aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/ADT/DenseMap.h
blob: 96839b72886671a690d3f85ccbd827efb93653dc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the DenseMap class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_DENSEMAP_H
#define LLVM_ADT_DENSEMAP_H

#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/EpochTracker.h"
#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemAlloc.h"
#include "llvm/Support/ReverseIteration.h"
#include "llvm/Support/type_traits.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <initializer_list>
#include <iterator>
#include <new>
#include <type_traits>
#include <utility>

namespace llvm {

namespace detail {

// We extend a pair to allow users to override the bucket type with their own
// implementation without requiring two members.
template <typename KeyT, typename ValueT>
struct DenseMapPair : public std::pair<KeyT, ValueT> {
  using std::pair<KeyT, ValueT>::pair;

  KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
  ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
  const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
};

} // end namespace detail

template <typename KeyT, typename ValueT,
          typename KeyInfoT = DenseMapInfo<KeyT>,
          typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
          bool IsConst = false>
class DenseMapIterator;

template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
          typename BucketT>
class DenseMapBase : public DebugEpochBase {
  template <typename T>
  using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;

public:
  using size_type = unsigned;
  using key_type = KeyT;
  using mapped_type = ValueT;
  using value_type = BucketT;

  using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
  using const_iterator =
      DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;

  inline iterator begin() {
    // When the map is empty, avoid the overhead of advancing/retreating past
    // empty buckets.
    if (empty())
      return end();
    if (shouldReverseIterate<KeyT>())
      return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
    return makeIterator(getBuckets(), getBucketsEnd(), *this);
  }
  inline iterator end() {
    return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
  }
  inline const_iterator begin() const {
    if (empty())
      return end();
    if (shouldReverseIterate<KeyT>())
      return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
    return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
  }
  inline const_iterator end() const {
    return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
  }

  LLVM_NODISCARD bool empty() const {
    return getNumEntries() == 0;
  }
  unsigned size() const { return getNumEntries(); }

  /// Grow the densemap so that it can contain at least \p NumEntries items
  /// before resizing again.
  void reserve(size_type NumEntries) {
    auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
    incrementEpoch();
    if (NumBuckets > getNumBuckets())
      grow(NumBuckets);
  }

  void clear() {
    incrementEpoch();
    if (getNumEntries() == 0 && getNumTombstones() == 0) return;

    // If the capacity of the array is huge, and the # elements used is small,
    // shrink the array.
    if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
      shrink_and_clear();
      return;
    }

    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    if (std::is_trivially_destructible<ValueT>::value) {
      // Use a simpler loop when values don't need destruction.
      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
        P->getFirst() = EmptyKey;
    } else {
      unsigned NumEntries = getNumEntries();
      for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
          if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
            P->getSecond().~ValueT();
            --NumEntries;
          }
          P->getFirst() = EmptyKey;
        }
      }
      assert(NumEntries == 0 && "Node count imbalance!");
    }
    setNumEntries(0);
    setNumTombstones(0);
  }

  /// Return 1 if the specified key is in the map, 0 otherwise.
  size_type count(const_arg_type_t<KeyT> Val) const {
    const BucketT *TheBucket;
    return LookupBucketFor(Val, TheBucket) ? 1 : 0;
  }

  iterator find(const_arg_type_t<KeyT> Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return makeIterator(TheBucket,
                          shouldReverseIterate<KeyT>() ? getBuckets()
                                                       : getBucketsEnd(),
                          *this, true);
    return end();
  }
  const_iterator find(const_arg_type_t<KeyT> Val) const {
    const BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return makeConstIterator(TheBucket,
                               shouldReverseIterate<KeyT>() ? getBuckets()
                                                            : getBucketsEnd(),
                               *this, true);
    return end();
  }

  /// Alternate version of find() which allows a different, and possibly
  /// less expensive, key type.
  /// The DenseMapInfo is responsible for supplying methods
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
  /// type used.
  template<class LookupKeyT>
  iterator find_as(const LookupKeyT &Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return makeIterator(TheBucket,
                          shouldReverseIterate<KeyT>() ? getBuckets()
                                                       : getBucketsEnd(),
                          *this, true);
    return end();
  }
  template<class LookupKeyT>
  const_iterator find_as(const LookupKeyT &Val) const {
    const BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return makeConstIterator(TheBucket,
                               shouldReverseIterate<KeyT>() ? getBuckets()
                                                            : getBucketsEnd(),
                               *this, true);
    return end();
  }

  /// lookup - Return the entry for the specified key, or a default
  /// constructed value if no such entry exists.
  ValueT lookup(const_arg_type_t<KeyT> Val) const {
    const BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return TheBucket->getSecond();
    return ValueT();
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // If the key is already in the map, it returns false and doesn't update the
  // value.
  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
    return try_emplace(KV.first, KV.second);
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // If the key is already in the map, it returns false and doesn't update the
  // value.
  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
    return try_emplace(std::move(KV.first), std::move(KV.second));
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // The value is constructed in-place if the key is not in the map, otherwise
  // it is not moved.
  template <typename... Ts>
  std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return std::make_pair(makeIterator(TheBucket,
                                         shouldReverseIterate<KeyT>()
                                             ? getBuckets()
                                             : getBucketsEnd(),
                                         *this, true),
                            false); // Already in map.

    // Otherwise, insert the new element.
    TheBucket =
        InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
    return std::make_pair(makeIterator(TheBucket,
                                       shouldReverseIterate<KeyT>()
                                           ? getBuckets()
                                           : getBucketsEnd(),
                                       *this, true),
                          true);
  }

  // Inserts key,value pair into the map if the key isn't already in the map.
  // The value is constructed in-place if the key is not in the map, otherwise
  // it is not moved.
  template <typename... Ts>
  std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return std::make_pair(makeIterator(TheBucket,
                                         shouldReverseIterate<KeyT>()
                                             ? getBuckets()
                                             : getBucketsEnd(),
                                         *this, true),
                            false); // Already in map.

    // Otherwise, insert the new element.
    TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
    return std::make_pair(makeIterator(TheBucket,
                                       shouldReverseIterate<KeyT>()
                                           ? getBuckets()
                                           : getBucketsEnd(),
                                       *this, true),
                          true);
  }

  /// Alternate version of insert() which allows a different, and possibly
  /// less expensive, key type.
  /// The DenseMapInfo is responsible for supplying methods
  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
  /// type used.
  template <typename LookupKeyT>
  std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
                                      const LookupKeyT &Val) {
    BucketT *TheBucket;
    if (LookupBucketFor(Val, TheBucket))
      return std::make_pair(makeIterator(TheBucket,
                                         shouldReverseIterate<KeyT>()
                                             ? getBuckets()
                                             : getBucketsEnd(),
                                         *this, true),
                            false); // Already in map.

    // Otherwise, insert the new element.
    TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
                                           std::move(KV.second), Val);
    return std::make_pair(makeIterator(TheBucket,
                                       shouldReverseIterate<KeyT>()
                                           ? getBuckets()
                                           : getBucketsEnd(),
                                       *this, true),
                          true);
  }

  /// insert - Range insertion of pairs.
  template<typename InputIt>
  void insert(InputIt I, InputIt E) {
    for (; I != E; ++I)
      insert(*I);
  }

  bool erase(const KeyT &Val) {
    BucketT *TheBucket;
    if (!LookupBucketFor(Val, TheBucket))
      return false; // not in map.

    TheBucket->getSecond().~ValueT();
    TheBucket->getFirst() = getTombstoneKey();
    decrementNumEntries();
    incrementNumTombstones();
    return true;
  }
  void erase(iterator I) {
    BucketT *TheBucket = &*I;
    TheBucket->getSecond().~ValueT();
    TheBucket->getFirst() = getTombstoneKey();
    decrementNumEntries();
    incrementNumTombstones();
  }

  value_type& FindAndConstruct(const KeyT &Key) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return *TheBucket;

    return *InsertIntoBucket(TheBucket, Key);
  }

  ValueT &operator[](const KeyT &Key) {
    return FindAndConstruct(Key).second;
  }

  value_type& FindAndConstruct(KeyT &&Key) {
    BucketT *TheBucket;
    if (LookupBucketFor(Key, TheBucket))
      return *TheBucket;

    return *InsertIntoBucket(TheBucket, std::move(Key));
  }

  ValueT &operator[](KeyT &&Key) {
    return FindAndConstruct(std::move(Key)).second;
  }

  /// isPointerIntoBucketsArray - Return true if the specified pointer points
  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
  /// value in the DenseMap).
  bool isPointerIntoBucketsArray(const void *Ptr) const {
    return Ptr >= getBuckets() && Ptr < getBucketsEnd();
  }

  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
  /// array.  In conjunction with the previous method, this can be used to
  /// determine whether an insertion caused the DenseMap to reallocate.
  const void *getPointerIntoBucketsArray() const { return getBuckets(); }

protected:
  DenseMapBase() = default;

  void destroyAll() {
    if (getNumBuckets() == 0) // Nothing to do.
      return;

    const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
    for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
      if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
          !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
        P->getSecond().~ValueT();
      P->getFirst().~KeyT();
    }
  }

  void initEmpty() {
    setNumEntries(0);
    setNumTombstones(0);

    assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
           "# initial buckets must be a power of two!");
    const KeyT EmptyKey = getEmptyKey();
    for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
      ::new (&B->getFirst()) KeyT(EmptyKey);
  }

  /// Returns the number of buckets to allocate to ensure that the DenseMap can
  /// accommodate \p NumEntries without need to grow().
  unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
    // Ensure that "NumEntries * 4 < NumBuckets * 3"
    if (NumEntries == 0)
      return 0;
    // +1 is required because of the strict equality.
    // For example if NumEntries is 48, we need to return 401.
    return NextPowerOf2(NumEntries * 4 / 3 + 1);
  }

  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
    initEmpty();

    // Insert all the old elements.
    const KeyT EmptyKey = getEmptyKey();
    const KeyT TombstoneKey = getTombstoneKey();
    for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
      if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
          !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
        // Insert the key/value into the new table.
        BucketT *DestBucket;
        bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
        (void)FoundVal; // silence warning.
        assert(!FoundVal && "Key already in new map?");
        DestBucket->getFirst() = std::move(B->getFirst());
        ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
        incrementNumEntries();

        // Free the value.
        B->getSecond().~ValueT();
      }
      B->getFirst().~KeyT();
    }
  }

  template <typename OtherBaseT>
  void copyFrom(
      const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
    assert(&other != this);
    assert(getNumBuckets() == other.getNumBuckets());

    setNumEntries(other.getNumEntries());
    setNumTombstones(other.getNumTombstones());

    if (std::is_trivially_copyable<KeyT>::value && 
        std::is_trivially_copyable<ValueT>::value) 
      memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
             getNumBuckets() * sizeof(BucketT));
    else
      for (size_t i = 0; i < getNumBuckets(); ++i) {
        ::new (&getBuckets()[i].getFirst())
            KeyT(other.getBuckets()[i].getFirst());
        if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
            !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
          ::new (&getBuckets()[i].getSecond())
              ValueT(other.getBuckets()[i].getSecond());
      }
  }

  static unsigned getHashValue(const KeyT &Val) {
    return KeyInfoT::getHashValue(Val);
  }

  template<typename LookupKeyT>
  static unsigned getHashValue(const LookupKeyT &Val) {
    return KeyInfoT::getHashValue(Val);
  }

  static const KeyT getEmptyKey() {
    static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
                  "Must pass the derived type to this template!");
    return KeyInfoT::getEmptyKey();
  }

  static const KeyT getTombstoneKey() {
    return KeyInfoT::getTombstoneKey();
  }

private:
  iterator makeIterator(BucketT *P, BucketT *E,
                        DebugEpochBase &Epoch,
                        bool NoAdvance=false) {
    if (shouldReverseIterate<KeyT>()) {
      BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
      return iterator(B, E, Epoch, NoAdvance);
    }
    return iterator(P, E, Epoch, NoAdvance);
  }

  const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
                                   const DebugEpochBase &Epoch,
                                   const bool NoAdvance=false) const {
    if (shouldReverseIterate<KeyT>()) {
      const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
      return const_iterator(B, E, Epoch, NoAdvance);
    }
    return const_iterator(P, E, Epoch, NoAdvance);
  }

  unsigned getNumEntries() const {
    return static_cast<const DerivedT *>(this)->getNumEntries();
  }

  void setNumEntries(unsigned Num) {
    static_cast<DerivedT *>(this)->setNumEntries(Num);
  }

  void incrementNumEntries() {
    setNumEntries(getNumEntries() + 1);
  }

  void decrementNumEntries() {
    setNumEntries(getNumEntries() - 1);
  }

  unsigned getNumTombstones() const {
    return static_cast<const DerivedT *>(this)->getNumTombstones();
  }

  void setNumTombstones(unsigned Num) {
    static_cast<DerivedT *>(this)->setNumTombstones(Num);
  }

  void incrementNumTombstones() {
    setNumTombstones(getNumTombstones() + 1);
  }

  void decrementNumTombstones() {
    setNumTombstones(getNumTombstones() - 1);
  }

  const BucketT *getBuckets() const {
    return static_cast<const DerivedT *>(this)->getBuckets();
  }

  BucketT *getBuckets() {
    return static_cast<DerivedT *>(this)->getBuckets();
  }

  unsigned getNumBuckets() const {
    return static_cast<const DerivedT *>(this)->getNumBuckets();
  }

  BucketT *getBucketsEnd() {
    return getBuckets() + getNumBuckets();
  }

  const BucketT *getBucketsEnd() const {
    return getBuckets() + getNumBuckets();
  }

  void grow(unsigned AtLeast) {
    static_cast<DerivedT *>(this)->grow(AtLeast);
  }

  void shrink_and_clear() {
    static_cast<DerivedT *>(this)->shrink_and_clear();
  }

  template <typename KeyArg, typename... ValueArgs>
  BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
                            ValueArgs &&... Values) {
    TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);

    TheBucket->getFirst() = std::forward<KeyArg>(Key);
    ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
    return TheBucket;
  }

  template <typename LookupKeyT>
  BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
                                      ValueT &&Value, LookupKeyT &Lookup) {
    TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);

    TheBucket->getFirst() = std::move(Key);
    ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
    return TheBucket;
  }

  template <typename LookupKeyT>
  BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
                                BucketT *TheBucket) {
    incrementEpoch();

    // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
    // the buckets are empty (meaning that many are filled with tombstones),
    // grow the table.
    //
    // The later case is tricky.  For example, if we had one empty bucket with
    // tons of tombstones, failing lookups (e.g. for insertion) would have to
    // probe almost the entire table until it found the empty bucket.  If the
    // table completely filled with tombstones, no lookup would ever succeed,
    // causing infinite loops in lookup.
    unsigned NewNumEntries = getNumEntries() + 1;
    unsigned NumBuckets = getNumBuckets();
    if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
      this->grow(NumBuckets * 2);
      LookupBucketFor(Lookup, TheBucket);
      NumBuckets = getNumBuckets();
    } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
                             NumBuckets/8)) {
      this->grow(NumBuckets);
      LookupBucketFor(Lookup, TheBucket);
    }
    assert(TheBucket);

    // Only update the state after we've grown our bucket space appropriately
    // so that when growing buckets we have self-consistent entry count.
    incrementNumEntries();

    // If we are writing over a tombstone, remember this.
    const KeyT EmptyKey = getEmptyKey();
    if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
      decrementNumTombstones();

    return TheBucket;
  }

  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
  /// FoundBucket.  If the bucket contains the key and a value, this returns
  /// true, otherwise it returns a bucket with an empty marker or tombstone and
  /// returns false.
  template<typename LookupKeyT>
  bool LookupBucketFor(const LookupKeyT &Val,
                       const BucketT *&FoundBucket) const {
    const BucketT *BucketsPtr = getBuckets();
    const unsigned NumBuckets = getNumBuckets();

    if (NumBuckets == 0) {
      FoundBucket = nullptr;
      return false;
    }

    // FoundTombstone - Keep track of whether we find a tombstone while probing.
    const BucketT *FoundTombstone = nullptr;
    const KeyT EmptyKey = getEmptyKey();
    const KeyT TombstoneKey = getTombstoneKey();
    assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
           !KeyInfoT::isEqual(Val, TombstoneKey) &&
           "Empty/Tombstone value shouldn't be inserted into map!");

    unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
    unsigned ProbeAmt = 1;
    while (true) {
      const BucketT *ThisBucket = BucketsPtr + BucketNo;
      // Found Val's bucket?  If so, return it.
      if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
        FoundBucket = ThisBucket;
        return true;
      }

      // If we found an empty bucket, the key doesn't exist in the set.
      // Insert it and return the default value.
      if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
        // If we've already seen a tombstone while probing, fill it in instead
        // of the empty bucket we eventually probed to.
        FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
        return false;
      }

      // If this is a tombstone, remember it.  If Val ends up not in the map, we
      // prefer to return it than something that would require more probing.
      if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
          !FoundTombstone)
        FoundTombstone = ThisBucket;  // Remember the first tombstone found.

      // Otherwise, it's a hash collision or a tombstone, continue quadratic
      // probing.
      BucketNo += ProbeAmt++;
      BucketNo &= (NumBuckets-1);
    }
  }

  template <typename LookupKeyT>
  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
    const BucketT *ConstFoundBucket;
    bool Result = const_cast<const DenseMapBase *>(this)
      ->LookupBucketFor(Val, ConstFoundBucket);
    FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
    return Result;
  }

public:
  /// Return the approximate size (in bytes) of the actual map.
  /// This is just the raw memory used by DenseMap.
  /// If entries are pointers to objects, the size of the referenced objects
  /// are not included.
  size_t getMemorySize() const {
    return getNumBuckets() * sizeof(BucketT);
  }
};

/// Equality comparison for DenseMap.
///
/// Iterates over elements of LHS confirming that each (key, value) pair in LHS
/// is also in RHS, and that no additional pairs are in RHS.
/// Equivalent to N calls to RHS.find and N value comparisons. Amortized
/// complexity is linear, worst case is O(N^2) (if every hash collides).
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
          typename BucketT>
bool operator==(
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
  if (LHS.size() != RHS.size())
    return false;

  for (auto &KV : LHS) {
    auto I = RHS.find(KV.first);
    if (I == RHS.end() || I->second != KV.second)
      return false;
  }

  return true;
}

/// Inequality comparison for DenseMap.
///
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
          typename BucketT>
bool operator!=(
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
    const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
  return !(LHS == RHS);
}

template <typename KeyT, typename ValueT,
          typename KeyInfoT = DenseMapInfo<KeyT>,
          typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
                                     KeyT, ValueT, KeyInfoT, BucketT> {
  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;

  // Lift some types from the dependent base class into this class for
  // simplicity of referring to them.
  using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;

  BucketT *Buckets;
  unsigned NumEntries;
  unsigned NumTombstones;
  unsigned NumBuckets;

public:
  /// Create a DenseMap with an optional \p InitialReserve that guarantee that
  /// this number of elements can be inserted in the map without grow()
  explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }

  DenseMap(const DenseMap &other) : BaseT() {
    init(0);
    copyFrom(other);
  }

  DenseMap(DenseMap &&other) : BaseT() {
    init(0);
    swap(other);
  }

  template<typename InputIt>
  DenseMap(const InputIt &I, const InputIt &E) {
    init(std::distance(I, E));
    this->insert(I, E);
  }

  DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
    init(Vals.size());
    this->insert(Vals.begin(), Vals.end());
  }

  ~DenseMap() {
    this->destroyAll();
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
  }

  void swap(DenseMap& RHS) {
    this->incrementEpoch();
    RHS.incrementEpoch();
    std::swap(Buckets, RHS.Buckets);
    std::swap(NumEntries, RHS.NumEntries);
    std::swap(NumTombstones, RHS.NumTombstones);
    std::swap(NumBuckets, RHS.NumBuckets);
  }

  DenseMap& operator=(const DenseMap& other) {
    if (&other != this)
      copyFrom(other);
    return *this;
  }

  DenseMap& operator=(DenseMap &&other) {
    this->destroyAll();
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
    init(0);
    swap(other);
    return *this;
  }

  void copyFrom(const DenseMap& other) {
    this->destroyAll();
    deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
    if (allocateBuckets(other.NumBuckets)) {
      this->BaseT::copyFrom(other);
    } else {
      NumEntries = 0;
      NumTombstones = 0;
    }
  }

  void init(unsigned InitNumEntries) {
    auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
    if (allocateBuckets(InitBuckets)) {
      this->BaseT::initEmpty();
    } else {
      NumEntries = 0;
      NumTombstones = 0;
    }
  }

  void grow(unsigned AtLeast) {
    unsigned OldNumBuckets = NumBuckets;
    BucketT *OldBuckets = Buckets;

    allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
    assert(Buckets);
    if (!OldBuckets) {
      this->BaseT::initEmpty();
      return;
    }

    this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);

    // Free the old table.
    deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
                      alignof(BucketT));
  }

  void shrink_and_clear() {
    unsigned OldNumBuckets = NumBuckets;
    unsigned OldNumEntries = NumEntries;
    this->destroyAll();

    // Reduce the number of buckets.
    unsigned NewNumBuckets = 0;
    if (OldNumEntries)
      NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
    if (NewNumBuckets == NumBuckets) {
      this->BaseT::initEmpty();
      return;
    }

    deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
                      alignof(BucketT));
    init(NewNumBuckets);
  }

private:
  unsigned getNumEntries() const {
    return NumEntries;
  }

  void setNumEntries(unsigned Num) {
    NumEntries = Num;
  }

  unsigned getNumTombstones() const {
    return NumTombstones;
  }

  void setNumTombstones(unsigned Num) {
    NumTombstones = Num;
  }

  BucketT *getBuckets() const {
    return Buckets;
  }

  unsigned getNumBuckets() const {
    return NumBuckets;
  }

  bool allocateBuckets(unsigned Num) {
    NumBuckets = Num;
    if (NumBuckets == 0) {
      Buckets = nullptr;
      return false;
    }

    Buckets = static_cast<BucketT *>(
        allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
    return true;
  }
};

template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
          typename KeyInfoT = DenseMapInfo<KeyT>,
          typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
class SmallDenseMap
    : public DenseMapBase<
          SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
          ValueT, KeyInfoT, BucketT> {
  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;

  // Lift some types from the dependent base class into this class for
  // simplicity of referring to them.
  using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;

  static_assert(isPowerOf2_64(InlineBuckets),
                "InlineBuckets must be a power of 2.");

  unsigned Small : 1;
  unsigned NumEntries : 31;
  unsigned NumTombstones;

  struct LargeRep {
    BucketT *Buckets;
    unsigned NumBuckets;
  };

  /// A "union" of an inline bucket array and the struct representing
  /// a large bucket. This union will be discriminated by the 'Small' bit.
  AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;

public:
  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
    init(NumInitBuckets);
  }

  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
    init(0);
    copyFrom(other);
  }

  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
    init(0);
    swap(other);
  }

  template<typename InputIt>
  SmallDenseMap(const InputIt &I, const InputIt &E) {
    init(NextPowerOf2(std::distance(I, E)));
    this->insert(I, E);
  }

  ~SmallDenseMap() {
    this->destroyAll();
    deallocateBuckets();
  }

  void swap(SmallDenseMap& RHS) {
    unsigned TmpNumEntries = RHS.NumEntries;
    RHS.NumEntries = NumEntries;
    NumEntries = TmpNumEntries;
    std::swap(NumTombstones, RHS.NumTombstones);

    const KeyT EmptyKey = this->getEmptyKey();
    const KeyT TombstoneKey = this->getTombstoneKey();
    if (Small && RHS.Small) {
      // If we're swapping inline bucket arrays, we have to cope with some of
      // the tricky bits of DenseMap's storage system: the buckets are not
      // fully initialized. Thus we swap every key, but we may have
      // a one-directional move of the value.
      for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
        BucketT *LHSB = &getInlineBuckets()[i],
                *RHSB = &RHS.getInlineBuckets()[i];
        bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
                            !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
        bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
                            !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
        if (hasLHSValue && hasRHSValue) {
          // Swap together if we can...
          std::swap(*LHSB, *RHSB);
          continue;
        }
        // Swap separately and handle any asymmetry. 
        std::swap(LHSB->getFirst(), RHSB->getFirst());
        if (hasLHSValue) {
          ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
          LHSB->getSecond().~ValueT();
        } else if (hasRHSValue) {
          ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
          RHSB->getSecond().~ValueT();
        }
      }
      return;
    }
    if (!Small && !RHS.Small) {
      std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
      std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
      return;
    }

    SmallDenseMap &SmallSide = Small ? *this : RHS;
    SmallDenseMap &LargeSide = Small ? RHS : *this;

    // First stash the large side's rep and move the small side across.
    LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
    LargeSide.getLargeRep()->~LargeRep();
    LargeSide.Small = true;
    // This is similar to the standard move-from-old-buckets, but the bucket
    // count hasn't actually rotated in this case. So we have to carefully
    // move construct the keys and values into their new locations, but there
    // is no need to re-hash things.
    for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
      BucketT *NewB = &LargeSide.getInlineBuckets()[i],
              *OldB = &SmallSide.getInlineBuckets()[i];
      ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
      OldB->getFirst().~KeyT();
      if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
          !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
        ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
        OldB->getSecond().~ValueT();
      }
    }

    // The hard part of moving the small buckets across is done, just move
    // the TmpRep into its new home.
    SmallSide.Small = false;
    new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
  }

  SmallDenseMap& operator=(const SmallDenseMap& other) {
    if (&other != this)
      copyFrom(other);
    return *this;
  }

  SmallDenseMap& operator=(SmallDenseMap &&other) {
    this->destroyAll();
    deallocateBuckets();
    init(0);
    swap(other);
    return *this;
  }

  void copyFrom(const SmallDenseMap& other) {
    this->destroyAll();
    deallocateBuckets();
    Small = true;
    if (other.getNumBuckets() > InlineBuckets) {
      Small = false;
      new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
    }
    this->BaseT::copyFrom(other);
  }

  void init(unsigned InitBuckets) {
    Small = true;
    if (InitBuckets > InlineBuckets) {
      Small = false;
      new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
    }
    this->BaseT::initEmpty();
  }

  void grow(unsigned AtLeast) {
    if (AtLeast > InlineBuckets)
      AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));

    if (Small) {
      // First move the inline buckets into a temporary storage.
      AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
      BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage); 
      BucketT *TmpEnd = TmpBegin;

      // Loop over the buckets, moving non-empty, non-tombstones into the
      // temporary storage. Have the loop move the TmpEnd forward as it goes.
      const KeyT EmptyKey = this->getEmptyKey();
      const KeyT TombstoneKey = this->getTombstoneKey();
      for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
        if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
            !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
          assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
                 "Too many inline buckets!");
          ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
          ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
          ++TmpEnd;
          P->getSecond().~ValueT();
        }
        P->getFirst().~KeyT();
      }

      // AtLeast == InlineBuckets can happen if there are many tombstones,
      // and grow() is used to remove them. Usually we always switch to the
      // large rep here.
      if (AtLeast > InlineBuckets) {
        Small = false;
        new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
      }
      this->moveFromOldBuckets(TmpBegin, TmpEnd);
      return;
    }

    LargeRep OldRep = std::move(*getLargeRep());
    getLargeRep()->~LargeRep();
    if (AtLeast <= InlineBuckets) {
      Small = true;
    } else {
      new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
    }

    this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);

    // Free the old table.
    deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
                      alignof(BucketT));
  }

  void shrink_and_clear() {
    unsigned OldSize = this->size();
    this->destroyAll();

    // Reduce the number of buckets.
    unsigned NewNumBuckets = 0;
    if (OldSize) {
      NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
      if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
        NewNumBuckets = 64;
    }
    if ((Small && NewNumBuckets <= InlineBuckets) ||
        (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
      this->BaseT::initEmpty();
      return;
    }

    deallocateBuckets();
    init(NewNumBuckets);
  }

private:
  unsigned getNumEntries() const {
    return NumEntries;
  }

  void setNumEntries(unsigned Num) {
    // NumEntries is hardcoded to be 31 bits wide.
    assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
    NumEntries = Num;
  }

  unsigned getNumTombstones() const {
    return NumTombstones;
  }

  void setNumTombstones(unsigned Num) {
    NumTombstones = Num;
  }

  const BucketT *getInlineBuckets() const {
    assert(Small);
    // Note that this cast does not violate aliasing rules as we assert that
    // the memory's dynamic type is the small, inline bucket buffer, and the
    // 'storage' is a POD containing a char buffer. 
    return reinterpret_cast<const BucketT *>(&storage); 
  }

  BucketT *getInlineBuckets() {
    return const_cast<BucketT *>(
      const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
  }

  const LargeRep *getLargeRep() const {
    assert(!Small);
    // Note, same rule about aliasing as with getInlineBuckets.
    return reinterpret_cast<const LargeRep *>(&storage); 
  }

  LargeRep *getLargeRep() {
    return const_cast<LargeRep *>(
      const_cast<const SmallDenseMap *>(this)->getLargeRep());
  }

  const BucketT *getBuckets() const {
    return Small ? getInlineBuckets() : getLargeRep()->Buckets;
  }

  BucketT *getBuckets() {
    return const_cast<BucketT *>(
      const_cast<const SmallDenseMap *>(this)->getBuckets());
  }

  unsigned getNumBuckets() const {
    return Small ? InlineBuckets : getLargeRep()->NumBuckets;
  }

  void deallocateBuckets() {
    if (Small)
      return;

    deallocate_buffer(getLargeRep()->Buckets,
                      sizeof(BucketT) * getLargeRep()->NumBuckets,
                      alignof(BucketT));
    getLargeRep()->~LargeRep();
  }

  LargeRep allocateBuckets(unsigned Num) {
    assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
    LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
                        sizeof(BucketT) * Num, alignof(BucketT))),
                    Num};
    return Rep;
  }
};

template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
          bool IsConst>
class DenseMapIterator : DebugEpochBase::HandleBase {
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;

public:
  using difference_type = ptrdiff_t;
  using value_type =
      typename std::conditional<IsConst, const Bucket, Bucket>::type;
  using pointer = value_type *;
  using reference = value_type &;
  using iterator_category = std::forward_iterator_tag;

private:
  pointer Ptr = nullptr;
  pointer End = nullptr;

public:
  DenseMapIterator() = default;

  DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
                   bool NoAdvance = false)
      : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
    assert(isHandleInSync() && "invalid construction!");

    if (NoAdvance) return;
    if (shouldReverseIterate<KeyT>()) {
      RetreatPastEmptyBuckets();
      return;
    }
    AdvancePastEmptyBuckets();
  }

  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
  // for const iterator destinations so it doesn't end up as a user defined copy
  // constructor.
  template <bool IsConstSrc,
            typename = std::enable_if_t<!IsConstSrc && IsConst>>
  DenseMapIterator(
      const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
      : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}

  reference operator*() const {
    assert(isHandleInSync() && "invalid iterator access!");
    assert(Ptr != End && "dereferencing end() iterator");
    if (shouldReverseIterate<KeyT>())
      return Ptr[-1];
    return *Ptr;
  }
  pointer operator->() const {
    assert(isHandleInSync() && "invalid iterator access!");
    assert(Ptr != End && "dereferencing end() iterator");
    if (shouldReverseIterate<KeyT>())
      return &(Ptr[-1]);
    return Ptr;
  }

  friend bool operator==(const DenseMapIterator &LHS,
                         const DenseMapIterator &RHS) {
    assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!");
    assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
    assert(LHS.getEpochAddress() == RHS.getEpochAddress() &&
           "comparing incomparable iterators!");
    return LHS.Ptr == RHS.Ptr;
  }

  friend bool operator!=(const DenseMapIterator &LHS,
                         const DenseMapIterator &RHS) {
    return !(LHS == RHS);
  }

  inline DenseMapIterator& operator++() {  // Preincrement
    assert(isHandleInSync() && "invalid iterator access!");
    assert(Ptr != End && "incrementing end() iterator");
    if (shouldReverseIterate<KeyT>()) {
      --Ptr;
      RetreatPastEmptyBuckets();
      return *this;
    }
    ++Ptr;
    AdvancePastEmptyBuckets();
    return *this;
  }
  DenseMapIterator operator++(int) {  // Postincrement
    assert(isHandleInSync() && "invalid iterator access!");
    DenseMapIterator tmp = *this; ++*this; return tmp;
  }

private:
  void AdvancePastEmptyBuckets() {
    assert(Ptr <= End);
    const KeyT Empty = KeyInfoT::getEmptyKey();
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();

    while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
                          KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
      ++Ptr;
  }

  void RetreatPastEmptyBuckets() {
    assert(Ptr >= End);
    const KeyT Empty = KeyInfoT::getEmptyKey();
    const KeyT Tombstone = KeyInfoT::getTombstoneKey();

    while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
                          KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
      --Ptr;
  }
};

template <typename KeyT, typename ValueT, typename KeyInfoT>
inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
  return X.getMemorySize();
}

} // end namespace llvm

#endif // LLVM_ADT_DENSEMAP_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif