      onMissedSimplification();

    onInstructionAnalysisFinish(&I); 
    using namespace ore;
    // If the visit this instruction detected an uninlinable pattern, abort.
    InlineResult IR = InlineResult::success();
    if (IsRecursiveCall)
      IR = InlineResult::failure("recursive");
    else if (ExposesReturnsTwice)
      IR = InlineResult::failure("exposes returns twice");
    else if (HasDynamicAlloca)
      IR = InlineResult::failure("dynamic alloca");
    else if (HasIndirectBr)
      IR = InlineResult::failure("indirect branch");
    else if (HasUninlineableIntrinsic)
      IR = InlineResult::failure("uninlinable intrinsic");
    else if (InitsVargArgs)
      IR = InlineResult::failure("varargs");
    if (!IR.isSuccess()) {
      if (ORE)
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
                                          &CandidateCall)
                 << NV("Callee", &F) << " has uninlinable pattern ("
                 << NV("InlineResult", IR.getFailureReason())
                 << ") and cost is not fully computed";
        });
      return IR;
    }

    // If the caller is a recursive function then we don't want to inline
    // functions which allocate a lot of stack space because it would increase
    // the caller stack usage dramatically.
    if (IsCallerRecursive &&
        AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
      auto IR =
          InlineResult::failure("recursive and allocates too much stack space");
      if (ORE)
        ORE->emit([&]() {
          return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
                                          &CandidateCall)
                 << NV("Callee", &F) << " is "
                 << NV("InlineResult", IR.getFailureReason())
                 << ". Cost is not fully computed";
        });
      return IR;
    }

    if (shouldStop())
      return InlineResult::failure(
          "Call site analysis is not favorable to inlining.");
  }

  return InlineResult::success();
}

/// Compute the base pointer and cumulative constant offsets for V.
///
/// This strips all constant offsets off of V, leaving it the base pointer, and
/// accumulates the total constant offset applied in the returned constant. It
/// returns 0 if V is not a pointer, and returns the constant '0' if there are
/// no constant offsets applied.
ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
  if (!V->getType()->isPointerTy())
    return nullptr;

  unsigned AS = V->getType()->getPointerAddressSpace();
  unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
  APInt Offset = APInt::getNullValue(IntPtrWidth);

  // Even though we don't look through PHI nodes, we could be called on an
  // instruction in an unreachable block, which may be on a cycle.
  SmallPtrSet<Value *, 4> Visited;
  Visited.insert(V);
  do {
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
      if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
        return nullptr;
      V = GEP->getPointerOperand();
    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
      V = cast<Operator>(V)->getOperand(0);
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
      if (GA->isInterposable())
        break;
      V = GA->getAliasee();
    } else {
      break;
    }
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
  } while (Visited.insert(V).second);

  Type *IdxPtrTy = DL.getIndexType(V->getType());
  return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
}

/// Find dead blocks due to deleted CFG edges during inlining.
///
/// If we know the successor of the current block, \p CurrBB, has to be \p
/// NextBB, the other successors of \p CurrBB are dead if these successors have
/// no live incoming CFG edges.  If one block is found to be dead, we can
/// continue growing the dead block list by checking the successors of the dead
/// blocks to see if all their incoming edges are dead or not.
void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
  auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
    // A CFG edge is dead if the predecessor is dead or the predecessor has a
    // known successor which is not the one under exam.
    return (DeadBlocks.count(Pred) ||
            (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
  };

  auto IsNewlyDead = [&](BasicBlock *BB) {
    // If all the edges to a block are dead, the block is also dead.
    return (!DeadBlocks.count(BB) &&
            llvm::all_of(predecessors(BB),
                         [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
  };

  for (BasicBlock *Succ : successors(CurrBB)) {
    if (Succ == NextBB || !IsNewlyDead(Succ))
      continue;
    SmallVector<BasicBlock *, 4> NewDead;
    NewDead.push_back(Succ);
    while (!NewDead.empty()) {
      BasicBlock *Dead = NewDead.pop_back_val();
      if (DeadBlocks.insert(Dead))
        // Continue growing the dead block lists.
        for (BasicBlock *S : successors(Dead))
          if (IsNewlyDead(S))
            NewDead.push_back(S);
    }
  }
}

/// Analyze a call site for potential inlining.
///
/// Returns true if inlining this call is viable, and false if it is not
/// viable. It computes the cost and adjusts the threshold based on numerous
/// factors and heuristics. If this method returns false but the computed cost
/// is below the computed threshold, then inlining was forcibly disabled by
/// some artifact of the routine.
InlineResult CallAnalyzer::analyze() {
  ++NumCallsAnalyzed;

  auto Result = onAnalysisStart();
  if (!Result.isSuccess())
    return Result;

  if (F.empty())
    return InlineResult::success();

  Function *Caller = CandidateCall.getFunction();
  // Check if the caller function is recursive itself.
  for (User *U : Caller->users()) {
    CallBase *Call = dyn_cast<CallBase>(U);
    if (Call && Call->getFunction() == Caller) {
      IsCallerRecursive = true;
      break;
    }
  }

  // Populate our simplified values by mapping from function arguments to call
  // arguments with known important simplifications.
  auto CAI = CandidateCall.arg_begin();
  for (Argument &FAI : F.args()) { 
    assert(CAI != CandidateCall.arg_end());
    if (Constant *C = dyn_cast<Constant>(CAI))
      SimplifiedValues[&FAI] = C; 

    Value *PtrArg = *CAI;
    if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
      ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 

      // We can SROA any pointer arguments derived from alloca instructions.
      if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
        SROAArgValues[&FAI] = SROAArg; 
        onInitializeSROAArg(SROAArg);
        EnabledSROAAllocas.insert(SROAArg);
      }
    }
    ++CAI; 
  }
  NumConstantArgs = SimplifiedValues.size();
  NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
  NumAllocaArgs = SROAArgValues.size();

  // FIXME: If a caller has multiple calls to a callee, we end up recomputing
  // the ephemeral values multiple times (and they're completely determined by
  // the callee, so this is purely duplicate work).
  SmallPtrSet<const Value *, 32> EphValues;
  CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);

  // The worklist of live basic blocks in the callee *after* inlining. We avoid
  // adding basic blocks of the callee which can be proven to be dead for this
  // particular call site in order to get more accurate cost estimates. This
  // requires a somewhat heavyweight iteration pattern: we need to walk the
  // basic blocks in a breadth-first order as we insert live successors. To
  // accomplish this, prioritizing for small iterations because we exit after
  // crossing our threshold, we use a small-size optimized SetVector.
  typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
                    SmallPtrSet<BasicBlock *, 16>>
      BBSetVector;
  BBSetVector BBWorklist;
  BBWorklist.insert(&F.getEntryBlock());

  // Note that we *must not* cache the size, this loop grows the worklist.
  for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
    if (shouldStop())
      break;

    BasicBlock *BB = BBWorklist[Idx];
    if (BB->empty())
      continue;

    onBlockStart(BB); 
 
    // Disallow inlining a blockaddress with uses other than strictly callbr.
    // A blockaddress only has defined behavior for an indirect branch in the
    // same function, and we do not currently support inlining indirect
    // branches.  But, the inliner may not see an indirect branch that ends up
    // being dead code at a particular call site. If the blockaddress escapes
    // the function, e.g., via a global variable, inlining may lead to an
    // invalid cross-function reference.
    // FIXME: pr/39560: continue relaxing this overt restriction.
    if (BB->hasAddressTaken())
      for (User *U : BlockAddress::get(&*BB)->users())
        if (!isa<CallBrInst>(*U))
          return InlineResult::failure("blockaddress used outside of callbr");

    // Analyze the cost of this block. If we blow through the threshold, this
    // returns false, and we can bail on out.
    InlineResult IR = analyzeBlock(BB, EphValues);
    if (!IR.isSuccess())
      return IR;

    Instruction *TI = BB->getTerminator();

    // Add in the live successors by first checking whether we have terminator
    // that may be simplified based on the values simplified by this call.
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isConditional()) {
        Value *Cond = BI->getCondition();
        if (ConstantInt *SimpleCond =
                dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
          BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
          BBWorklist.insert(NextBB);
          KnownSuccessors[BB] = NextBB;
          findDeadBlocks(BB, NextBB);
          continue;
        }
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      Value *Cond = SI->getCondition();
      if (ConstantInt *SimpleCond =
              dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
        BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
        BBWorklist.insert(NextBB);
        KnownSuccessors[BB] = NextBB;
        findDeadBlocks(BB, NextBB);
        continue;
      }
    }

    // If we're unable to select a particular successor, just count all of
    // them.
    for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
         ++TIdx)
      BBWorklist.insert(TI->getSuccessor(TIdx));

    onBlockAnalyzed(BB);
  }

  bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
                                    &F == CandidateCall.getCalledFunction();
  // If this is a noduplicate call, we can still inline as long as
  // inlining this would cause the removal of the caller (so the instruction
  // is not actually duplicated, just moved).
  if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
    return InlineResult::failure("noduplicate");

  return finalizeAnalysis();
}

void InlineCostCallAnalyzer::print() {
#define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
  if (PrintInstructionComments)
    F.print(dbgs(), &Writer);
  DEBUG_PRINT_STAT(NumConstantArgs);
  DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
  DEBUG_PRINT_STAT(NumAllocaArgs);
  DEBUG_PRINT_STAT(NumConstantPtrCmps);
  DEBUG_PRINT_STAT(NumConstantPtrDiffs);
  DEBUG_PRINT_STAT(NumInstructionsSimplified);
  DEBUG_PRINT_STAT(NumInstructions);
  DEBUG_PRINT_STAT(SROACostSavings);
  DEBUG_PRINT_STAT(SROACostSavingsLost);
  DEBUG_PRINT_STAT(LoadEliminationCost);
  DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
  DEBUG_PRINT_STAT(Cost);
  DEBUG_PRINT_STAT(Threshold);
#undef DEBUG_PRINT_STAT
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Dump stats about this call's analysis.
LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() {
  print();
}
#endif

/// Test that there are no attribute conflicts between Caller and Callee
///        that prevent inlining.
static bool functionsHaveCompatibleAttributes(
    Function *Caller, Function *Callee, TargetTransformInfo &TTI,
    function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
  // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
  // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
  // object, and always returns the same object (which is overwritten on each
  // GetTLI call). Therefore we copy the first result.
  auto CalleeTLI = GetTLI(*Callee);
  return TTI.areInlineCompatible(Caller, Callee) &&
         GetTLI(*Caller).areInlineCompatible(CalleeTLI,
                                             InlineCallerSupersetNoBuiltin) &&
         AttributeFuncs::areInlineCompatible(*Caller, *Callee);
}

int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
  int Cost = 0;
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
    if (Call.isByValArgument(I)) {
      // We approximate the number of loads and stores needed by dividing the
      // size of the byval type by the target's pointer size.
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
      unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
      unsigned AS = PTy->getAddressSpace();
      unsigned PointerSize = DL.getPointerSizeInBits(AS);
      // Ceiling division.
      unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;

      // If it generates more than 8 stores it is likely to be expanded as an
      // inline memcpy so we take that as an upper bound. Otherwise we assume
      // one load and one store per word copied.
      // FIXME: The maxStoresPerMemcpy setting from the target should be used
      // here instead of a magic number of 8, but it's not available via
      // DataLayout.
      NumStores = std::min(NumStores, 8U);

      Cost += 2 * NumStores * InlineConstants::InstrCost;
    } else {
      // For non-byval arguments subtract off one instruction per call
      // argument.
      Cost += InlineConstants::InstrCost;
    }
  }
  // The call instruction also disappears after inlining.
  Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
  return Cost;
}

InlineCost llvm::getInlineCost(
    CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
  return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
                       GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
}

Optional<int> llvm::getInliningCostEstimate(
    CallBase &Call, TargetTransformInfo &CalleeTTI,
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
  const InlineParams Params = {/* DefaultThreshold*/ 0,
                               /*HintThreshold*/ {},
                               /*ColdThreshold*/ {},
                               /*OptSizeThreshold*/ {},
                               /*OptMinSizeThreshold*/ {},
                               /*HotCallSiteThreshold*/ {},
                               /*LocallyHotCallSiteThreshold*/ {},
                               /*ColdCallSiteThreshold*/ {},
                               /*ComputeFullInlineCost*/ true,
                               /*EnableDeferral*/ true};

  InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
                            GetAssumptionCache, GetBFI, PSI, ORE, true,
                            /*IgnoreThreshold*/ true);
  auto R = CA.analyze();
  if (!R.isSuccess())
    return None;
  return CA.getCost();
}

Optional<InlineResult> llvm::getAttributeBasedInliningDecision(
    CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {

  // Cannot inline indirect calls.
  if (!Callee)
    return InlineResult::failure("indirect call");

  // When callee coroutine function is inlined into caller coroutine function 
  // before coro-split pass, 
  // coro-early pass can not handle this quiet well. 
  // So we won't inline the coroutine function if it have not been unsplited 
  if (Callee->isPresplitCoroutine()) 
    return InlineResult::failure("unsplited coroutine call"); 
 
  // Never inline calls with byval arguments that does not have the alloca
  // address space. Since byval arguments can be replaced with a copy to an
  // alloca, the inlined code would need to be adjusted to handle that the
  // argument is in the alloca address space (so it is a little bit complicated
  // to solve).
  unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
  for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
    if (Call.isByValArgument(I)) {
      PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
      if (PTy->getAddressSpace() != AllocaAS)
        return InlineResult::failure("byval arguments without alloca"
                                     " address space");
    }

  // Calls to functions with always-inline attributes should be inlined
  // whenever possible.
  if (Call.hasFnAttr(Attribute::AlwaysInline)) {
    auto IsViable = isInlineViable(*Callee);
    if (IsViable.isSuccess())
      return InlineResult::success();
    return InlineResult::failure(IsViable.getFailureReason());
  }

  // Never inline functions with conflicting attributes (unless callee has
  // always-inline attribute).
  Function *Caller = Call.getCaller();
  if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
    return InlineResult::failure("conflicting attributes");

  // Don't inline this call if the caller has the optnone attribute.
  if (Caller->hasOptNone())
    return InlineResult::failure("optnone attribute");

  // Don't inline a function that treats null pointer as valid into a caller
  // that does not have this attribute.
  if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
    return InlineResult::failure("nullptr definitions incompatible");

  // Don't inline functions which can be interposed at link-time.
  if (Callee->isInterposable())
    return InlineResult::failure("interposable");

  // Don't inline functions marked noinline.
  if (Callee->hasFnAttribute(Attribute::NoInline))
    return InlineResult::failure("noinline function attribute");

  // Don't inline call sites marked noinline.
  if (Call.isNoInline())
    return InlineResult::failure("noinline call site attribute");

  // Don't inline functions if one does not have any stack protector attribute 
  // but the other does. 
  if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr()) 
    return InlineResult::failure( 
        "stack protected caller but callee requested no stack protector"); 
  if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr()) 
    return InlineResult::failure( 
        "stack protected callee but caller requested no stack protector"); 
 
  return None;
}

InlineCost llvm::getInlineCost(
    CallBase &Call, Function *Callee, const InlineParams &Params,
    TargetTransformInfo &CalleeTTI,
    function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
    function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
    ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {

  auto UserDecision =
      llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);

  if (UserDecision.hasValue()) {
    if (UserDecision->isSuccess())
      return llvm::InlineCost::getAlways("always inline attribute");
    return llvm::InlineCost::getNever(UserDecision->getFailureReason());
  }

  LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
                          << "... (caller:" << Call.getCaller()->getName()
                          << ")\n");

  InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
                            GetAssumptionCache, GetBFI, PSI, ORE);
  InlineResult ShouldInline = CA.analyze();

  LLVM_DEBUG(CA.dump());

  // Check if there was a reason to force inlining or no inlining.
  if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold())
    return InlineCost::getNever(ShouldInline.getFailureReason());
  if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold())
    return InlineCost::getAlways("empty function");

  return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
}

InlineResult llvm::isInlineViable(Function &F) {
  bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
  for (BasicBlock &BB : F) { 
    // Disallow inlining of functions which contain indirect branches.
    if (isa<IndirectBrInst>(BB.getTerminator())) 
      return InlineResult::failure("contains indirect branches");

    // Disallow inlining of blockaddresses which are used by non-callbr
    // instructions.
    if (BB.hasAddressTaken()) 
      for (User *U : BlockAddress::get(&BB)->users()) 
        if (!isa<CallBrInst>(*U))
          return InlineResult::failure("blockaddress used outside of callbr");

    for (auto &II : BB) { 
      CallBase *Call = dyn_cast<CallBase>(&II);
      if (!Call)
        continue;

      // Disallow recursive calls.
      Function *Callee = Call->getCalledFunction(); 
      if (&F == Callee) 
        return InlineResult::failure("recursive call");

      // Disallow calls which expose returns-twice to a function not previously
      // attributed as such.
      if (!ReturnsTwice && isa<CallInst>(Call) &&
          cast<CallInst>(Call)->canReturnTwice())
        return InlineResult::failure("exposes returns-twice attribute");

      if (Callee) 
        switch (Callee->getIntrinsicID()) { 
        default:
          break;
        case llvm::Intrinsic::icall_branch_funnel:
          // Disallow inlining of @llvm.icall.branch.funnel because current
          // backend can't separate call targets from call arguments.
          return InlineResult::failure(
              "disallowed inlining of @llvm.icall.branch.funnel");
        case llvm::Intrinsic::localescape:
          // Disallow inlining functions that call @llvm.localescape. Doing this
          // correctly would require major changes to the inliner.
          return InlineResult::failure(
              "disallowed inlining of @llvm.localescape");
        case llvm::Intrinsic::vastart:
          // Disallow inlining of functions that initialize VarArgs with
          // va_start.
          return InlineResult::failure(
              "contains VarArgs initialized with va_start");
        }
    }
  }

  return InlineResult::success();
}

// APIs to create InlineParams based on command line flags and/or other
// parameters.

InlineParams llvm::getInlineParams(int Threshold) {
  InlineParams Params;

  // This field is the threshold to use for a callee by default. This is
  // derived from one or more of:
  //  * optimization or size-optimization levels,
  //  * a value passed to createFunctionInliningPass function, or
  //  * the -inline-threshold flag.
  //  If the -inline-threshold flag is explicitly specified, that is used
  //  irrespective of anything else.
  if (InlineThreshold.getNumOccurrences() > 0)
    Params.DefaultThreshold = InlineThreshold;
  else
    Params.DefaultThreshold = Threshold;

  // Set the HintThreshold knob from the -inlinehint-threshold.
  Params.HintThreshold = HintThreshold;

  // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
  Params.HotCallSiteThreshold = HotCallSiteThreshold;

  // If the -locally-hot-callsite-threshold is explicitly specified, use it to
  // populate LocallyHotCallSiteThreshold. Later, we populate
  // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
  // we know that optimization level is O3 (in the getInlineParams variant that
  // takes the opt and size levels).
  // FIXME: Remove this check (and make the assignment unconditional) after
  // addressing size regression issues at O2.
  if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;

  // Set the ColdCallSiteThreshold knob from the
  // -inline-cold-callsite-threshold.
  Params.ColdCallSiteThreshold = ColdCallSiteThreshold;

  // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
  // -inlinehint-threshold commandline option is not explicitly given. If that
  // option is present, then its value applies even for callees with size and
  // minsize attributes.
  // If the -inline-threshold is not specified, set the ColdThreshold from the
  // -inlinecold-threshold even if it is not explicitly passed. If
  // -inline-threshold is specified, then -inlinecold-threshold needs to be
  // explicitly specified to set the ColdThreshold knob
  if (InlineThreshold.getNumOccurrences() == 0) {
    Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
    Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
    Params.ColdThreshold = ColdThreshold;
  } else if (ColdThreshold.getNumOccurrences() > 0) {
    Params.ColdThreshold = ColdThreshold;
  }
  return Params;
}

InlineParams llvm::getInlineParams() {
  return getInlineParams(DefaultThreshold);
}

// Compute the default threshold for inlining based on the opt level and the
// size opt level.
static int computeThresholdFromOptLevels(unsigned OptLevel,
                                         unsigned SizeOptLevel) {
  if (OptLevel > 2)
    return InlineConstants::OptAggressiveThreshold;
  if (SizeOptLevel == 1) // -Os
    return InlineConstants::OptSizeThreshold;
  if (SizeOptLevel == 2) // -Oz
    return InlineConstants::OptMinSizeThreshold;
  return DefaultThreshold;
}

InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
  auto Params =
      getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
  // At O3, use the value of -locally-hot-callsite-threshold option to populate
  // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
  // when it is specified explicitly.
  if (OptLevel > 2)
    Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
  return Params;
}

PreservedAnalyses
InlineCostAnnotationPrinterPass::run(Function &F,
                                     FunctionAnalysisManager &FAM) {
  PrintInstructionComments = true;
  std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
      Function &F) -> AssumptionCache & {
    return FAM.getResult<AssumptionAnalysis>(F);
  };
  Module *M = F.getParent();
  ProfileSummaryInfo PSI(*M);
  DataLayout DL(M);
  TargetTransformInfo TTI(DL);
  // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
  // In the current implementation, the type of InlineParams doesn't matter as
  // the pass serves only for verification of inliner's decisions.
  // We can add a flag which determines InlineParams for this run. Right now,
  // the default InlineParams are used.
  const InlineParams Params = llvm::getInlineParams();
  for (BasicBlock &BB : F) { 
    for (Instruction &I : BB) {
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
        Function *CalledFunction = CI->getCalledFunction();
        if (!CalledFunction || CalledFunction->isDeclaration())
          continue;
        OptimizationRemarkEmitter ORE(CalledFunction);
        InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
                                    GetAssumptionCache, nullptr, &PSI, &ORE);
        ICCA.analyze();
        OS << "      Analyzing call of " << CalledFunction->getName()
           << "... (caller:" << CI->getCaller()->getName() << ")\n";
        ICCA.print();
      }
    }
  }
  return PreservedAnalyses::all();
}