aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/i18n/csrmbcs.cpp
blob: d7cc30d31748e105b4c879a686f7692dfc2dafa1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
// © 2016 and later: Unicode, Inc. and others. 
// License & terms of use: http://www.unicode.org/copyright.html
/*
 **********************************************************************
 *   Copyright (C) 2005-2016, International Business Machines
 *   Corporation and others.  All Rights Reserved.
 **********************************************************************
 */

#include "unicode/utypes.h"

#if !UCONFIG_NO_CONVERSION

#include "cmemory.h"
#include "csmatch.h"
#include "csrmbcs.h"

#include <math.h>

U_NAMESPACE_BEGIN

#define min(x,y) (((x)<(y))?(x):(y))

static const uint16_t commonChars_sjis [] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0x8140, 0x8141, 0x8142, 0x8145, 0x815b, 0x8169, 0x816a, 0x8175, 0x8176, 0x82a0,
0x82a2, 0x82a4, 0x82a9, 0x82aa, 0x82ab, 0x82ad, 0x82af, 0x82b1, 0x82b3, 0x82b5,
0x82b7, 0x82bd, 0x82be, 0x82c1, 0x82c4, 0x82c5, 0x82c6, 0x82c8, 0x82c9, 0x82cc,
0x82cd, 0x82dc, 0x82e0, 0x82e7, 0x82e8, 0x82e9, 0x82ea, 0x82f0, 0x82f1, 0x8341,
0x8343, 0x834e, 0x834f, 0x8358, 0x835e, 0x8362, 0x8367, 0x8375, 0x8376, 0x8389,
0x838a, 0x838b, 0x838d, 0x8393, 0x8e96, 0x93fa, 0x95aa};

static const uint16_t commonChars_euc_jp[] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0xa1a1, 0xa1a2, 0xa1a3, 0xa1a6, 0xa1bc, 0xa1ca, 0xa1cb, 0xa1d6, 0xa1d7, 0xa4a2,
0xa4a4, 0xa4a6, 0xa4a8, 0xa4aa, 0xa4ab, 0xa4ac, 0xa4ad, 0xa4af, 0xa4b1, 0xa4b3,
0xa4b5, 0xa4b7, 0xa4b9, 0xa4bb, 0xa4bd, 0xa4bf, 0xa4c0, 0xa4c1, 0xa4c3, 0xa4c4,
0xa4c6, 0xa4c7, 0xa4c8, 0xa4c9, 0xa4ca, 0xa4cb, 0xa4ce, 0xa4cf, 0xa4d0, 0xa4de,
0xa4df, 0xa4e1, 0xa4e2, 0xa4e4, 0xa4e8, 0xa4e9, 0xa4ea, 0xa4eb, 0xa4ec, 0xa4ef,
0xa4f2, 0xa4f3, 0xa5a2, 0xa5a3, 0xa5a4, 0xa5a6, 0xa5a7, 0xa5aa, 0xa5ad, 0xa5af,
0xa5b0, 0xa5b3, 0xa5b5, 0xa5b7, 0xa5b8, 0xa5b9, 0xa5bf, 0xa5c3, 0xa5c6, 0xa5c7,
0xa5c8, 0xa5c9, 0xa5cb, 0xa5d0, 0xa5d5, 0xa5d6, 0xa5d7, 0xa5de, 0xa5e0, 0xa5e1,
0xa5e5, 0xa5e9, 0xa5ea, 0xa5eb, 0xa5ec, 0xa5ed, 0xa5f3, 0xb8a9, 0xb9d4, 0xbaee,
0xbbc8, 0xbef0, 0xbfb7, 0xc4ea, 0xc6fc, 0xc7bd, 0xcab8, 0xcaf3, 0xcbdc, 0xcdd1};

static const uint16_t commonChars_euc_kr[] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0xb0a1, 0xb0b3, 0xb0c5, 0xb0cd, 0xb0d4, 0xb0e6, 0xb0ed, 0xb0f8, 0xb0fa, 0xb0fc,
0xb1b8, 0xb1b9, 0xb1c7, 0xb1d7, 0xb1e2, 0xb3aa, 0xb3bb, 0xb4c2, 0xb4cf, 0xb4d9,
0xb4eb, 0xb5a5, 0xb5b5, 0xb5bf, 0xb5c7, 0xb5e9, 0xb6f3, 0xb7af, 0xb7c2, 0xb7ce,
0xb8a6, 0xb8ae, 0xb8b6, 0xb8b8, 0xb8bb, 0xb8e9, 0xb9ab, 0xb9ae, 0xb9cc, 0xb9ce,
0xb9fd, 0xbab8, 0xbace, 0xbad0, 0xbaf1, 0xbbe7, 0xbbf3, 0xbbfd, 0xbcad, 0xbcba,
0xbcd2, 0xbcf6, 0xbdba, 0xbdc0, 0xbdc3, 0xbdc5, 0xbec6, 0xbec8, 0xbedf, 0xbeee,
0xbef8, 0xbefa, 0xbfa1, 0xbfa9, 0xbfc0, 0xbfe4, 0xbfeb, 0xbfec, 0xbff8, 0xc0a7,
0xc0af, 0xc0b8, 0xc0ba, 0xc0bb, 0xc0bd, 0xc0c7, 0xc0cc, 0xc0ce, 0xc0cf, 0xc0d6,
0xc0da, 0xc0e5, 0xc0fb, 0xc0fc, 0xc1a4, 0xc1a6, 0xc1b6, 0xc1d6, 0xc1df, 0xc1f6,
0xc1f8, 0xc4a1, 0xc5cd, 0xc6ae, 0xc7cf, 0xc7d1, 0xc7d2, 0xc7d8, 0xc7e5, 0xc8ad};

static const uint16_t commonChars_big5[] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0xa140, 0xa141, 0xa142, 0xa143, 0xa147, 0xa149, 0xa175, 0xa176, 0xa440, 0xa446,
0xa447, 0xa448, 0xa451, 0xa454, 0xa457, 0xa464, 0xa46a, 0xa46c, 0xa477, 0xa4a3,
0xa4a4, 0xa4a7, 0xa4c1, 0xa4ce, 0xa4d1, 0xa4df, 0xa4e8, 0xa4fd, 0xa540, 0xa548,
0xa558, 0xa569, 0xa5cd, 0xa5e7, 0xa657, 0xa661, 0xa662, 0xa668, 0xa670, 0xa6a8,
0xa6b3, 0xa6b9, 0xa6d3, 0xa6db, 0xa6e6, 0xa6f2, 0xa740, 0xa751, 0xa759, 0xa7da,
0xa8a3, 0xa8a5, 0xa8ad, 0xa8d1, 0xa8d3, 0xa8e4, 0xa8fc, 0xa9c0, 0xa9d2, 0xa9f3,
0xaa6b, 0xaaba, 0xaabe, 0xaacc, 0xaafc, 0xac47, 0xac4f, 0xacb0, 0xacd2, 0xad59,
0xaec9, 0xafe0, 0xb0ea, 0xb16f, 0xb2b3, 0xb2c4, 0xb36f, 0xb44c, 0xb44e, 0xb54c,
0xb5a5, 0xb5bd, 0xb5d0, 0xb5d8, 0xb671, 0xb7ed, 0xb867, 0xb944, 0xbad8, 0xbb44,
0xbba1, 0xbdd1, 0xc2c4, 0xc3b9, 0xc440, 0xc45f};

static const uint16_t commonChars_gb_18030[] = {
// TODO:  This set of data comes from the character frequency-
//        of-occurence analysis tool.  The data needs to be moved
//        into a resource and loaded from there.
0xa1a1, 0xa1a2, 0xa1a3, 0xa1a4, 0xa1b0, 0xa1b1, 0xa1f1, 0xa1f3, 0xa3a1, 0xa3ac,
0xa3ba, 0xb1a8, 0xb1b8, 0xb1be, 0xb2bb, 0xb3c9, 0xb3f6, 0xb4f3, 0xb5bd, 0xb5c4,
0xb5e3, 0xb6af, 0xb6d4, 0xb6e0, 0xb7a2, 0xb7a8, 0xb7bd, 0xb7d6, 0xb7dd, 0xb8b4,
0xb8df, 0xb8f6, 0xb9ab, 0xb9c9, 0xb9d8, 0xb9fa, 0xb9fd, 0xbacd, 0xbba7, 0xbbd6,
0xbbe1, 0xbbfa, 0xbcbc, 0xbcdb, 0xbcfe, 0xbdcc, 0xbecd, 0xbedd, 0xbfb4, 0xbfc6,
0xbfc9, 0xc0b4, 0xc0ed, 0xc1cb, 0xc2db, 0xc3c7, 0xc4dc, 0xc4ea, 0xc5cc, 0xc6f7,
0xc7f8, 0xc8ab, 0xc8cb, 0xc8d5, 0xc8e7, 0xc9cf, 0xc9fa, 0xcab1, 0xcab5, 0xcac7,
0xcad0, 0xcad6, 0xcaf5, 0xcafd, 0xccec, 0xcdf8, 0xceaa, 0xcec4, 0xced2, 0xcee5,
0xcfb5, 0xcfc2, 0xcfd6, 0xd0c2, 0xd0c5, 0xd0d0, 0xd0d4, 0xd1a7, 0xd2aa, 0xd2b2,
0xd2b5, 0xd2bb, 0xd2d4, 0xd3c3, 0xd3d0, 0xd3fd, 0xd4c2, 0xd4da, 0xd5e2, 0xd6d0};

static int32_t binarySearch(const uint16_t *array, int32_t len, uint16_t value)
{
    int32_t start = 0, end = len-1;
    int32_t mid = (start+end)/2;

    while(start <= end) {
        if(array[mid] == value) {
            return mid;
        }

        if(array[mid] < value){
            start = mid+1;
        } else {
            end = mid-1;
        }

        mid = (start+end)/2;
    }

    return -1;
}

IteratedChar::IteratedChar() : 
charValue(0), index(-1), nextIndex(0), error(FALSE), done(FALSE)
{
    // nothing else to do.
}

/*void IteratedChar::reset()
{
    charValue = 0;
    index     = -1;
    nextIndex = 0;
    error     = FALSE;
    done      = FALSE;
}*/

int32_t IteratedChar::nextByte(InputText *det)
{
    if (nextIndex >= det->fRawLength) {
        done = TRUE;

        return -1;
    }

    return det->fRawInput[nextIndex++];
}

CharsetRecog_mbcs::~CharsetRecog_mbcs()
{
    // nothing to do.
}

int32_t CharsetRecog_mbcs::match_mbcs(InputText *det, const uint16_t commonChars[], int32_t commonCharsLen) const {
    int32_t singleByteCharCount = 0;
    int32_t doubleByteCharCount = 0;
    int32_t commonCharCount     = 0;
    int32_t badCharCount        = 0;
    int32_t totalCharCount      = 0;
    int32_t confidence          = 0;
    IteratedChar iter;

    while (nextChar(&iter, det)) {
        totalCharCount++;

        if (iter.error) {
            badCharCount++;
        } else {
            if (iter.charValue <= 0xFF) {
                singleByteCharCount++;
            } else {
                doubleByteCharCount++;

                if (commonChars != 0) {
                    if (binarySearch(commonChars, commonCharsLen, static_cast<uint16_t>(iter.charValue)) >= 0){ 
                        commonCharCount += 1;
                    }
                }
            }
        }


        if (badCharCount >= 2 && badCharCount*5 >= doubleByteCharCount) {
            // Bail out early if the byte data is not matching the encoding scheme.
            // break detectBlock;
            return confidence;
        }
    }

    if (doubleByteCharCount <= 10 && badCharCount == 0) {
        // Not many multi-byte chars.
        if (doubleByteCharCount == 0 && totalCharCount < 10) {
            // There weren't any multibyte sequences, and there was a low density of non-ASCII single bytes.
            // We don't have enough data to have any confidence.
            // Statistical analysis of single byte non-ASCII charcters would probably help here.
            confidence = 0;
        }
        else {
            //   ASCII or ISO file?  It's probably not our encoding,
            //   but is not incompatible with our encoding, so don't give it a zero.
            confidence = 10;
        }

        return confidence;
    }

    //
    //  No match if there are too many characters that don't fit the encoding scheme.
    //    (should we have zero tolerance for these?)
    //
    if (doubleByteCharCount < 20*badCharCount) {
        confidence = 0;

        return confidence;
    }

    if (commonChars == 0) {
        // We have no statistics on frequently occuring characters.
        //  Assess confidence purely on having a reasonable number of
        //  multi-byte characters (the more the better)
        confidence = 30 + doubleByteCharCount - 20*badCharCount;

        if (confidence > 100) {
            confidence = 100;
        }
    } else {
        //
        // Frequency of occurence statistics exist.
        //

        double maxVal = log((double)doubleByteCharCount / 4); /*(float)?*/
        double scaleFactor = 90.0 / maxVal;
        confidence = (int32_t)(log((double)commonCharCount+1) * scaleFactor + 10.0);

        confidence = min(confidence, 100);
    }

    if (confidence < 0) {
        confidence = 0;
    }

    return confidence;
}

CharsetRecog_sjis::~CharsetRecog_sjis()
{
    // nothing to do
}

UBool CharsetRecog_sjis::nextChar(IteratedChar* it, InputText* det) const {
    it->index = it->nextIndex;
    it->error = FALSE;

    int32_t firstByte = it->charValue = it->nextByte(det);

    if (firstByte < 0) {
        return FALSE;
    }

    if (firstByte <= 0x7F || (firstByte > 0xA0 && firstByte <= 0xDF)) {
        return TRUE;
    }

    int32_t secondByte = it->nextByte(det);
    if (secondByte >= 0) {
        it->charValue = (firstByte << 8) | secondByte;
    }
    // else we'll handle the error later.

    if (! ((secondByte >= 0x40 && secondByte <= 0x7F) || (secondByte >= 0x80 && secondByte <= 0xFE))) {
        // Illegal second byte value.
        it->error = TRUE;
    }

    return TRUE;
}

UBool CharsetRecog_sjis::match(InputText* det, CharsetMatch *results) const {
    int32_t confidence = match_mbcs(det, commonChars_sjis, UPRV_LENGTHOF(commonChars_sjis));
    results->set(det, this, confidence);
    return (confidence > 0);
}

const char *CharsetRecog_sjis::getName() const
{
    return "Shift_JIS";
}

const char *CharsetRecog_sjis::getLanguage() const
{
    return "ja";
}

CharsetRecog_euc::~CharsetRecog_euc()
{
    // nothing to do
}

UBool CharsetRecog_euc::nextChar(IteratedChar* it, InputText* det) const {
    int32_t firstByte  = 0;
    int32_t secondByte = 0;
    int32_t thirdByte  = 0;

    it->index = it->nextIndex;
    it->error = FALSE;
    firstByte = it->charValue = it->nextByte(det);

    if (firstByte < 0) {
        // Ran off the end of the input data
        return FALSE;
    }

    if (firstByte <= 0x8D) {
        // single byte char
        return TRUE;
    }

    secondByte = it->nextByte(det);
    if (secondByte >= 0) {
        it->charValue = (it->charValue << 8) | secondByte;
    }
    // else we'll handle the error later.

    if (firstByte >= 0xA1 && firstByte <= 0xFE) {
        // Two byte Char
        if (secondByte < 0xA1) {
            it->error = TRUE;
        }

        return TRUE;
    }

    if (firstByte == 0x8E) {
        // Code Set 2.
        //   In EUC-JP, total char size is 2 bytes, only one byte of actual char value.
        //   In EUC-TW, total char size is 4 bytes, three bytes contribute to char value.
        // We don't know which we've got.
        // Treat it like EUC-JP.  If the data really was EUC-TW, the following two
        //   bytes will look like a well formed 2 byte char.
        if (secondByte < 0xA1) {
            it->error = TRUE;
        }

        return TRUE;
    }

    if (firstByte == 0x8F) {
        // Code set 3.
        // Three byte total char size, two bytes of actual char value.
        thirdByte    = it->nextByte(det);
        it->charValue = (it->charValue << 8) | thirdByte;

        if (thirdByte < 0xa1) {
            // Bad second byte or ran off the end of the input data with a non-ASCII first byte.
            it->error = TRUE;
        }
    }

    return TRUE;

}

CharsetRecog_euc_jp::~CharsetRecog_euc_jp()
{
    // nothing to do
}

const char *CharsetRecog_euc_jp::getName() const
{
    return "EUC-JP";
}

const char *CharsetRecog_euc_jp::getLanguage() const
{
    return "ja";
}

UBool CharsetRecog_euc_jp::match(InputText *det, CharsetMatch *results) const
{
    int32_t confidence = match_mbcs(det, commonChars_euc_jp, UPRV_LENGTHOF(commonChars_euc_jp));
    results->set(det, this, confidence);
    return (confidence > 0);
}

CharsetRecog_euc_kr::~CharsetRecog_euc_kr()
{
    // nothing to do
}

const char *CharsetRecog_euc_kr::getName() const
{
    return "EUC-KR";
}

const char *CharsetRecog_euc_kr::getLanguage() const
{
    return "ko";
}

UBool CharsetRecog_euc_kr::match(InputText *det, CharsetMatch *results) const
{
    int32_t confidence =  match_mbcs(det, commonChars_euc_kr, UPRV_LENGTHOF(commonChars_euc_kr));
    results->set(det, this, confidence);
    return (confidence > 0);
}

CharsetRecog_big5::~CharsetRecog_big5()
{
    // nothing to do
}

UBool CharsetRecog_big5::nextChar(IteratedChar* it, InputText* det) const
{
    int32_t firstByte;

    it->index = it->nextIndex;
    it->error = FALSE;
    firstByte = it->charValue = it->nextByte(det);

    if (firstByte < 0) {
        return FALSE;
    }

    if (firstByte <= 0x7F || firstByte == 0xFF) {
        // single byte character.
        return TRUE;
    }

    int32_t secondByte = it->nextByte(det);
    if (secondByte >= 0)  {
        it->charValue = (it->charValue << 8) | secondByte;
    }
    // else we'll handle the error later.

    if (secondByte < 0x40 || secondByte == 0x7F || secondByte == 0xFF) {
        it->error = TRUE;
    }

    return TRUE;
}

const char *CharsetRecog_big5::getName() const
{
    return "Big5";
}

const char *CharsetRecog_big5::getLanguage() const
{
    return "zh";
}

UBool CharsetRecog_big5::match(InputText *det, CharsetMatch *results) const
{
    int32_t confidence = match_mbcs(det, commonChars_big5, UPRV_LENGTHOF(commonChars_big5));
    results->set(det, this, confidence);
    return (confidence > 0);
}

CharsetRecog_gb_18030::~CharsetRecog_gb_18030()
{
    // nothing to do
}

UBool CharsetRecog_gb_18030::nextChar(IteratedChar* it, InputText* det) const {
    int32_t firstByte  = 0;
    int32_t secondByte = 0;
    int32_t thirdByte  = 0;
    int32_t fourthByte = 0;

    it->index = it->nextIndex;
    it->error = FALSE;
    firstByte = it->charValue = it->nextByte(det);

    if (firstByte < 0) {
        // Ran off the end of the input data
        return FALSE;
    }

    if (firstByte <= 0x80) {
        // single byte char
        return TRUE;
    }

    secondByte = it->nextByte(det);
    if (secondByte >= 0) {
        it->charValue = (it->charValue << 8) | secondByte;
    }
    // else we'll handle the error later.

    if (firstByte >= 0x81 && firstByte <= 0xFE) {
        // Two byte Char
        if ((secondByte >= 0x40 && secondByte <= 0x7E) || (secondByte >=80 && secondByte <= 0xFE)) {
            return TRUE;
        }

        // Four byte char
        if (secondByte >= 0x30 && secondByte <= 0x39) {
            thirdByte = it->nextByte(det);

            if (thirdByte >= 0x81 && thirdByte <= 0xFE) {
                fourthByte = it->nextByte(det);

                if (fourthByte >= 0x30 && fourthByte <= 0x39) {
                    it->charValue = (it->charValue << 16) | (thirdByte << 8) | fourthByte;

                    return TRUE;
                }
            }
        }

        // Something wasn't valid, or we ran out of data (-1).
        it->error = TRUE;
    }

    return TRUE;
}

const char *CharsetRecog_gb_18030::getName() const
{
    return "GB18030";
}

const char *CharsetRecog_gb_18030::getLanguage() const
{
    return "zh";
}

UBool CharsetRecog_gb_18030::match(InputText *det, CharsetMatch *results) const
{
    int32_t confidence = match_mbcs(det, commonChars_gb_18030, UPRV_LENGTHOF(commonChars_gb_18030));
    results->set(det, this, confidence);
    return (confidence > 0);
}

U_NAMESPACE_END
#endif