aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/libbz2/decompress.c
blob: 5f37c27e2f7390d596a9975782654593651f76c7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
 
/*-------------------------------------------------------------*/ 
/*--- Decompression machinery                               ---*/ 
/*---                                          decompress.c ---*/ 
/*-------------------------------------------------------------*/ 
 
/* ------------------------------------------------------------------ 
   This file is part of bzip2/libbzip2, a program and library for 
   lossless, block-sorting data compression. 
 
   bzip2/libbzip2 version 1.0.8 of 13 July 2019
   Copyright (C) 1996-2019 Julian Seward <jseward@acm.org>
 
   Please read the WARNING, DISCLAIMER and PATENTS sections in the  
   README file. 
 
   This program is released under the terms of the license contained 
   in the file LICENSE. 
   ------------------------------------------------------------------ */ 
 
 
#include "bzlib_private.h" 
 
 
/*---------------------------------------------------*/ 
static 
void makeMaps_d ( DState* s ) 
{ 
   Int32 i; 
   s->nInUse = 0; 
   for (i = 0; i < 256; i++) 
      if (s->inUse[i]) { 
         s->seqToUnseq[s->nInUse] = i; 
         s->nInUse++; 
      } 
} 
 
 
/*---------------------------------------------------*/ 
#define RETURN(rrr)                               \ 
   { retVal = rrr; goto save_state_and_return; }; 
 
#define GET_BITS(lll,vvv,nnn)                     \ 
   case lll: s->state = lll;                      \ 
   while (True) {                                 \ 
      if (s->bsLive >= nnn) {                     \ 
         UInt32 v;                                \ 
         v = (s->bsBuff >>                        \ 
             (s->bsLive-nnn)) & ((1 << nnn)-1);   \ 
         s->bsLive -= nnn;                        \ 
         vvv = v;                                 \ 
         break;                                   \ 
      }                                           \ 
      if (s->strm->avail_in == 0) RETURN(BZ_OK);  \ 
      s->bsBuff                                   \ 
         = (s->bsBuff << 8) |                     \ 
           ((UInt32)                              \ 
              (*((UChar*)(s->strm->next_in))));   \ 
      s->bsLive += 8;                             \ 
      s->strm->next_in++;                         \ 
      s->strm->avail_in--;                        \ 
      s->strm->total_in_lo32++;                   \ 
      if (s->strm->total_in_lo32 == 0)            \ 
         s->strm->total_in_hi32++;                \ 
   } 
 
#define GET_UCHAR(lll,uuu)                        \ 
   GET_BITS(lll,uuu,8) 
 
#define GET_BIT(lll,uuu)                          \ 
   GET_BITS(lll,uuu,1) 
 
/*---------------------------------------------------*/ 
#define GET_MTF_VAL(label1,label2,lval)           \ 
{                                                 \ 
   if (groupPos == 0) {                           \ 
      groupNo++;                                  \ 
      if (groupNo >= nSelectors)                  \ 
         RETURN(BZ_DATA_ERROR);                   \ 
      groupPos = BZ_G_SIZE;                       \ 
      gSel = s->selector[groupNo];                \ 
      gMinlen = s->minLens[gSel];                 \ 
      gLimit = &(s->limit[gSel][0]);              \ 
      gPerm = &(s->perm[gSel][0]);                \ 
      gBase = &(s->base[gSel][0]);                \ 
   }                                              \ 
   groupPos--;                                    \ 
   zn = gMinlen;                                  \ 
   GET_BITS(label1, zvec, zn);                    \ 
   while (1) {                                    \ 
      if (zn > 20 /* the longest code */)         \ 
         RETURN(BZ_DATA_ERROR);                   \ 
      if (zvec <= gLimit[zn]) break;              \ 
      zn++;                                       \ 
      GET_BIT(label2, zj);                        \ 
      zvec = (zvec << 1) | zj;                    \ 
   };                                             \ 
   if (zvec - gBase[zn] < 0                       \ 
       || zvec - gBase[zn] >= BZ_MAX_ALPHA_SIZE)  \ 
      RETURN(BZ_DATA_ERROR);                      \ 
   lval = gPerm[zvec - gBase[zn]];                \ 
} 
 
 
/*---------------------------------------------------*/ 
Int32 BZ2_decompress ( DState* s ) 
{ 
   UChar      uc; 
   Int32      retVal; 
   Int32      minLen, maxLen; 
   bz_stream* strm = s->strm; 
 
   /* stuff that needs to be saved/restored */ 
   Int32  i; 
   Int32  j; 
   Int32  t; 
   Int32  alphaSize; 
   Int32  nGroups; 
   Int32  nSelectors; 
   Int32  EOB; 
   Int32  groupNo; 
   Int32  groupPos; 
   Int32  nextSym; 
   Int32  nblockMAX; 
   Int32  nblock; 
   Int32  es; 
   Int32  N; 
   Int32  curr; 
   Int32  zt; 
   Int32  zn;  
   Int32  zvec; 
   Int32  zj; 
   Int32  gSel; 
   Int32  gMinlen; 
   Int32* gLimit; 
   Int32* gBase; 
   Int32* gPerm; 
 
   if (s->state == BZ_X_MAGIC_1) { 
      /*initialise the save area*/ 
      s->save_i           = 0; 
      s->save_j           = 0; 
      s->save_t           = 0; 
      s->save_alphaSize   = 0; 
      s->save_nGroups     = 0; 
      s->save_nSelectors  = 0; 
      s->save_EOB         = 0; 
      s->save_groupNo     = 0; 
      s->save_groupPos    = 0; 
      s->save_nextSym     = 0; 
      s->save_nblockMAX   = 0; 
      s->save_nblock      = 0; 
      s->save_es          = 0; 
      s->save_N           = 0; 
      s->save_curr        = 0; 
      s->save_zt          = 0; 
      s->save_zn          = 0; 
      s->save_zvec        = 0; 
      s->save_zj          = 0; 
      s->save_gSel        = 0; 
      s->save_gMinlen     = 0; 
      s->save_gLimit      = NULL; 
      s->save_gBase       = NULL; 
      s->save_gPerm       = NULL; 
   } 
 
   /*restore from the save area*/ 
   i           = s->save_i; 
   j           = s->save_j; 
   t           = s->save_t; 
   alphaSize   = s->save_alphaSize; 
   nGroups     = s->save_nGroups; 
   nSelectors  = s->save_nSelectors; 
   EOB         = s->save_EOB; 
   groupNo     = s->save_groupNo; 
   groupPos    = s->save_groupPos; 
   nextSym     = s->save_nextSym; 
   nblockMAX   = s->save_nblockMAX; 
   nblock      = s->save_nblock; 
   es          = s->save_es; 
   N           = s->save_N; 
   curr        = s->save_curr; 
   zt          = s->save_zt; 
   zn          = s->save_zn;  
   zvec        = s->save_zvec; 
   zj          = s->save_zj; 
   gSel        = s->save_gSel; 
   gMinlen     = s->save_gMinlen; 
   gLimit      = s->save_gLimit; 
   gBase       = s->save_gBase; 
   gPerm       = s->save_gPerm; 
 
   retVal = BZ_OK; 
 
   switch (s->state) { 
 
      GET_UCHAR(BZ_X_MAGIC_1, uc); 
      if (uc != BZ_HDR_B) RETURN(BZ_DATA_ERROR_MAGIC); 
 
      GET_UCHAR(BZ_X_MAGIC_2, uc); 
      if (uc != BZ_HDR_Z) RETURN(BZ_DATA_ERROR_MAGIC); 
 
      GET_UCHAR(BZ_X_MAGIC_3, uc) 
      if (uc != BZ_HDR_h) RETURN(BZ_DATA_ERROR_MAGIC); 
 
      GET_BITS(BZ_X_MAGIC_4, s->blockSize100k, 8) 
      if (s->blockSize100k < (BZ_HDR_0 + 1) ||  
          s->blockSize100k > (BZ_HDR_0 + 9)) RETURN(BZ_DATA_ERROR_MAGIC); 
      s->blockSize100k -= BZ_HDR_0; 
 
      if (s->smallDecompress) { 
         s->ll16 = BZALLOC( s->blockSize100k * 100000 * sizeof(UInt16) ); 
         s->ll4  = BZALLOC(  
                      ((1 + s->blockSize100k * 100000) >> 1) * sizeof(UChar)  
                   ); 
         if (s->ll16 == NULL || s->ll4 == NULL) RETURN(BZ_MEM_ERROR); 
      } else { 
         s->tt  = BZALLOC( s->blockSize100k * 100000 * sizeof(Int32) ); 
         if (s->tt == NULL) RETURN(BZ_MEM_ERROR); 
      } 
 
      GET_UCHAR(BZ_X_BLKHDR_1, uc); 
 
      if (uc == 0x17) goto endhdr_2; 
      if (uc != 0x31) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_BLKHDR_2, uc); 
      if (uc != 0x41) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_BLKHDR_3, uc); 
      if (uc != 0x59) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_BLKHDR_4, uc); 
      if (uc != 0x26) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_BLKHDR_5, uc); 
      if (uc != 0x53) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_BLKHDR_6, uc); 
      if (uc != 0x59) RETURN(BZ_DATA_ERROR); 
 
      s->currBlockNo++; 
      if (s->verbosity >= 2) 
         VPrintf1 ( "\n    [%d: huff+mtf ", s->currBlockNo ); 
  
      s->storedBlockCRC = 0; 
      GET_UCHAR(BZ_X_BCRC_1, uc); 
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); 
      GET_UCHAR(BZ_X_BCRC_2, uc); 
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); 
      GET_UCHAR(BZ_X_BCRC_3, uc); 
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); 
      GET_UCHAR(BZ_X_BCRC_4, uc); 
      s->storedBlockCRC = (s->storedBlockCRC << 8) | ((UInt32)uc); 
 
      GET_BITS(BZ_X_RANDBIT, s->blockRandomised, 1); 
 
      s->origPtr = 0; 
      GET_UCHAR(BZ_X_ORIGPTR_1, uc); 
      s->origPtr = (s->origPtr << 8) | ((Int32)uc); 
      GET_UCHAR(BZ_X_ORIGPTR_2, uc); 
      s->origPtr = (s->origPtr << 8) | ((Int32)uc); 
      GET_UCHAR(BZ_X_ORIGPTR_3, uc); 
      s->origPtr = (s->origPtr << 8) | ((Int32)uc); 
 
      if (s->origPtr < 0) 
         RETURN(BZ_DATA_ERROR); 
      if (s->origPtr > 10 + 100000*s->blockSize100k)  
         RETURN(BZ_DATA_ERROR); 
 
      /*--- Receive the mapping table ---*/ 
      for (i = 0; i < 16; i++) { 
         GET_BIT(BZ_X_MAPPING_1, uc); 
         if (uc == 1)  
            s->inUse16[i] = True; else  
            s->inUse16[i] = False; 
      } 
 
      for (i = 0; i < 256; i++) s->inUse[i] = False; 
 
      for (i = 0; i < 16; i++) 
         if (s->inUse16[i]) 
            for (j = 0; j < 16; j++) { 
               GET_BIT(BZ_X_MAPPING_2, uc); 
               if (uc == 1) s->inUse[i * 16 + j] = True; 
            } 
      makeMaps_d ( s ); 
      if (s->nInUse == 0) RETURN(BZ_DATA_ERROR); 
      alphaSize = s->nInUse+2; 
 
      /*--- Now the selectors ---*/ 
      GET_BITS(BZ_X_SELECTOR_1, nGroups, 3); 
      if (nGroups < 2 || nGroups > BZ_N_GROUPS) RETURN(BZ_DATA_ERROR);
      GET_BITS(BZ_X_SELECTOR_2, nSelectors, 15); 
      if (nSelectors < 1) RETURN(BZ_DATA_ERROR);
      for (i = 0; i < nSelectors; i++) { 
         j = 0; 
         while (True) { 
            GET_BIT(BZ_X_SELECTOR_3, uc); 
            if (uc == 0) break; 
            j++; 
            if (j >= nGroups) RETURN(BZ_DATA_ERROR); 
         } 
         /* Having more than BZ_MAX_SELECTORS doesn't make much sense
            since they will never be used, but some implementations might
            "round up" the number of selectors, so just ignore those. */
         if (i < BZ_MAX_SELECTORS)
           s->selectorMtf[i] = j;
      } 
      if (nSelectors > BZ_MAX_SELECTORS)
        nSelectors = BZ_MAX_SELECTORS;
 
      /*--- Undo the MTF values for the selectors. ---*/ 
      { 
         UChar pos[BZ_N_GROUPS], tmp, v; 
         for (v = 0; v < nGroups; v++) pos[v] = v; 
    
         for (i = 0; i < nSelectors; i++) { 
            v = s->selectorMtf[i]; 
            tmp = pos[v]; 
            while (v > 0) { pos[v] = pos[v-1]; v--; } 
            pos[0] = tmp; 
            s->selector[i] = tmp; 
         } 
      } 
 
      /*--- Now the coding tables ---*/ 
      for (t = 0; t < nGroups; t++) { 
         GET_BITS(BZ_X_CODING_1, curr, 5); 
         for (i = 0; i < alphaSize; i++) { 
            while (True) { 
               if (curr < 1 || curr > 20) RETURN(BZ_DATA_ERROR); 
               GET_BIT(BZ_X_CODING_2, uc); 
               if (uc == 0) break; 
               GET_BIT(BZ_X_CODING_3, uc); 
               if (uc == 0) curr++; else curr--; 
            } 
            s->len[t][i] = curr; 
         } 
      } 
 
      /*--- Create the Huffman decoding tables ---*/ 
      for (t = 0; t < nGroups; t++) { 
         minLen = 32; 
         maxLen = 0; 
         for (i = 0; i < alphaSize; i++) { 
            if (s->len[t][i] > maxLen) maxLen = s->len[t][i]; 
            if (s->len[t][i] < minLen) minLen = s->len[t][i]; 
         } 
         BZ2_hbCreateDecodeTables (  
            &(s->limit[t][0]),  
            &(s->base[t][0]),  
            &(s->perm[t][0]),  
            &(s->len[t][0]), 
            minLen, maxLen, alphaSize 
         ); 
         s->minLens[t] = minLen; 
      } 
 
      /*--- Now the MTF values ---*/ 
 
      EOB      = s->nInUse+1; 
      nblockMAX = 100000 * s->blockSize100k; 
      groupNo  = -1; 
      groupPos = 0; 
 
      for (i = 0; i <= 255; i++) s->unzftab[i] = 0; 
 
      /*-- MTF init --*/ 
      { 
         Int32 ii, jj, kk; 
         kk = MTFA_SIZE-1; 
         for (ii = 256 / MTFL_SIZE - 1; ii >= 0; ii--) { 
            for (jj = MTFL_SIZE-1; jj >= 0; jj--) { 
               s->mtfa[kk] = (UChar)(ii * MTFL_SIZE + jj); 
               kk--; 
            } 
            s->mtfbase[ii] = kk + 1; 
         } 
      } 
      /*-- end MTF init --*/ 
 
      nblock = 0; 
      GET_MTF_VAL(BZ_X_MTF_1, BZ_X_MTF_2, nextSym); 
 
      while (True) { 
 
         if (nextSym == EOB) break; 
 
         if (nextSym == BZ_RUNA || nextSym == BZ_RUNB) { 
 
            es = -1; 
            N = 1; 
            do { 
               /* Check that N doesn't get too big, so that es doesn't
                  go negative.  The maximum value that can be
                  RUNA/RUNB encoded is equal to the block size (post
                  the initial RLE), viz, 900k, so bounding N at 2
                  million should guard against overflow without
                  rejecting any legitimate inputs. */
               if (N >= 2*1024*1024) RETURN(BZ_DATA_ERROR);
               if (nextSym == BZ_RUNA) es = es + (0+1) * N; else 
               if (nextSym == BZ_RUNB) es = es + (1+1) * N; 
               N = N * 2; 
               GET_MTF_VAL(BZ_X_MTF_3, BZ_X_MTF_4, nextSym); 
            } 
               while (nextSym == BZ_RUNA || nextSym == BZ_RUNB); 
 
            es++; 
            uc = s->seqToUnseq[ s->mtfa[s->mtfbase[0]] ]; 
            s->unzftab[uc] += es; 
 
            if (s->smallDecompress) 
               while (es > 0) { 
                  if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); 
                  s->ll16[nblock] = (UInt16)uc; 
                  nblock++; 
                  es--; 
               } 
            else 
               while (es > 0) { 
                  if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); 
                  s->tt[nblock] = (UInt32)uc; 
                  nblock++; 
                  es--; 
               }; 
 
            continue; 
 
         } else { 
 
            if (nblock >= nblockMAX) RETURN(BZ_DATA_ERROR); 
 
            /*-- uc = MTF ( nextSym-1 ) --*/ 
            { 
               Int32 ii, jj, kk, pp, lno, off; 
               UInt32 nn; 
               nn = (UInt32)(nextSym - 1); 
 
               if (nn < MTFL_SIZE) { 
                  /* avoid general-case expense */ 
                  pp = s->mtfbase[0]; 
                  uc = s->mtfa[pp+nn]; 
                  while (nn > 3) { 
                     Int32 z = pp+nn; 
                     s->mtfa[(z)  ] = s->mtfa[(z)-1]; 
                     s->mtfa[(z)-1] = s->mtfa[(z)-2]; 
                     s->mtfa[(z)-2] = s->mtfa[(z)-3]; 
                     s->mtfa[(z)-3] = s->mtfa[(z)-4]; 
                     nn -= 4; 
                  } 
                  while (nn > 0) {  
                     s->mtfa[(pp+nn)] = s->mtfa[(pp+nn)-1]; nn--;  
                  }; 
                  s->mtfa[pp] = uc; 
               } else {  
                  /* general case */ 
                  lno = nn / MTFL_SIZE; 
                  off = nn % MTFL_SIZE; 
                  pp = s->mtfbase[lno] + off; 
                  uc = s->mtfa[pp]; 
                  while (pp > s->mtfbase[lno]) {  
                     s->mtfa[pp] = s->mtfa[pp-1]; pp--;  
                  }; 
                  s->mtfbase[lno]++; 
                  while (lno > 0) { 
                     s->mtfbase[lno]--; 
                     s->mtfa[s->mtfbase[lno]]  
                        = s->mtfa[s->mtfbase[lno-1] + MTFL_SIZE - 1]; 
                     lno--; 
                  } 
                  s->mtfbase[0]--; 
                  s->mtfa[s->mtfbase[0]] = uc; 
                  if (s->mtfbase[0] == 0) { 
                     kk = MTFA_SIZE-1; 
                     for (ii = 256 / MTFL_SIZE-1; ii >= 0; ii--) { 
                        for (jj = MTFL_SIZE-1; jj >= 0; jj--) { 
                           s->mtfa[kk] = s->mtfa[s->mtfbase[ii] + jj]; 
                           kk--; 
                        } 
                        s->mtfbase[ii] = kk + 1; 
                     } 
                  } 
               } 
            } 
            /*-- end uc = MTF ( nextSym-1 ) --*/ 
 
            s->unzftab[s->seqToUnseq[uc]]++; 
            if (s->smallDecompress) 
               s->ll16[nblock] = (UInt16)(s->seqToUnseq[uc]); else 
               s->tt[nblock]   = (UInt32)(s->seqToUnseq[uc]); 
            nblock++; 
 
            GET_MTF_VAL(BZ_X_MTF_5, BZ_X_MTF_6, nextSym); 
            continue; 
         } 
      } 
 
      /* Now we know what nblock is, we can do a better sanity 
         check on s->origPtr. 
      */ 
      if (s->origPtr < 0 || s->origPtr >= nblock) 
         RETURN(BZ_DATA_ERROR); 
 
      /*-- Set up cftab to facilitate generation of T^(-1) --*/ 
      /* Check: unzftab entries in range. */
      for (i = 0; i <= 255; i++) {
         if (s->unzftab[i] < 0 || s->unzftab[i] > nblock)
            RETURN(BZ_DATA_ERROR);
      }
      /* Actually generate cftab. */
      s->cftab[0] = 0; 
      for (i = 1; i <= 256; i++) s->cftab[i] = s->unzftab[i-1]; 
      for (i = 1; i <= 256; i++) s->cftab[i] += s->cftab[i-1]; 
      /* Check: cftab entries in range. */
      for (i = 0; i <= 256; i++) { 
         if (s->cftab[i] < 0 || s->cftab[i] > nblock) { 
            /* s->cftab[i] can legitimately be == nblock */ 
            RETURN(BZ_DATA_ERROR); 
         } 
      } 
      /* Check: cftab entries non-descending. */
      for (i = 1; i <= 256; i++) {
         if (s->cftab[i-1] > s->cftab[i]) {
            RETURN(BZ_DATA_ERROR);
         }
      }
 
      s->state_out_len = 0; 
      s->state_out_ch  = 0; 
      BZ_INITIALISE_CRC ( s->calculatedBlockCRC ); 
      s->state = BZ_X_OUTPUT; 
      if (s->verbosity >= 2) VPrintf0 ( "rt+rld" ); 
 
      if (s->smallDecompress) { 
 
         /*-- Make a copy of cftab, used in generation of T --*/ 
         for (i = 0; i <= 256; i++) s->cftabCopy[i] = s->cftab[i]; 
 
         /*-- compute the T vector --*/ 
         for (i = 0; i < nblock; i++) { 
            uc = (UChar)(s->ll16[i]); 
            SET_LL(i, s->cftabCopy[uc]); 
            s->cftabCopy[uc]++; 
         } 
 
         /*-- Compute T^(-1) by pointer reversal on T --*/ 
         i = s->origPtr; 
         j = GET_LL(i); 
         do { 
            Int32 tmp = GET_LL(j); 
            SET_LL(j, i); 
            i = j; 
            j = tmp; 
         } 
            while (i != s->origPtr); 
 
         s->tPos = s->origPtr; 
         s->nblock_used = 0; 
         if (s->blockRandomised) { 
            BZ_RAND_INIT_MASK; 
            BZ_GET_SMALL(s->k0); s->nblock_used++; 
            BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;  
         } else { 
            BZ_GET_SMALL(s->k0); s->nblock_used++; 
         } 
 
      } else { 
 
         /*-- compute the T^(-1) vector --*/ 
         for (i = 0; i < nblock; i++) { 
            uc = (UChar)(s->tt[i] & 0xff); 
            s->tt[s->cftab[uc]] |= (i << 8); 
            s->cftab[uc]++; 
         } 
 
         s->tPos = s->tt[s->origPtr] >> 8; 
         s->nblock_used = 0; 
         if (s->blockRandomised) { 
            BZ_RAND_INIT_MASK; 
            BZ_GET_FAST(s->k0); s->nblock_used++; 
            BZ_RAND_UPD_MASK; s->k0 ^= BZ_RAND_MASK;  
         } else { 
            BZ_GET_FAST(s->k0); s->nblock_used++; 
         } 
 
      } 
 
      RETURN(BZ_OK); 
 
 
 
    endhdr_2: 
 
      GET_UCHAR(BZ_X_ENDHDR_2, uc); 
      if (uc != 0x72) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_ENDHDR_3, uc); 
      if (uc != 0x45) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_ENDHDR_4, uc); 
      if (uc != 0x38) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_ENDHDR_5, uc); 
      if (uc != 0x50) RETURN(BZ_DATA_ERROR); 
      GET_UCHAR(BZ_X_ENDHDR_6, uc); 
      if (uc != 0x90) RETURN(BZ_DATA_ERROR); 
 
      s->storedCombinedCRC = 0; 
      GET_UCHAR(BZ_X_CCRC_1, uc); 
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); 
      GET_UCHAR(BZ_X_CCRC_2, uc); 
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); 
      GET_UCHAR(BZ_X_CCRC_3, uc); 
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); 
      GET_UCHAR(BZ_X_CCRC_4, uc); 
      s->storedCombinedCRC = (s->storedCombinedCRC << 8) | ((UInt32)uc); 
 
      s->state = BZ_X_IDLE; 
      RETURN(BZ_STREAM_END); 
 
      default: AssertH ( False, 4001 ); 
   } 
 
   AssertH ( False, 4002 ); 
 
   save_state_and_return: 
 
   s->save_i           = i; 
   s->save_j           = j; 
   s->save_t           = t; 
   s->save_alphaSize   = alphaSize; 
   s->save_nGroups     = nGroups; 
   s->save_nSelectors  = nSelectors; 
   s->save_EOB         = EOB; 
   s->save_groupNo     = groupNo; 
   s->save_groupPos    = groupPos; 
   s->save_nextSym     = nextSym; 
   s->save_nblockMAX   = nblockMAX; 
   s->save_nblock      = nblock; 
   s->save_es          = es; 
   s->save_N           = N; 
   s->save_curr        = curr; 
   s->save_zt          = zt; 
   s->save_zn          = zn; 
   s->save_zvec        = zvec; 
   s->save_zj          = zj; 
   s->save_gSel        = gSel; 
   s->save_gMinlen     = gMinlen; 
   s->save_gLimit      = gLimit; 
   s->save_gBase       = gBase; 
   s->save_gPerm       = gPerm; 
 
   return retVal;    
} 
 
 
/*-------------------------------------------------------------*/ 
/*--- end                                      decompress.c ---*/ 
/*-------------------------------------------------------------*/