aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/IR/Value.h
blob: 97a8e78840c5042c4c3ca75bcca1347166907be5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the Value class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_VALUE_H
#define LLVM_IR_VALUE_H

#include "llvm-c/Types.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h" 
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Use.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <iterator>
#include <memory>

namespace llvm {

class APInt;
class Argument;
class BasicBlock;
class Constant;
class ConstantData;
class ConstantAggregate;
class DataLayout;
class Function;
class GlobalAlias;
class GlobalIFunc;
class GlobalIndirectSymbol;
class GlobalObject;
class GlobalValue;
class GlobalVariable;
class InlineAsm;
class Instruction;
class LLVMContext;
class MDNode; 
class Module;
class ModuleSlotTracker;
class raw_ostream;
template<typename ValueTy> class StringMapEntry;
class Twine;
class Type;
class User;

using ValueName = StringMapEntry<Value *>;

//===----------------------------------------------------------------------===//
//                                 Value Class
//===----------------------------------------------------------------------===//

/// LLVM Value Representation
///
/// This is a very important LLVM class. It is the base class of all values
/// computed by a program that may be used as operands to other values. Value is
/// the super class of other important classes such as Instruction and Function.
/// All Values have a Type. Type is not a subclass of Value. Some values can
/// have a name and they belong to some Module.  Setting the name on the Value
/// automatically updates the module's symbol table.
///
/// Every value has a "use list" that keeps track of which other Values are
/// using this Value.  A Value can also have an arbitrary number of ValueHandle
/// objects that watch it and listen to RAUW and Destroy events.  See
/// llvm/IR/ValueHandle.h for details.
class Value {
  Type *VTy;
  Use *UseList;

  friend class ValueAsMetadata; // Allow access to IsUsedByMD.
  friend class ValueHandleBase;

  const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
  unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?

protected:
  /// Hold subclass data that can be dropped.
  ///
  /// This member is similar to SubclassData, however it is for holding
  /// information which may be used to aid optimization, but which may be
  /// cleared to zero without affecting conservative interpretation.
  unsigned char SubclassOptionalData : 7;

private:
  /// Hold arbitrary subclass data.
  ///
  /// This member is defined by this class, but is not used for anything.
  /// Subclasses can use it to hold whatever state they find useful.  This
  /// field is initialized to zero by the ctor.
  unsigned short SubclassData;

protected:
  /// The number of operands in the subclass.
  ///
  /// This member is defined by this class, but not used for anything.
  /// Subclasses can use it to store their number of operands, if they have
  /// any.
  ///
  /// This is stored here to save space in User on 64-bit hosts.  Since most
  /// instances of Value have operands, 32-bit hosts aren't significantly
  /// affected.
  ///
  /// Note, this should *NOT* be used directly by any class other than User.
  /// User uses this value to find the Use list.
  enum : unsigned { NumUserOperandsBits = 27 }; 
  unsigned NumUserOperands : NumUserOperandsBits;

  // Use the same type as the bitfield above so that MSVC will pack them.
  unsigned IsUsedByMD : 1;
  unsigned HasName : 1;
  unsigned HasMetadata : 1; // Has metadata attached to this? 
  unsigned HasHungOffUses : 1;
  unsigned HasDescriptor : 1;

private:
  template <typename UseT> // UseT == 'Use' or 'const Use'
  class use_iterator_impl
      : public std::iterator<std::forward_iterator_tag, UseT *> {
    friend class Value;

    UseT *U;

    explicit use_iterator_impl(UseT *u) : U(u) {}

  public:
    use_iterator_impl() : U() {}

    bool operator==(const use_iterator_impl &x) const { return U == x.U; }
    bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }

    use_iterator_impl &operator++() { // Preincrement
      assert(U && "Cannot increment end iterator!");
      U = U->getNext();
      return *this;
    }

    use_iterator_impl operator++(int) { // Postincrement
      auto tmp = *this;
      ++*this;
      return tmp;
    }

    UseT &operator*() const {
      assert(U && "Cannot dereference end iterator!");
      return *U;
    }

    UseT *operator->() const { return &operator*(); }

    operator use_iterator_impl<const UseT>() const {
      return use_iterator_impl<const UseT>(U);
    }
  };

  template <typename UserTy> // UserTy == 'User' or 'const User'
  class user_iterator_impl
      : public std::iterator<std::forward_iterator_tag, UserTy *> {
    use_iterator_impl<Use> UI;
    explicit user_iterator_impl(Use *U) : UI(U) {}
    friend class Value;

  public:
    user_iterator_impl() = default;

    bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
    bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }

    /// Returns true if this iterator is equal to user_end() on the value.
    bool atEnd() const { return *this == user_iterator_impl(); }

    user_iterator_impl &operator++() { // Preincrement
      ++UI;
      return *this;
    }

    user_iterator_impl operator++(int) { // Postincrement
      auto tmp = *this;
      ++*this;
      return tmp;
    }

    // Retrieve a pointer to the current User.
    UserTy *operator*() const {
      return UI->getUser();
    }

    UserTy *operator->() const { return operator*(); }

    operator user_iterator_impl<const UserTy>() const {
      return user_iterator_impl<const UserTy>(*UI);
    }

    Use &getUse() const { return *UI; }
  };

protected:
  Value(Type *Ty, unsigned scid);

  /// Value's destructor should be virtual by design, but that would require
  /// that Value and all of its subclasses have a vtable that effectively
  /// duplicates the information in the value ID. As a size optimization, the
  /// destructor has been protected, and the caller should manually call
  /// deleteValue.
  ~Value(); // Use deleteValue() to delete a generic Value.

public:
  Value(const Value &) = delete;
  Value &operator=(const Value &) = delete;

  /// Delete a pointer to a generic Value.
  void deleteValue();

  /// Support for debugging, callable in GDB: V->dump()
  void dump() const;

  /// Implement operator<< on Value.
  /// @{
  void print(raw_ostream &O, bool IsForDebug = false) const;
  void print(raw_ostream &O, ModuleSlotTracker &MST,
             bool IsForDebug = false) const;
  /// @}

  /// Print the name of this Value out to the specified raw_ostream.
  ///
  /// This is useful when you just want to print 'int %reg126', not the
  /// instruction that generated it. If you specify a Module for context, then
  /// even constanst get pretty-printed; for example, the type of a null
  /// pointer is printed symbolically.
  /// @{
  void printAsOperand(raw_ostream &O, bool PrintType = true,
                      const Module *M = nullptr) const;
  void printAsOperand(raw_ostream &O, bool PrintType,
                      ModuleSlotTracker &MST) const;
  /// @}

  /// All values are typed, get the type of this value.
  Type *getType() const { return VTy; }

  /// All values hold a context through their type.
  LLVMContext &getContext() const;

  // All values can potentially be named.
  bool hasName() const { return HasName; }
  ValueName *getValueName() const;
  void setValueName(ValueName *VN);

private:
  void destroyValueName();
  enum class ReplaceMetadataUses { No, Yes };
  void doRAUW(Value *New, ReplaceMetadataUses);
  void setNameImpl(const Twine &Name);

public:
  /// Return a constant reference to the value's name.
  ///
  /// This guaranteed to return the same reference as long as the value is not
  /// modified.  If the value has a name, this does a hashtable lookup, so it's
  /// not free.
  StringRef getName() const;

  /// Change the name of the value.
  ///
  /// Choose a new unique name if the provided name is taken.
  ///
  /// \param Name The new name; or "" if the value's name should be removed.
  void setName(const Twine &Name);

  /// Transfer the name from V to this value.
  ///
  /// After taking V's name, sets V's name to empty.
  ///
  /// \note It is an error to call V->takeName(V).
  void takeName(Value *V);

#ifndef NDEBUG 
  std::string getNameOrAsOperand() const; 
#endif 
 
  /// Change all uses of this to point to a new Value.
  ///
  /// Go through the uses list for this definition and make each use point to
  /// "V" instead of "this".  After this completes, 'this's use list is
  /// guaranteed to be empty.
  void replaceAllUsesWith(Value *V);

  /// Change non-metadata uses of this to point to a new Value.
  ///
  /// Go through the uses list for this definition and make each use point to
  /// "V" instead of "this". This function skips metadata entries in the list.
  void replaceNonMetadataUsesWith(Value *V);

  /// Go through the uses list for this definition and make each use point
  /// to "V" if the callback ShouldReplace returns true for the given Use.
  /// Unlike replaceAllUsesWith() this function does not support basic block
  /// values or constant users.
  void replaceUsesWithIf(Value *New,
                         llvm::function_ref<bool(Use &U)> ShouldReplace) {
    assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
    assert(New->getType() == getType() &&
           "replaceUses of value with new value of different type!");

    for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
      Use &U = *UI;
      ++UI;
      if (!ShouldReplace(U))
        continue;
      U.set(New);
    }
  }

  /// replaceUsesOutsideBlock - Go through the uses list for this definition and
  /// make each use point to "V" instead of "this" when the use is outside the
  /// block. 'This's use list is expected to have at least one element.
  /// Unlike replaceAllUsesWith() this function does not support basic block
  /// values or constant users.
  void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);

  //----------------------------------------------------------------------
  // Methods for handling the chain of uses of this Value.
  //
  // Materializing a function can introduce new uses, so these methods come in
  // two variants:
  // The methods that start with materialized_ check the uses that are
  // currently known given which functions are materialized. Be very careful
  // when using them since you might not get all uses.
  // The methods that don't start with materialized_ assert that modules is
  // fully materialized.
  void assertModuleIsMaterializedImpl() const;
  // This indirection exists so we can keep assertModuleIsMaterializedImpl()
  // around in release builds of Value.cpp to be linked with other code built
  // in debug mode. But this avoids calling it in any of the release built code.
  void assertModuleIsMaterialized() const {
#ifndef NDEBUG
    assertModuleIsMaterializedImpl();
#endif
  }

  bool use_empty() const {
    assertModuleIsMaterialized();
    return UseList == nullptr;
  }

  bool materialized_use_empty() const {
    return UseList == nullptr;
  }

  using use_iterator = use_iterator_impl<Use>;
  using const_use_iterator = use_iterator_impl<const Use>;

  use_iterator materialized_use_begin() { return use_iterator(UseList); }
  const_use_iterator materialized_use_begin() const {
    return const_use_iterator(UseList);
  }
  use_iterator use_begin() {
    assertModuleIsMaterialized();
    return materialized_use_begin();
  }
  const_use_iterator use_begin() const {
    assertModuleIsMaterialized();
    return materialized_use_begin();
  }
  use_iterator use_end() { return use_iterator(); }
  const_use_iterator use_end() const { return const_use_iterator(); }
  iterator_range<use_iterator> materialized_uses() {
    return make_range(materialized_use_begin(), use_end());
  }
  iterator_range<const_use_iterator> materialized_uses() const {
    return make_range(materialized_use_begin(), use_end());
  }
  iterator_range<use_iterator> uses() {
    assertModuleIsMaterialized();
    return materialized_uses();
  }
  iterator_range<const_use_iterator> uses() const {
    assertModuleIsMaterialized();
    return materialized_uses();
  }

  bool user_empty() const {
    assertModuleIsMaterialized();
    return UseList == nullptr;
  }

  using user_iterator = user_iterator_impl<User>;
  using const_user_iterator = user_iterator_impl<const User>;

  user_iterator materialized_user_begin() { return user_iterator(UseList); }
  const_user_iterator materialized_user_begin() const {
    return const_user_iterator(UseList);
  }
  user_iterator user_begin() {
    assertModuleIsMaterialized();
    return materialized_user_begin();
  }
  const_user_iterator user_begin() const {
    assertModuleIsMaterialized();
    return materialized_user_begin();
  }
  user_iterator user_end() { return user_iterator(); }
  const_user_iterator user_end() const { return const_user_iterator(); }
  User *user_back() {
    assertModuleIsMaterialized();
    return *materialized_user_begin();
  }
  const User *user_back() const {
    assertModuleIsMaterialized();
    return *materialized_user_begin();
  }
  iterator_range<user_iterator> materialized_users() {
    return make_range(materialized_user_begin(), user_end());
  }
  iterator_range<const_user_iterator> materialized_users() const {
    return make_range(materialized_user_begin(), user_end());
  }
  iterator_range<user_iterator> users() {
    assertModuleIsMaterialized();
    return materialized_users();
  }
  iterator_range<const_user_iterator> users() const {
    assertModuleIsMaterialized();
    return materialized_users();
  }

  /// Return true if there is exactly one use of this value. 
  ///
  /// This is specialized because it is a common request and does not require
  /// traversing the whole use list.
  bool hasOneUse() const { return hasSingleElement(uses()); } 

  /// Return true if this Value has exactly N uses. 
  bool hasNUses(unsigned N) const;

  /// Return true if this value has N uses or more. 
  ///
  /// This is logically equivalent to getNumUses() >= N.
  bool hasNUsesOrMore(unsigned N) const;

  /// Return true if there is exactly one user of this value. 
  /// 
  /// Note that this is not the same as "has one use". If a value has one use, 
  /// then there certainly is a single user. But if value has several uses, 
  /// it is possible that all uses are in a single user, or not. 
  /// 
  /// This check is potentially costly, since it requires traversing, 
  /// in the worst case, the whole use list of a value. 
  bool hasOneUser() const; 
 
  /// Return true if there is exactly one use of this value that cannot be 
  /// dropped.
  ///
  /// This is specialized because it is a common request and does not require
  /// traversing the whole use list.
  Use *getSingleUndroppableUse();

  /// Return true if there this value.
  ///
  /// This is specialized because it is a common request and does not require
  /// traversing the whole use list.
  bool hasNUndroppableUses(unsigned N) const;

  /// Return true if this value has N uses or more. 
  ///
  /// This is logically equivalent to getNumUses() >= N.
  bool hasNUndroppableUsesOrMore(unsigned N) const;

  /// Remove every uses that can safely be removed.
  ///
  /// This will remove for example uses in llvm.assume.
  /// This should be used when performing want to perform a tranformation but
  /// some Droppable uses pervent it.
  /// This function optionally takes a filter to only remove some droppable
  /// uses.
  void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop =
                             [](const Use *) { return true; });

  /// Remove every use of this value in \p User that can safely be removed. 
  void dropDroppableUsesIn(User &Usr); 
 
  /// Remove the droppable use \p U. 
  static void dropDroppableUse(Use &U); 
 
  /// Check if this value is used in the specified basic block.
  bool isUsedInBasicBlock(const BasicBlock *BB) const;

  /// This method computes the number of uses of this Value.
  ///
  /// This is a linear time operation.  Use hasOneUse, hasNUses, or
  /// hasNUsesOrMore to check for specific values.
  unsigned getNumUses() const;

  /// This method should only be used by the Use class.
  void addUse(Use &U) { U.addToList(&UseList); }

  /// Concrete subclass of this.
  ///
  /// An enumeration for keeping track of the concrete subclass of Value that
  /// is actually instantiated. Values of this enumeration are kept in the
  /// Value classes SubclassID field. They are used for concrete type
  /// identification.
  enum ValueTy {
#define HANDLE_VALUE(Name) Name##Val,
#include "llvm/IR/Value.def"

    // Markers:
#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
#include "llvm/IR/Value.def"
  };

  /// Return an ID for the concrete type of this object.
  ///
  /// This is used to implement the classof checks.  This should not be used
  /// for any other purpose, as the values may change as LLVM evolves.  Also,
  /// note that for instructions, the Instruction's opcode is added to
  /// InstructionVal. So this means three things:
  /// # there is no value with code InstructionVal (no opcode==0).
  /// # there are more possible values for the value type than in ValueTy enum.
  /// # the InstructionVal enumerator must be the highest valued enumerator in
  ///   the ValueTy enum.
  unsigned getValueID() const {
    return SubclassID;
  }

  /// Return the raw optional flags value contained in this value.
  ///
  /// This should only be used when testing two Values for equivalence.
  unsigned getRawSubclassOptionalData() const {
    return SubclassOptionalData;
  }

  /// Clear the optional flags contained in this value.
  void clearSubclassOptionalData() {
    SubclassOptionalData = 0;
  }

  /// Check the optional flags for equality.
  bool hasSameSubclassOptionalData(const Value *V) const {
    return SubclassOptionalData == V->SubclassOptionalData;
  }

  /// Return true if there is a value handle associated with this value.
  bool hasValueHandle() const { return HasValueHandle; }

  /// Return true if there is metadata referencing this value.
  bool isUsedByMetadata() const { return IsUsedByMD; }

protected: 
  /// Get the current metadata attachments for the given kind, if any. 
  /// 
  /// These functions require that the value have at most a single attachment 
  /// of the given kind, and return \c nullptr if such an attachment is missing. 
  /// @{ 
  MDNode *getMetadata(unsigned KindID) const; 
  MDNode *getMetadata(StringRef Kind) const; 
  /// @} 
 
  /// Appends all attachments with the given ID to \c MDs in insertion order. 
  /// If the Value has no attachments with the given ID, or if ID is invalid, 
  /// leaves MDs unchanged. 
  /// @{ 
  void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const; 
  void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const; 
  /// @} 
 
  /// Appends all metadata attached to this value to \c MDs, sorting by 
  /// KindID. The first element of each pair returned is the KindID, the second 
  /// element is the metadata value. Attachments with the same ID appear in 
  /// insertion order. 
  void 
  getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const; 
 
  /// Return true if this value has any metadata attached to it. 
  bool hasMetadata() const { return (bool)HasMetadata; } 
 
  /// Return true if this value has the given type of metadata attached. 
  /// @{ 
  bool hasMetadata(unsigned KindID) const { 
    return getMetadata(KindID) != nullptr; 
  } 
  bool hasMetadata(StringRef Kind) const { 
    return getMetadata(Kind) != nullptr; 
  } 
  /// @} 
 
  /// Set a particular kind of metadata attachment. 
  /// 
  /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or 
  /// replacing it if it already exists. 
  /// @{ 
  void setMetadata(unsigned KindID, MDNode *Node); 
  void setMetadata(StringRef Kind, MDNode *Node); 
  /// @} 
 
  /// Add a metadata attachment. 
  /// @{ 
  void addMetadata(unsigned KindID, MDNode &MD); 
  void addMetadata(StringRef Kind, MDNode &MD); 
  /// @} 
 
  /// Erase all metadata attachments with the given kind. 
  /// 
  /// \returns true if any metadata was removed. 
  bool eraseMetadata(unsigned KindID); 
 
  /// Erase all metadata attached to this Value. 
  void clearMetadata(); 
 
public: 
  /// Return true if this value is a swifterror value.
  ///
  /// swifterror values can be either a function argument or an alloca with a
  /// swifterror attribute.
  bool isSwiftError() const;

  /// Strip off pointer casts, all-zero GEPs and address space casts.
  ///
  /// Returns the original uncasted value.  If this is called on a non-pointer
  /// value, it returns 'this'.
  const Value *stripPointerCasts() const;
  Value *stripPointerCasts() {
    return const_cast<Value *>(
        static_cast<const Value *>(this)->stripPointerCasts());
  }

  /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
  ///
  /// Returns the original uncasted value.  If this is called on a non-pointer
  /// value, it returns 'this'.
  const Value *stripPointerCastsAndAliases() const;
  Value *stripPointerCastsAndAliases() {
    return const_cast<Value *>(
        static_cast<const Value *>(this)->stripPointerCastsAndAliases());
  }

  /// Strip off pointer casts, all-zero GEPs and address space casts
  /// but ensures the representation of the result stays the same.
  ///
  /// Returns the original uncasted value with the same representation. If this
  /// is called on a non-pointer value, it returns 'this'.
  const Value *stripPointerCastsSameRepresentation() const;
  Value *stripPointerCastsSameRepresentation() {
    return const_cast<Value *>(static_cast<const Value *>(this)
                                   ->stripPointerCastsSameRepresentation());
  }

  /// Strip off pointer casts, all-zero GEPs and invariant group info.
  ///
  /// Returns the original uncasted value.  If this is called on a non-pointer
  /// value, it returns 'this'. This function should be used only in
  /// Alias analysis.
  const Value *stripPointerCastsAndInvariantGroups() const;
  Value *stripPointerCastsAndInvariantGroups() {
    return const_cast<Value *>(static_cast<const Value *>(this)
                                   ->stripPointerCastsAndInvariantGroups());
  }

  /// Strip off pointer casts and all-constant inbounds GEPs.
  ///
  /// Returns the original pointer value.  If this is called on a non-pointer
  /// value, it returns 'this'.
  const Value *stripInBoundsConstantOffsets() const;
  Value *stripInBoundsConstantOffsets() {
    return const_cast<Value *>(
              static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
  }

  /// Accumulate the constant offset this value has compared to a base pointer.
  /// Only 'getelementptr' instructions (GEPs) are accumulated but other
  /// instructions, e.g., casts, are stripped away as well.
  /// The accumulated constant offset is added to \p Offset and the base
  /// pointer is returned.
  ///
  /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
  /// the address space of 'this' pointer value, e.g., use
  /// DataLayout::getIndexTypeSizeInBits(Ty).
  ///
  /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and
  /// accumulated even if the GEP is not "inbounds".
  ///
  /// If \p ExternalAnalysis is provided it will be used to calculate a offset
  /// when a operand of GEP is not constant.
  /// For example, for a value \p ExternalAnalysis might try to calculate a
  /// lower bound. If \p ExternalAnalysis is successful, it should return true.
  ///
  /// If this is called on a non-pointer value, it returns 'this' and the
  /// \p Offset is not modified.
  ///
  /// Note that this function will never return a nullptr. It will also never
  /// manipulate the \p Offset in a way that would not match the difference
  /// between the underlying value and the returned one. Thus, if no constant
  /// offset was found, the returned value is the underlying one and \p Offset
  /// is unchanged.
  const Value *stripAndAccumulateConstantOffsets(
      const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
      function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
          nullptr) const;
  Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
                                           bool AllowNonInbounds) {
    return const_cast<Value *>(
        static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
            DL, Offset, AllowNonInbounds));
  }

  /// This is a wrapper around stripAndAccumulateConstantOffsets with the
  /// in-bounds requirement set to false.
  const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
                                                         APInt &Offset) const {
    return stripAndAccumulateConstantOffsets(DL, Offset,
                                             /* AllowNonInbounds */ false);
  }
  Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
                                                   APInt &Offset) {
    return stripAndAccumulateConstantOffsets(DL, Offset,
                                             /* AllowNonInbounds */ false);
  }

  /// Strip off pointer casts and inbounds GEPs.
  ///
  /// Returns the original pointer value.  If this is called on a non-pointer
  /// value, it returns 'this'.
  const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
                                        [](const Value *) {}) const;
  inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
                                  [](const Value *) {}) {
    return const_cast<Value *>(
        static_cast<const Value *>(this)->stripInBoundsOffsets(Func));
  }

  /// Returns the number of bytes known to be dereferenceable for the
  /// pointer value.
  ///
  /// If CanBeNull is set by this function the pointer can either be null or be
  /// dereferenceable up to the returned number of bytes.
  uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
                                          bool &CanBeNull) const;

  /// Returns an alignment of the pointer value.
  ///
  /// Returns an alignment which is either specified explicitly, e.g. via
  /// align attribute of a function argument, or guaranteed by DataLayout.
  Align getPointerAlignment(const DataLayout &DL) const;

  /// Translate PHI node to its predecessor from the given basic block.
  ///
  /// If this value is a PHI node with CurBB as its parent, return the value in
  /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
  /// useful if you want to know the value something has in a predecessor
  /// block.
  const Value *DoPHITranslation(const BasicBlock *CurBB,
                                const BasicBlock *PredBB) const;
  Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
    return const_cast<Value *>(
             static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
  }

  /// The maximum alignment for instructions.
  ///
  /// This is the greatest alignment value supported by load, store, and alloca
  /// instructions, and global values.
  static const unsigned MaxAlignmentExponent = 29;
  static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;

  /// Mutate the type of this Value to be of the specified type.
  ///
  /// Note that this is an extremely dangerous operation which can create
  /// completely invalid IR very easily.  It is strongly recommended that you
  /// recreate IR objects with the right types instead of mutating them in
  /// place.
  void mutateType(Type *Ty) {
    VTy = Ty;
  }

  /// Sort the use-list.
  ///
  /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
  /// expected to compare two \a Use references.
  template <class Compare> void sortUseList(Compare Cmp);

  /// Reverse the use-list.
  void reverseUseList();

private:
  /// Merge two lists together.
  ///
  /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
  /// "equal" items from L before items from R.
  ///
  /// \return the first element in the list.
  ///
  /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
  template <class Compare>
  static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
    Use *Merged;
    Use **Next = &Merged;

    while (true) {
      if (!L) {
        *Next = R;
        break;
      }
      if (!R) {
        *Next = L;
        break;
      }
      if (Cmp(*R, *L)) {
        *Next = R;
        Next = &R->Next;
        R = R->Next;
      } else {
        *Next = L;
        Next = &L->Next;
        L = L->Next;
      }
    }

    return Merged;
  }

protected:
  unsigned short getSubclassDataFromValue() const { return SubclassData; }
  void setValueSubclassData(unsigned short D) { SubclassData = D; }
};

struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };

/// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
/// Those don't work because Value and Instruction's destructors are protected,
/// aren't virtual, and won't destroy the complete object.
using unique_value = std::unique_ptr<Value, ValueDeleter>;

inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
  V.print(OS);
  return OS;
}

void Use::set(Value *V) {
  if (Val) removeFromList();
  Val = V;
  if (V) V->addUse(*this);
}

Value *Use::operator=(Value *RHS) {
  set(RHS);
  return RHS;
}

const Use &Use::operator=(const Use &RHS) {
  set(RHS.Val);
  return *this;
}

template <class Compare> void Value::sortUseList(Compare Cmp) {
  if (!UseList || !UseList->Next)
    // No need to sort 0 or 1 uses.
    return;

  // Note: this function completely ignores Prev pointers until the end when
  // they're fixed en masse.

  // Create a binomial vector of sorted lists, visiting uses one at a time and
  // merging lists as necessary.
  const unsigned MaxSlots = 32;
  Use *Slots[MaxSlots];

  // Collect the first use, turning it into a single-item list.
  Use *Next = UseList->Next;
  UseList->Next = nullptr;
  unsigned NumSlots = 1;
  Slots[0] = UseList;

  // Collect all but the last use.
  while (Next->Next) {
    Use *Current = Next;
    Next = Current->Next;

    // Turn Current into a single-item list.
    Current->Next = nullptr;

    // Save Current in the first available slot, merging on collisions.
    unsigned I;
    for (I = 0; I < NumSlots; ++I) {
      if (!Slots[I])
        break;

      // Merge two lists, doubling the size of Current and emptying slot I.
      //
      // Since the uses in Slots[I] originally preceded those in Current, send
      // Slots[I] in as the left parameter to maintain a stable sort.
      Current = mergeUseLists(Slots[I], Current, Cmp);
      Slots[I] = nullptr;
    }
    // Check if this is a new slot.
    if (I == NumSlots) {
      ++NumSlots;
      assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
    }

    // Found an open slot.
    Slots[I] = Current;
  }

  // Merge all the lists together.
  assert(Next && "Expected one more Use");
  assert(!Next->Next && "Expected only one Use");
  UseList = Next;
  for (unsigned I = 0; I < NumSlots; ++I)
    if (Slots[I])
      // Since the uses in Slots[I] originally preceded those in UseList, send
      // Slots[I] in as the left parameter to maintain a stable sort.
      UseList = mergeUseLists(Slots[I], UseList, Cmp);

  // Fix the Prev pointers.
  for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
    I->Prev = Prev;
    Prev = &I->Next;
  }
}

// isa - Provide some specializations of isa so that we don't have to include
// the subtype header files to test to see if the value is a subclass...
//
template <> struct isa_impl<Constant, Value> {
  static inline bool doit(const Value &Val) {
    static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
    return Val.getValueID() <= Value::ConstantLastVal;
  }
};

template <> struct isa_impl<ConstantData, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() >= Value::ConstantDataFirstVal &&
           Val.getValueID() <= Value::ConstantDataLastVal;
  }
};

template <> struct isa_impl<ConstantAggregate, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
           Val.getValueID() <= Value::ConstantAggregateLastVal;
  }
};

template <> struct isa_impl<Argument, Value> {
  static inline bool doit (const Value &Val) {
    return Val.getValueID() == Value::ArgumentVal;
  }
};

template <> struct isa_impl<InlineAsm, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::InlineAsmVal;
  }
};

template <> struct isa_impl<Instruction, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() >= Value::InstructionVal;
  }
};

template <> struct isa_impl<BasicBlock, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::BasicBlockVal;
  }
};

template <> struct isa_impl<Function, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::FunctionVal;
  }
};

template <> struct isa_impl<GlobalVariable, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::GlobalVariableVal;
  }
};

template <> struct isa_impl<GlobalAlias, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::GlobalAliasVal;
  }
};

template <> struct isa_impl<GlobalIFunc, Value> {
  static inline bool doit(const Value &Val) {
    return Val.getValueID() == Value::GlobalIFuncVal;
  }
};

template <> struct isa_impl<GlobalIndirectSymbol, Value> {
  static inline bool doit(const Value &Val) {
    return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
  }
};

template <> struct isa_impl<GlobalValue, Value> {
  static inline bool doit(const Value &Val) {
    return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
  }
};

template <> struct isa_impl<GlobalObject, Value> {
  static inline bool doit(const Value &Val) {
    return isa<GlobalVariable>(Val) || isa<Function>(Val);
  }
};

// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)

// Specialized opaque value conversions.
inline Value **unwrap(LLVMValueRef *Vals) {
  return reinterpret_cast<Value**>(Vals);
}

template<typename T>
inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
#ifndef NDEBUG
  for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
    unwrap<T>(*I); // For side effect of calling assert on invalid usage.
#endif
  (void)Length;
  return reinterpret_cast<T**>(Vals);
}

inline LLVMValueRef *wrap(const Value **Vals) {
  return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
}

} // end namespace llvm

#endif // LLVM_IR_VALUE_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif