aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/i18n/collationkeys.cpp
blob: 576cb93fe0a40853202930ecd5017308e580fee7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html 
/* 
******************************************************************************* 
* Copyright (C) 2012-2015, International Business Machines 
* Corporation and others.  All Rights Reserved. 
******************************************************************************* 
* collationkeys.cpp 
* 
* created on: 2012sep02 
* created by: Markus W. Scherer 
*/ 
 
#include "unicode/utypes.h" 
 
#if !UCONFIG_NO_COLLATION 
 
#include "unicode/bytestream.h" 
#include "collation.h" 
#include "collationiterator.h" 
#include "collationkeys.h" 
#include "collationsettings.h" 
#include "uassert.h" 
 
U_NAMESPACE_BEGIN 
 
SortKeyByteSink::~SortKeyByteSink() {} 
 
void 
SortKeyByteSink::Append(const char *bytes, int32_t n) { 
    if (n <= 0 || bytes == NULL) { 
        return; 
    } 
    if (ignore_ > 0) { 
        int32_t ignoreRest = ignore_ - n; 
        if (ignoreRest >= 0) { 
            ignore_ = ignoreRest; 
            return; 
        } else { 
            bytes += ignore_; 
            n = -ignoreRest; 
            ignore_ = 0; 
        } 
    } 
    int32_t length = appended_; 
    appended_ += n; 
    if ((buffer_ + length) == bytes) { 
        return;  // the caller used GetAppendBuffer() and wrote the bytes already 
    } 
    int32_t available = capacity_ - length; 
    if (n <= available) { 
        uprv_memcpy(buffer_ + length, bytes, n); 
    } else { 
        AppendBeyondCapacity(bytes, n, length); 
    } 
} 
 
char * 
SortKeyByteSink::GetAppendBuffer(int32_t min_capacity, 
                                 int32_t desired_capacity_hint, 
                                 char *scratch, 
                                 int32_t scratch_capacity, 
                                 int32_t *result_capacity) { 
    if (min_capacity < 1 || scratch_capacity < min_capacity) { 
        *result_capacity = 0; 
        return NULL; 
    } 
    if (ignore_ > 0) { 
        // Do not write ignored bytes right at the end of the buffer. 
        *result_capacity = scratch_capacity; 
        return scratch; 
    } 
    int32_t available = capacity_ - appended_; 
    if (available >= min_capacity) { 
        *result_capacity = available; 
        return buffer_ + appended_; 
    } else if (Resize(desired_capacity_hint, appended_)) { 
        *result_capacity = capacity_ - appended_; 
        return buffer_ + appended_; 
    } else { 
        *result_capacity = scratch_capacity; 
        return scratch; 
    } 
} 
 
namespace { 
 
/** 
 * uint8_t byte buffer, similar to CharString but simpler. 
 */ 
class SortKeyLevel : public UMemory { 
public: 
    SortKeyLevel() : len(0), ok(TRUE) {} 
    ~SortKeyLevel() {} 
 
    /** @return FALSE if memory allocation failed */ 
    UBool isOk() const { return ok; } 
    UBool isEmpty() const { return len == 0; } 
    int32_t length() const { return len; } 
    const uint8_t *data() const { return buffer.getAlias(); } 
    uint8_t operator[](int32_t index) const { return buffer[index]; } 
 
    uint8_t *data() { return buffer.getAlias(); } 
 
    void appendByte(uint32_t b); 
    void appendWeight16(uint32_t w); 
    void appendWeight32(uint32_t w); 
    void appendReverseWeight16(uint32_t w); 
 
    /** Appends all but the last byte to the sink. The last byte should be the 01 terminator. */ 
    void appendTo(ByteSink &sink) const { 
        U_ASSERT(len > 0 && buffer[len - 1] == 1); 
        sink.Append(reinterpret_cast<const char *>(buffer.getAlias()), len - 1); 
    } 
 
private: 
    MaybeStackArray<uint8_t, 40> buffer; 
    int32_t len; 
    UBool ok; 
 
    UBool ensureCapacity(int32_t appendCapacity); 
 
    SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class 
    SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class 
}; 
 
void SortKeyLevel::appendByte(uint32_t b) { 
    if(len < buffer.getCapacity() || ensureCapacity(1)) { 
        buffer[len++] = (uint8_t)b; 
    } 
} 
 
void 
SortKeyLevel::appendWeight16(uint32_t w) { 
    U_ASSERT((w & 0xffff) != 0); 
    uint8_t b0 = (uint8_t)(w >> 8); 
    uint8_t b1 = (uint8_t)w; 
    int32_t appendLength = (b1 == 0) ? 1 : 2; 
    if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) { 
        buffer[len++] = b0; 
        if(b1 != 0) { 
            buffer[len++] = b1; 
        } 
    } 
} 
 
void 
SortKeyLevel::appendWeight32(uint32_t w) { 
    U_ASSERT(w != 0); 
    uint8_t bytes[4] = { (uint8_t)(w >> 24), (uint8_t)(w >> 16), (uint8_t)(w >> 8), (uint8_t)w }; 
    int32_t appendLength = (bytes[1] == 0) ? 1 : (bytes[2] == 0) ? 2 : (bytes[3] == 0) ? 3 : 4; 
    if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) { 
        buffer[len++] = bytes[0]; 
        if(bytes[1] != 0) { 
            buffer[len++] = bytes[1]; 
            if(bytes[2] != 0) { 
                buffer[len++] = bytes[2]; 
                if(bytes[3] != 0) { 
                    buffer[len++] = bytes[3]; 
                } 
            } 
        } 
    } 
} 
 
void 
SortKeyLevel::appendReverseWeight16(uint32_t w) { 
    U_ASSERT((w & 0xffff) != 0); 
    uint8_t b0 = (uint8_t)(w >> 8); 
    uint8_t b1 = (uint8_t)w; 
    int32_t appendLength = (b1 == 0) ? 1 : 2; 
    if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) { 
        if(b1 == 0) { 
            buffer[len++] = b0; 
        } else { 
            buffer[len] = b1; 
            buffer[len + 1] = b0; 
            len += 2; 
        } 
    } 
} 
 
UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) { 
    if(!ok) { 
        return FALSE; 
    } 
    int32_t newCapacity = 2 * buffer.getCapacity(); 
    int32_t altCapacity = len + 2 * appendCapacity; 
    if (newCapacity < altCapacity) { 
        newCapacity = altCapacity; 
    } 
    if (newCapacity < 200) { 
        newCapacity = 200; 
    } 
    if(buffer.resize(newCapacity, len)==NULL) { 
        return ok = FALSE; 
    } 
    return TRUE; 
} 
 
}  // namespace 
 
CollationKeys::LevelCallback::~LevelCallback() {} 
 
UBool 
CollationKeys::LevelCallback::needToWrite(Collation::Level /*level*/) { return TRUE; } 
 
/** 
 * Map from collation strength (UColAttributeValue) 
 * to a mask of Collation::Level bits up to that strength, 
 * excluding the CASE_LEVEL which is independent of the strength, 
 * and excluding IDENTICAL_LEVEL which this function does not write. 
 */ 
static const uint32_t levelMasks[UCOL_STRENGTH_LIMIT] = { 
    2,          // UCOL_PRIMARY -> PRIMARY_LEVEL 
    6,          // UCOL_SECONDARY -> up to SECONDARY_LEVEL 
    0x16,       // UCOL_TERTIARY -> up to TERTIARY_LEVEL 
    0x36,       // UCOL_QUATERNARY -> up to QUATERNARY_LEVEL 
    0, 0, 0, 0, 
    0, 0, 0, 0, 
    0, 0, 0, 
    0x36        // UCOL_IDENTICAL -> up to QUATERNARY_LEVEL 
}; 
 
void 
CollationKeys::writeSortKeyUpToQuaternary(CollationIterator &iter, 
                                          const UBool *compressibleBytes, 
                                          const CollationSettings &settings, 
                                          SortKeyByteSink &sink, 
                                          Collation::Level minLevel, LevelCallback &callback, 
                                          UBool preflight, UErrorCode &errorCode) { 
    if(U_FAILURE(errorCode)) { return; } 
 
    int32_t options = settings.options; 
    // Set of levels to process and write. 
    uint32_t levels = levelMasks[CollationSettings::getStrength(options)]; 
    if((options & CollationSettings::CASE_LEVEL) != 0) { 
        levels |= Collation::CASE_LEVEL_FLAG; 
    } 
    // Minus the levels below minLevel. 
    levels &= ~(((uint32_t)1 << minLevel) - 1); 
    if(levels == 0) { return; } 
 
    uint32_t variableTop; 
    if((options & CollationSettings::ALTERNATE_MASK) == 0) { 
        variableTop = 0; 
    } else { 
        // +1 so that we can use "<" and primary ignorables test out early. 
        variableTop = settings.variableTop + 1; 
    } 
 
    uint32_t tertiaryMask = CollationSettings::getTertiaryMask(options); 
 
    SortKeyLevel cases; 
    SortKeyLevel secondaries; 
    SortKeyLevel tertiaries; 
    SortKeyLevel quaternaries; 
 
    uint32_t prevReorderedPrimary = 0;  // 0==no compression 
    int32_t commonCases = 0; 
    int32_t commonSecondaries = 0; 
    int32_t commonTertiaries = 0; 
    int32_t commonQuaternaries = 0; 
 
    uint32_t prevSecondary = 0; 
    int32_t secSegmentStart = 0; 
 
    for(;;) { 
        // No need to keep all CEs in the buffer when we write a sort key. 
        iter.clearCEsIfNoneRemaining(); 
        int64_t ce = iter.nextCE(errorCode); 
        uint32_t p = (uint32_t)(ce >> 32); 
        if(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY) { 
            // Variable CE, shift it to quaternary level. 
            // Ignore all following primary ignorables, and shift further variable CEs. 
            if(commonQuaternaries != 0) { 
                --commonQuaternaries; 
                while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) { 
                    quaternaries.appendByte(QUAT_COMMON_MIDDLE); 
                    commonQuaternaries -= QUAT_COMMON_MAX_COUNT; 
                } 
                // Shifted primary weights are lower than the common weight. 
                quaternaries.appendByte(QUAT_COMMON_LOW + commonQuaternaries); 
                commonQuaternaries = 0; 
            } 
            do { 
                if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) { 
                    if(settings.hasReordering()) { 
                        p = settings.reorder(p); 
                    } 
                    if((p >> 24) >= QUAT_SHIFTED_LIMIT_BYTE) { 
                        // Prevent shifted primary lead bytes from 
                        // overlapping with the common compression range. 
                        quaternaries.appendByte(QUAT_SHIFTED_LIMIT_BYTE); 
                    } 
                    quaternaries.appendWeight32(p); 
                } 
                do { 
                    ce = iter.nextCE(errorCode); 
                    p = (uint32_t)(ce >> 32); 
                } while(p == 0); 
            } while(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY); 
        } 
        // ce could be primary ignorable, or NO_CE, or the merge separator, 
        // or a regular primary CE, but it is not variable. 
        // If ce==NO_CE, then write nothing for the primary level but 
        // terminate compression on all levels and then exit the loop. 
        if(p > Collation::NO_CE_PRIMARY && (levels & Collation::PRIMARY_LEVEL_FLAG) != 0) { 
            // Test the un-reordered primary for compressibility. 
            UBool isCompressible = compressibleBytes[p >> 24]; 
            if(settings.hasReordering()) { 
                p = settings.reorder(p); 
            } 
            uint32_t p1 = p >> 24; 
            if(!isCompressible || p1 != (prevReorderedPrimary >> 24)) { 
                if(prevReorderedPrimary != 0) { 
                    if(p < prevReorderedPrimary) { 
                        // No primary compression terminator 
                        // at the end of the level or merged segment. 
                        if(p1 > Collation::MERGE_SEPARATOR_BYTE) { 
                            sink.Append(Collation::PRIMARY_COMPRESSION_LOW_BYTE); 
                        } 
                    } else { 
                        sink.Append(Collation::PRIMARY_COMPRESSION_HIGH_BYTE); 
                    } 
                } 
                sink.Append(p1); 
                if(isCompressible) { 
                    prevReorderedPrimary = p; 
                } else { 
                    prevReorderedPrimary = 0; 
                } 
            } 
            char p2 = (char)(p >> 16); 
            if(p2 != 0) { 
                char buffer[3] = { p2, (char)(p >> 8), (char)p }; 
                sink.Append(buffer, (buffer[1] == 0) ? 1 : (buffer[2] == 0) ? 2 : 3); 
            } 
            // Optimization for internalNextSortKeyPart(): 
            // When the primary level overflows we can stop because we need not 
            // calculate (preflight) the whole sort key length. 
            if(!preflight && sink.Overflowed()) { 
                if(U_SUCCESS(errorCode) && !sink.IsOk()) { 
                    errorCode = U_MEMORY_ALLOCATION_ERROR; 
                } 
                return; 
            } 
        } 
 
        uint32_t lower32 = (uint32_t)ce; 
        if(lower32 == 0) { continue; }  // completely ignorable, no secondary/case/tertiary/quaternary 
 
        if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) { 
            uint32_t s = lower32 >> 16; 
            if(s == 0) { 
                // secondary ignorable 
            } else if(s == Collation::COMMON_WEIGHT16 && 
                    ((options & CollationSettings::BACKWARD_SECONDARY) == 0 || 
                        p != Collation::MERGE_SEPARATOR_PRIMARY)) { 
                // s is a common secondary weight, and 
                // backwards-secondary is off or the ce is not the merge separator. 
                ++commonSecondaries; 
            } else if((options & CollationSettings::BACKWARD_SECONDARY) == 0) { 
                if(commonSecondaries != 0) { 
                    --commonSecondaries; 
                    while(commonSecondaries >= SEC_COMMON_MAX_COUNT) { 
                        secondaries.appendByte(SEC_COMMON_MIDDLE); 
                        commonSecondaries -= SEC_COMMON_MAX_COUNT; 
                    } 
                    uint32_t b; 
                    if(s < Collation::COMMON_WEIGHT16) { 
                        b = SEC_COMMON_LOW + commonSecondaries; 
                    } else { 
                        b = SEC_COMMON_HIGH - commonSecondaries; 
                    } 
                    secondaries.appendByte(b); 
                    commonSecondaries = 0; 
                } 
                secondaries.appendWeight16(s); 
            } else { 
                if(commonSecondaries != 0) { 
                    --commonSecondaries; 
                    // Append reverse weights. The level will be re-reversed later. 
                    int32_t remainder = commonSecondaries % SEC_COMMON_MAX_COUNT; 
                    uint32_t b; 
                    if(prevSecondary < Collation::COMMON_WEIGHT16) { 
                        b = SEC_COMMON_LOW + remainder; 
                    } else { 
                        b = SEC_COMMON_HIGH - remainder; 
                    } 
                    secondaries.appendByte(b); 
                    commonSecondaries -= remainder; 
                    // commonSecondaries is now a multiple of SEC_COMMON_MAX_COUNT. 
                    while(commonSecondaries > 0) {  // same as >= SEC_COMMON_MAX_COUNT 
                        secondaries.appendByte(SEC_COMMON_MIDDLE); 
                        commonSecondaries -= SEC_COMMON_MAX_COUNT; 
                    } 
                    // commonSecondaries == 0 
                } 
                if(0 < p && p <= Collation::MERGE_SEPARATOR_PRIMARY) { 
                    // The backwards secondary level compares secondary weights backwards 
                    // within segments separated by the merge separator (U+FFFE). 
                    uint8_t *secs = secondaries.data(); 
                    int32_t last = secondaries.length() - 1; 
                    if(secSegmentStart < last) { 
                        uint8_t *q = secs + secSegmentStart;
                        uint8_t *r = secs + last;
                        do { 
                            uint8_t b = *q;
                            *q++ = *r;
                            *r-- = b;
                        } while(q < r);
                    } 
                    secondaries.appendByte(p == Collation::NO_CE_PRIMARY ? 
                        Collation::LEVEL_SEPARATOR_BYTE : Collation::MERGE_SEPARATOR_BYTE); 
                    prevSecondary = 0; 
                    secSegmentStart = secondaries.length(); 
                } else { 
                    secondaries.appendReverseWeight16(s); 
                    prevSecondary = s; 
                } 
            } 
        } 
 
        if((levels & Collation::CASE_LEVEL_FLAG) != 0) { 
            if((CollationSettings::getStrength(options) == UCOL_PRIMARY) ? 
                    p == 0 : lower32 <= 0xffff) { 
                // Primary+caseLevel: Ignore case level weights of primary ignorables. 
                // Otherwise: Ignore case level weights of secondary ignorables. 
                // For details see the comments in the CollationCompare class. 
            } else { 
                uint32_t c = (lower32 >> 8) & 0xff;  // case bits & tertiary lead byte 
                U_ASSERT((c & 0xc0) != 0xc0); 
                if((c & 0xc0) == 0 && c > Collation::LEVEL_SEPARATOR_BYTE) { 
                    ++commonCases; 
                } else { 
                    if((options & CollationSettings::UPPER_FIRST) == 0) { 
                        // lowerFirst: Compress common weights to nibbles 1..7..13, mixed=14, upper=15. 
                        // If there are only common (=lowest) weights in the whole level, 
                        // then we need not write anything. 
                        // Level length differences are handled already on the next-higher level. 
                        if(commonCases != 0 && 
                                (c > Collation::LEVEL_SEPARATOR_BYTE || !cases.isEmpty())) { 
                            --commonCases; 
                            while(commonCases >= CASE_LOWER_FIRST_COMMON_MAX_COUNT) { 
                                cases.appendByte(CASE_LOWER_FIRST_COMMON_MIDDLE << 4); 
                                commonCases -= CASE_LOWER_FIRST_COMMON_MAX_COUNT; 
                            } 
                            uint32_t b; 
                            if(c <= Collation::LEVEL_SEPARATOR_BYTE) { 
                                b = CASE_LOWER_FIRST_COMMON_LOW + commonCases; 
                            } else { 
                                b = CASE_LOWER_FIRST_COMMON_HIGH - commonCases; 
                            } 
                            cases.appendByte(b << 4); 
                            commonCases = 0; 
                        } 
                        if(c > Collation::LEVEL_SEPARATOR_BYTE) { 
                            c = (CASE_LOWER_FIRST_COMMON_HIGH + (c >> 6)) << 4;  // 14 or 15 
                        } 
                    } else { 
                        // upperFirst: Compress common weights to nibbles 3..15, mixed=2, upper=1. 
                        // The compressed common case weights only go up from the "low" value 
                        // because with upperFirst the common weight is the highest one. 
                        if(commonCases != 0) { 
                            --commonCases; 
                            while(commonCases >= CASE_UPPER_FIRST_COMMON_MAX_COUNT) { 
                                cases.appendByte(CASE_UPPER_FIRST_COMMON_LOW << 4); 
                                commonCases -= CASE_UPPER_FIRST_COMMON_MAX_COUNT; 
                            } 
                            cases.appendByte((CASE_UPPER_FIRST_COMMON_LOW + commonCases) << 4); 
                            commonCases = 0; 
                        } 
                        if(c > Collation::LEVEL_SEPARATOR_BYTE) { 
                            c = (CASE_UPPER_FIRST_COMMON_LOW - (c >> 6)) << 4;  // 2 or 1 
                        } 
                    } 
                    // c is a separator byte 01, 
                    // or a left-shifted nibble 0x10, 0x20, ... 0xf0. 
                    cases.appendByte(c); 
                } 
            } 
        } 
 
        if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) { 
            uint32_t t = lower32 & tertiaryMask; 
            U_ASSERT((lower32 & 0xc000) != 0xc000); 
            if(t == Collation::COMMON_WEIGHT16) { 
                ++commonTertiaries; 
            } else if((tertiaryMask & 0x8000) == 0) { 
                // Tertiary weights without case bits. 
                // Move lead bytes 06..3F to C6..FF for a large common-weight range. 
                if(commonTertiaries != 0) { 
                    --commonTertiaries; 
                    while(commonTertiaries >= TER_ONLY_COMMON_MAX_COUNT) { 
                        tertiaries.appendByte(TER_ONLY_COMMON_MIDDLE); 
                        commonTertiaries -= TER_ONLY_COMMON_MAX_COUNT; 
                    } 
                    uint32_t b; 
                    if(t < Collation::COMMON_WEIGHT16) { 
                        b = TER_ONLY_COMMON_LOW + commonTertiaries; 
                    } else { 
                        b = TER_ONLY_COMMON_HIGH - commonTertiaries; 
                    } 
                    tertiaries.appendByte(b); 
                    commonTertiaries = 0; 
                } 
                if(t > Collation::COMMON_WEIGHT16) { t += 0xc000; } 
                tertiaries.appendWeight16(t); 
            } else if((options & CollationSettings::UPPER_FIRST) == 0) { 
                // Tertiary weights with caseFirst=lowerFirst. 
                // Move lead bytes 06..BF to 46..FF for the common-weight range. 
                if(commonTertiaries != 0) { 
                    --commonTertiaries; 
                    while(commonTertiaries >= TER_LOWER_FIRST_COMMON_MAX_COUNT) { 
                        tertiaries.appendByte(TER_LOWER_FIRST_COMMON_MIDDLE); 
                        commonTertiaries -= TER_LOWER_FIRST_COMMON_MAX_COUNT; 
                    } 
                    uint32_t b; 
                    if(t < Collation::COMMON_WEIGHT16) { 
                        b = TER_LOWER_FIRST_COMMON_LOW + commonTertiaries; 
                    } else { 
                        b = TER_LOWER_FIRST_COMMON_HIGH - commonTertiaries; 
                    } 
                    tertiaries.appendByte(b); 
                    commonTertiaries = 0; 
                } 
                if(t > Collation::COMMON_WEIGHT16) { t += 0x4000; } 
                tertiaries.appendWeight16(t); 
            } else { 
                // Tertiary weights with caseFirst=upperFirst. 
                // Do not change the artificial uppercase weight of a tertiary CE (0.0.ut), 
                // to keep tertiary CEs well-formed. 
                // Their case+tertiary weights must be greater than those of 
                // primary and secondary CEs. 
                // 
                // Separator         01 -> 01      (unchanged) 
                // Lowercase     02..04 -> 82..84  (includes uncased) 
                // Common weight     05 -> 85..C5  (common-weight compression range) 
                // Lowercase     06..3F -> C6..FF 
                // Mixed case    42..7F -> 42..7F 
                // Uppercase     82..BF -> 02..3F 
                // Tertiary CE   86..BF -> C6..FF 
                if(t <= Collation::NO_CE_WEIGHT16) { 
                    // Keep separators unchanged. 
                } else if(lower32 > 0xffff) { 
                    // Invert case bits of primary & secondary CEs. 
                    t ^= 0xc000; 
                    if(t < (TER_UPPER_FIRST_COMMON_HIGH << 8)) { 
                        t -= 0x4000; 
                    } 
                } else { 
                    // Keep uppercase bits of tertiary CEs. 
                    U_ASSERT(0x8600 <= t && t <= 0xbfff); 
                    t += 0x4000; 
                } 
                if(commonTertiaries != 0) { 
                    --commonTertiaries; 
                    while(commonTertiaries >= TER_UPPER_FIRST_COMMON_MAX_COUNT) { 
                        tertiaries.appendByte(TER_UPPER_FIRST_COMMON_MIDDLE); 
                        commonTertiaries -= TER_UPPER_FIRST_COMMON_MAX_COUNT; 
                    } 
                    uint32_t b; 
                    if(t < (TER_UPPER_FIRST_COMMON_LOW << 8)) { 
                        b = TER_UPPER_FIRST_COMMON_LOW + commonTertiaries; 
                    } else { 
                        b = TER_UPPER_FIRST_COMMON_HIGH - commonTertiaries; 
                    } 
                    tertiaries.appendByte(b); 
                    commonTertiaries = 0; 
                } 
                tertiaries.appendWeight16(t); 
            } 
        } 
 
        if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) { 
            uint32_t q = lower32 & 0xffff; 
            if((q & 0xc0) == 0 && q > Collation::NO_CE_WEIGHT16) { 
                ++commonQuaternaries; 
            } else if(q == Collation::NO_CE_WEIGHT16 && 
                    (options & CollationSettings::ALTERNATE_MASK) == 0 && 
                    quaternaries.isEmpty()) { 
                // If alternate=non-ignorable and there are only common quaternary weights, 
                // then we need not write anything. 
                // The only weights greater than the merge separator and less than the common weight 
                // are shifted primary weights, which are not generated for alternate=non-ignorable. 
                // There are also exactly as many quaternary weights as tertiary weights, 
                // so level length differences are handled already on tertiary level. 
                // Any above-common quaternary weight will compare greater regardless. 
                quaternaries.appendByte(Collation::LEVEL_SEPARATOR_BYTE); 
            } else { 
                if(q == Collation::NO_CE_WEIGHT16) { 
                    q = Collation::LEVEL_SEPARATOR_BYTE; 
                } else { 
                    q = 0xfc + ((q >> 6) & 3); 
                } 
                if(commonQuaternaries != 0) { 
                    --commonQuaternaries; 
                    while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) { 
                        quaternaries.appendByte(QUAT_COMMON_MIDDLE); 
                        commonQuaternaries -= QUAT_COMMON_MAX_COUNT; 
                    } 
                    uint32_t b; 
                    if(q < QUAT_COMMON_LOW) { 
                        b = QUAT_COMMON_LOW + commonQuaternaries; 
                    } else { 
                        b = QUAT_COMMON_HIGH - commonQuaternaries; 
                    } 
                    quaternaries.appendByte(b); 
                    commonQuaternaries = 0; 
                } 
                quaternaries.appendByte(q); 
            } 
        } 
 
        if((lower32 >> 24) == Collation::LEVEL_SEPARATOR_BYTE) { break; }  // ce == NO_CE 
    } 
 
    if(U_FAILURE(errorCode)) { return; } 
 
    // Append the beyond-primary levels. 
    UBool ok = TRUE; 
    if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) { 
        if(!callback.needToWrite(Collation::SECONDARY_LEVEL)) { return; } 
        ok &= secondaries.isOk(); 
        sink.Append(Collation::LEVEL_SEPARATOR_BYTE); 
        secondaries.appendTo(sink); 
    } 
 
    if((levels & Collation::CASE_LEVEL_FLAG) != 0) { 
        if(!callback.needToWrite(Collation::CASE_LEVEL)) { return; } 
        ok &= cases.isOk(); 
        sink.Append(Collation::LEVEL_SEPARATOR_BYTE); 
        // Write pairs of nibbles as bytes, except separator bytes as themselves. 
        int32_t length = cases.length() - 1;  // Ignore the trailing NO_CE. 
        uint8_t b = 0; 
        for(int32_t i = 0; i < length; ++i) { 
            uint8_t c = (uint8_t)cases[i]; 
            U_ASSERT((c & 0xf) == 0 && c != 0); 
            if(b == 0) { 
                b = c; 
            } else { 
                sink.Append(b | (c >> 4)); 
                b = 0; 
            } 
        } 
        if(b != 0) { 
            sink.Append(b); 
        } 
    } 
 
    if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) { 
        if(!callback.needToWrite(Collation::TERTIARY_LEVEL)) { return; } 
        ok &= tertiaries.isOk(); 
        sink.Append(Collation::LEVEL_SEPARATOR_BYTE); 
        tertiaries.appendTo(sink); 
    } 
 
    if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) { 
        if(!callback.needToWrite(Collation::QUATERNARY_LEVEL)) { return; } 
        ok &= quaternaries.isOk(); 
        sink.Append(Collation::LEVEL_SEPARATOR_BYTE); 
        quaternaries.appendTo(sink); 
    } 
 
    if(!ok || !sink.IsOk()) { 
        errorCode = U_MEMORY_ALLOCATION_ERROR; 
    } 
} 
 
U_NAMESPACE_END 
 
#endif  // !UCONFIG_NO_COLLATION