aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/i18n/collationiterator.cpp
blob: 537e0f4752d15a37007fbeb0cf5c2656cb855609 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html 
/* 
******************************************************************************* 
* Copyright (C) 2010-2014, International Business Machines 
* Corporation and others.  All Rights Reserved. 
******************************************************************************* 
* collationiterator.cpp 
* 
* created on: 2010oct27 
* created by: Markus W. Scherer 
*/ 
 
#include "utypeinfo.h"  // for 'typeid' to work 
 
#include "unicode/utypes.h" 
 
#if !UCONFIG_NO_COLLATION 
 
#include "unicode/ucharstrie.h" 
#include "unicode/ustringtrie.h" 
#include "charstr.h" 
#include "cmemory.h" 
#include "collation.h" 
#include "collationdata.h" 
#include "collationfcd.h" 
#include "collationiterator.h" 
#include "normalizer2impl.h" 
#include "uassert.h" 
#include "uvectr32.h" 
 
U_NAMESPACE_BEGIN 
 
CollationIterator::CEBuffer::~CEBuffer() {} 
 
UBool 
CollationIterator::CEBuffer::ensureAppendCapacity(int32_t appCap, UErrorCode &errorCode) { 
    int32_t capacity = buffer.getCapacity(); 
    if((length + appCap) <= capacity) { return TRUE; } 
    if(U_FAILURE(errorCode)) { return FALSE; } 
    do { 
        if(capacity < 1000) { 
            capacity *= 4; 
        } else { 
            capacity *= 2; 
        } 
    } while(capacity < (length + appCap)); 
    int64_t *p = buffer.resize(capacity, length); 
    if(p == NULL) { 
        errorCode = U_MEMORY_ALLOCATION_ERROR; 
        return FALSE; 
    } 
    return TRUE; 
} 
 
// State of combining marks skipped in discontiguous contraction. 
// We create a state object on first use and keep it around deactivated between uses. 
class SkippedState : public UMemory { 
public: 
    // Born active but empty. 
    SkippedState() : pos(0), skipLengthAtMatch(0) {} 
    void clear() { 
        oldBuffer.remove(); 
        pos = 0; 
        // The newBuffer is reset by setFirstSkipped(). 
    } 
 
    UBool isEmpty() const { return oldBuffer.isEmpty(); } 
 
    UBool hasNext() const { return pos < oldBuffer.length(); } 
 
    // Requires hasNext(). 
    UChar32 next() { 
        UChar32 c = oldBuffer.char32At(pos); 
        pos += U16_LENGTH(c); 
        return c; 
    } 
 
    // Accounts for one more input code point read beyond the end of the marks buffer. 
    void incBeyond() { 
        U_ASSERT(!hasNext()); 
        ++pos; 
    } 
 
    // Goes backward through the skipped-marks buffer. 
    // Returns the number of code points read beyond the skipped marks 
    // that need to be backtracked through normal input. 
    int32_t backwardNumCodePoints(int32_t n) { 
        int32_t length = oldBuffer.length(); 
        int32_t beyond = pos - length; 
        if(beyond > 0) { 
            if(beyond >= n) { 
                // Not back far enough to re-enter the oldBuffer. 
                pos -= n; 
                return n; 
            } else { 
                // Back out all beyond-oldBuffer code points and re-enter the buffer. 
                pos = oldBuffer.moveIndex32(length, beyond - n); 
                return beyond; 
            } 
        } else { 
            // Go backwards from inside the oldBuffer. 
            pos = oldBuffer.moveIndex32(pos, -n); 
            return 0; 
        } 
    } 
 
    void setFirstSkipped(UChar32 c) { 
        skipLengthAtMatch = 0; 
        newBuffer.setTo(c); 
    } 
 
    void skip(UChar32 c) { 
        newBuffer.append(c); 
    } 
 
    void recordMatch() { skipLengthAtMatch = newBuffer.length(); } 
 
    // Replaces the characters we consumed with the newly skipped ones. 
    void replaceMatch() { 
        // Note: UnicodeString.replace() pins pos to at most length(). 
        oldBuffer.replace(0, pos, newBuffer, 0, skipLengthAtMatch); 
        pos = 0; 
    } 
 
    void saveTrieState(const UCharsTrie &trie) { trie.saveState(state); } 
    void resetToTrieState(UCharsTrie &trie) const { trie.resetToState(state); } 
 
private: 
    // Combining marks skipped in previous discontiguous-contraction matching. 
    // After that discontiguous contraction was completed, we start reading them from here. 
    UnicodeString oldBuffer; 
    // Combining marks newly skipped in current discontiguous-contraction matching. 
    // These might have been read from the normal text or from the oldBuffer. 
    UnicodeString newBuffer; 
    // Reading index in oldBuffer, 
    // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()). 
    int32_t pos; 
    // newBuffer.length() at the time of the last matching character. 
    // When a partial match fails, we back out skipped and partial-matching input characters. 
    int32_t skipLengthAtMatch; 
    // We save the trie state before we attempt to match a character, 
    // so that we can skip it and try the next one. 
    UCharsTrie::State state; 
}; 
 
CollationIterator::CollationIterator(const CollationIterator &other) 
        : UObject(other), 
          trie(other.trie), 
          data(other.data), 
          cesIndex(other.cesIndex), 
          skipped(NULL), 
          numCpFwd(other.numCpFwd), 
          isNumeric(other.isNumeric) { 
    UErrorCode errorCode = U_ZERO_ERROR; 
    int32_t length = other.ceBuffer.length; 
    if(length > 0 && ceBuffer.ensureAppendCapacity(length, errorCode)) { 
        for(int32_t i = 0; i < length; ++i) { 
            ceBuffer.set(i, other.ceBuffer.get(i)); 
        } 
        ceBuffer.length = length; 
    } else { 
        cesIndex = 0; 
    } 
} 
 
CollationIterator::~CollationIterator() { 
    delete skipped; 
} 
 
UBool 
CollationIterator::operator==(const CollationIterator &other) const { 
    // Subclasses: Call this method and then add more specific checks. 
    // Compare the iterator state but not the collation data (trie & data fields): 
    // Assume that the caller compares the data. 
    // Ignore skipped since that should be unused between calls to nextCE(). 
    // (It only stays around to avoid another memory allocation.) 
    if(!(typeid(*this) == typeid(other) && 
            ceBuffer.length == other.ceBuffer.length && 
            cesIndex == other.cesIndex && 
            numCpFwd == other.numCpFwd && 
            isNumeric == other.isNumeric)) { 
        return FALSE; 
    } 
    for(int32_t i = 0; i < ceBuffer.length; ++i) { 
        if(ceBuffer.get(i) != other.ceBuffer.get(i)) { return FALSE; } 
    } 
    return TRUE; 
} 
 
void 
CollationIterator::reset() { 
    cesIndex = ceBuffer.length = 0; 
    if(skipped != NULL) { skipped->clear(); } 
} 
 
int32_t 
CollationIterator::fetchCEs(UErrorCode &errorCode) { 
    while(U_SUCCESS(errorCode) && nextCE(errorCode) != Collation::NO_CE) { 
        // No need to loop for each expansion CE. 
        cesIndex = ceBuffer.length; 
    } 
    return ceBuffer.length; 
} 
 
uint32_t 
CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) { 
    c = nextCodePoint(errorCode); 
    return (c < 0) ? Collation::FALLBACK_CE32 : data->getCE32(c); 
} 
 
UChar 
CollationIterator::handleGetTrailSurrogate() { 
    return 0; 
} 
 
UBool 
CollationIterator::foundNULTerminator() { 
    return FALSE; 
} 
 
UBool 
CollationIterator::forbidSurrogateCodePoints() const { 
    return FALSE; 
} 
 
uint32_t 
CollationIterator::getDataCE32(UChar32 c) const { 
    return data->getCE32(c); 
} 
 
uint32_t 
CollationIterator::getCE32FromBuilderData(uint32_t /*ce32*/, UErrorCode &errorCode) { 
    if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; } 
    return 0; 
} 
 
int64_t 
CollationIterator::nextCEFromCE32(const CollationData *d, UChar32 c, uint32_t ce32, 
                                  UErrorCode &errorCode) { 
    --ceBuffer.length;  // Undo ceBuffer.incLength(). 
    appendCEsFromCE32(d, c, ce32, TRUE, errorCode); 
    if(U_SUCCESS(errorCode)) { 
        return ceBuffer.get(cesIndex++); 
    } else { 
        return Collation::NO_CE_PRIMARY; 
    } 
} 
 
void 
CollationIterator::appendCEsFromCE32(const CollationData *d, UChar32 c, uint32_t ce32, 
                                     UBool forward, UErrorCode &errorCode) { 
    while(Collation::isSpecialCE32(ce32)) { 
        switch(Collation::tagFromCE32(ce32)) { 
        case Collation::FALLBACK_TAG: 
        case Collation::RESERVED_TAG_3: 
            if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; } 
            return; 
        case Collation::LONG_PRIMARY_TAG: 
            ceBuffer.append(Collation::ceFromLongPrimaryCE32(ce32), errorCode); 
            return; 
        case Collation::LONG_SECONDARY_TAG: 
            ceBuffer.append(Collation::ceFromLongSecondaryCE32(ce32), errorCode); 
            return; 
        case Collation::LATIN_EXPANSION_TAG: 
            if(ceBuffer.ensureAppendCapacity(2, errorCode)) { 
                ceBuffer.set(ceBuffer.length, Collation::latinCE0FromCE32(ce32)); 
                ceBuffer.set(ceBuffer.length + 1, Collation::latinCE1FromCE32(ce32)); 
                ceBuffer.length += 2; 
            } 
            return; 
        case Collation::EXPANSION32_TAG: { 
            const uint32_t *ce32s = d->ce32s + Collation::indexFromCE32(ce32); 
            int32_t length = Collation::lengthFromCE32(ce32); 
            if(ceBuffer.ensureAppendCapacity(length, errorCode)) { 
                do { 
                    ceBuffer.appendUnsafe(Collation::ceFromCE32(*ce32s++)); 
                } while(--length > 0); 
            } 
            return; 
        } 
        case Collation::EXPANSION_TAG: { 
            const int64_t *ces = d->ces + Collation::indexFromCE32(ce32); 
            int32_t length = Collation::lengthFromCE32(ce32); 
            if(ceBuffer.ensureAppendCapacity(length, errorCode)) { 
                do { 
                    ceBuffer.appendUnsafe(*ces++); 
                } while(--length > 0); 
            } 
            return; 
        } 
        case Collation::BUILDER_DATA_TAG: 
            ce32 = getCE32FromBuilderData(ce32, errorCode); 
            if(U_FAILURE(errorCode)) { return; } 
            if(ce32 == Collation::FALLBACK_CE32) { 
                d = data->base; 
                ce32 = d->getCE32(c); 
            } 
            break; 
        case Collation::PREFIX_TAG: 
            if(forward) { backwardNumCodePoints(1, errorCode); } 
            ce32 = getCE32FromPrefix(d, ce32, errorCode); 
            if(forward) { forwardNumCodePoints(1, errorCode); } 
            break; 
        case Collation::CONTRACTION_TAG: { 
            const UChar *p = d->contexts + Collation::indexFromCE32(ce32); 
            uint32_t defaultCE32 = CollationData::readCE32(p);  // Default if no suffix match. 
            if(!forward) { 
                // Backward contractions are handled by previousCEUnsafe(). 
                // c has contractions but they were not found. 
                ce32 = defaultCE32; 
                break; 
            } 
            UChar32 nextCp; 
            if(skipped == NULL && numCpFwd < 0) { 
                // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path, 
                // avoiding the function call and the nextSkippedCodePoint() overhead. 
                nextCp = nextCodePoint(errorCode); 
                if(nextCp < 0) { 
                    // No more text. 
                    ce32 = defaultCE32; 
                    break; 
                } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 && 
                        !CollationFCD::mayHaveLccc(nextCp)) { 
                    // All contraction suffixes start with characters with lccc!=0 
                    // but the next code point has lccc==0. 
                    backwardNumCodePoints(1, errorCode); 
                    ce32 = defaultCE32; 
                    break; 
                } 
            } else { 
                nextCp = nextSkippedCodePoint(errorCode); 
                if(nextCp < 0) { 
                    // No more text. 
                    ce32 = defaultCE32; 
                    break; 
                } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 && 
                        !CollationFCD::mayHaveLccc(nextCp)) { 
                    // All contraction suffixes start with characters with lccc!=0 
                    // but the next code point has lccc==0. 
                    backwardNumSkipped(1, errorCode); 
                    ce32 = defaultCE32; 
                    break; 
                } 
            } 
            ce32 = nextCE32FromContraction(d, ce32, p + 2, defaultCE32, nextCp, errorCode); 
            if(ce32 == Collation::NO_CE32) { 
                // CEs from a discontiguous contraction plus the skipped combining marks 
                // have been appended already. 
                return; 
            } 
            break; 
        } 
        case Collation::DIGIT_TAG: 
            if(isNumeric) { 
                appendNumericCEs(ce32, forward, errorCode); 
                return; 
            } else { 
                // Fetch the non-numeric-collation CE32 and continue. 
                ce32 = d->ce32s[Collation::indexFromCE32(ce32)]; 
                break; 
            } 
        case Collation::U0000_TAG: 
            U_ASSERT(c == 0); 
            if(forward && foundNULTerminator()) { 
                // Handle NUL-termination. (Not needed in Java.) 
                ceBuffer.append(Collation::NO_CE, errorCode); 
                return; 
            } else { 
                // Fetch the normal ce32 for U+0000 and continue. 
                ce32 = d->ce32s[0]; 
                break; 
            } 
        case Collation::HANGUL_TAG: { 
            const uint32_t *jamoCE32s = d->jamoCE32s; 
            c -= Hangul::HANGUL_BASE; 
            UChar32 t = c % Hangul::JAMO_T_COUNT; 
            c /= Hangul::JAMO_T_COUNT; 
            UChar32 v = c % Hangul::JAMO_V_COUNT; 
            c /= Hangul::JAMO_V_COUNT; 
            if((ce32 & Collation::HANGUL_NO_SPECIAL_JAMO) != 0) { 
                // None of the Jamo CE32s are isSpecialCE32(). 
                // Avoid recursive function calls and per-Jamo tests. 
                if(ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3, errorCode)) { 
                    ceBuffer.set(ceBuffer.length, Collation::ceFromCE32(jamoCE32s[c])); 
                    ceBuffer.set(ceBuffer.length + 1, Collation::ceFromCE32(jamoCE32s[19 + v])); 
                    ceBuffer.length += 2; 
                    if(t != 0) { 
                        ceBuffer.appendUnsafe(Collation::ceFromCE32(jamoCE32s[39 + t])); 
                    } 
                } 
                return; 
            } else { 
                // We should not need to compute each Jamo code point. 
                // In particular, there should be no offset or implicit ce32. 
                appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[c], forward, errorCode); 
                appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[19 + v], forward, errorCode); 
                if(t == 0) { return; } 
                // offset 39 = 19 + 21 - 1: 
                // 19 = JAMO_L_COUNT 
                // 21 = JAMO_T_COUNT 
                // -1 = omit t==0 
                ce32 = jamoCE32s[39 + t]; 
                c = U_SENTINEL; 
                break; 
            } 
        } 
        case Collation::LEAD_SURROGATE_TAG: { 
            U_ASSERT(forward);  // Backward iteration should never see lead surrogate code _unit_ data. 
            U_ASSERT(U16_IS_LEAD(c)); 
            UChar trail; 
            if(U16_IS_TRAIL(trail = handleGetTrailSurrogate())) { 
                c = U16_GET_SUPPLEMENTARY(c, trail); 
                ce32 &= Collation::LEAD_TYPE_MASK; 
                if(ce32 == Collation::LEAD_ALL_UNASSIGNED) { 
                    ce32 = Collation::UNASSIGNED_CE32;  // unassigned-implicit 
                } else if(ce32 == Collation::LEAD_ALL_FALLBACK || 
                        (ce32 = d->getCE32FromSupplementary(c)) == Collation::FALLBACK_CE32) { 
                    // fall back to the base data 
                    d = d->base; 
                    ce32 = d->getCE32FromSupplementary(c); 
                } 
            } else { 
                // c is an unpaired surrogate. 
                ce32 = Collation::UNASSIGNED_CE32; 
            } 
            break; 
        } 
        case Collation::OFFSET_TAG: 
            U_ASSERT(c >= 0); 
            ceBuffer.append(d->getCEFromOffsetCE32(c, ce32), errorCode); 
            return; 
        case Collation::IMPLICIT_TAG: 
            U_ASSERT(c >= 0); 
            if(U_IS_SURROGATE(c) && forbidSurrogateCodePoints()) { 
                ce32 = Collation::FFFD_CE32; 
                break; 
            } else { 
                ceBuffer.append(Collation::unassignedCEFromCodePoint(c), errorCode); 
                return; 
            } 
        } 
    } 
    ceBuffer.append(Collation::ceFromSimpleCE32(ce32), errorCode); 
} 
 
uint32_t 
CollationIterator::getCE32FromPrefix(const CollationData *d, uint32_t ce32, 
                                     UErrorCode &errorCode) { 
    const UChar *p = d->contexts + Collation::indexFromCE32(ce32); 
    ce32 = CollationData::readCE32(p);  // Default if no prefix match. 
    p += 2; 
    // Number of code points read before the original code point. 
    int32_t lookBehind = 0; 
    UCharsTrie prefixes(p); 
    for(;;) { 
        UChar32 c = previousCodePoint(errorCode); 
        if(c < 0) { break; } 
        ++lookBehind; 
        UStringTrieResult match = prefixes.nextForCodePoint(c); 
        if(USTRINGTRIE_HAS_VALUE(match)) { 
            ce32 = (uint32_t)prefixes.getValue(); 
        } 
        if(!USTRINGTRIE_HAS_NEXT(match)) { break; } 
    } 
    forwardNumCodePoints(lookBehind, errorCode); 
    return ce32; 
} 
 
UChar32 
CollationIterator::nextSkippedCodePoint(UErrorCode &errorCode) { 
    if(skipped != NULL && skipped->hasNext()) { return skipped->next(); } 
    if(numCpFwd == 0) { return U_SENTINEL; } 
    UChar32 c = nextCodePoint(errorCode); 
    if(skipped != NULL && !skipped->isEmpty() && c >= 0) { skipped->incBeyond(); } 
    if(numCpFwd > 0 && c >= 0) { --numCpFwd; } 
    return c; 
} 
 
void 
CollationIterator::backwardNumSkipped(int32_t n, UErrorCode &errorCode) { 
    if(skipped != NULL && !skipped->isEmpty()) { 
        n = skipped->backwardNumCodePoints(n); 
    } 
    backwardNumCodePoints(n, errorCode); 
    if(numCpFwd >= 0) { numCpFwd += n; } 
} 
 
uint32_t 
CollationIterator::nextCE32FromContraction(const CollationData *d, uint32_t contractionCE32, 
                                           const UChar *p, uint32_t ce32, UChar32 c, 
                                           UErrorCode &errorCode) { 
    // c: next code point after the original one 
 
    // Number of code points read beyond the original code point. 
    // Needed for discontiguous contraction matching. 
    int32_t lookAhead = 1; 
    // Number of code points read since the last match (initially only c). 
    int32_t sinceMatch = 1; 
    // Normally we only need a contiguous match, 
    // and therefore need not remember the suffixes state from before a mismatch for retrying. 
    // If we are already processing skipped combining marks, then we do track the state. 
    UCharsTrie suffixes(p); 
    if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); } 
    UStringTrieResult match = suffixes.firstForCodePoint(c); 
    for(;;) { 
        UChar32 nextCp; 
        if(USTRINGTRIE_HAS_VALUE(match)) { 
            ce32 = (uint32_t)suffixes.getValue(); 
            if(!USTRINGTRIE_HAS_NEXT(match) || (c = nextSkippedCodePoint(errorCode)) < 0) { 
                return ce32; 
            } 
            if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); } 
            sinceMatch = 1; 
        } else if(match == USTRINGTRIE_NO_MATCH || (nextCp = nextSkippedCodePoint(errorCode)) < 0) { 
            // No match for c, or partial match (USTRINGTRIE_NO_VALUE) and no further text. 
            // Back up if necessary, and try a discontiguous contraction. 
            if((contractionCE32 & Collation::CONTRACT_TRAILING_CCC) != 0 && 
                    // Discontiguous contraction matching extends an existing match. 
                    // If there is no match yet, then there is nothing to do. 
                    ((contractionCE32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) == 0 || 
                        sinceMatch < lookAhead)) { 
                // The last character of at least one suffix has lccc!=0, 
                // allowing for discontiguous contractions. 
                // UCA S2.1.1 only processes non-starters immediately following 
                // "a match in the table" (sinceMatch=1). 
                if(sinceMatch > 1) { 
                    // Return to the state after the last match. 
                    // (Return to sinceMatch=0 and re-fetch the first partially-matched character.) 
                    backwardNumSkipped(sinceMatch, errorCode); 
                    c = nextSkippedCodePoint(errorCode); 
                    lookAhead -= sinceMatch - 1; 
                    sinceMatch = 1; 
                } 
                if(d->getFCD16(c) > 0xff) { 
                    return nextCE32FromDiscontiguousContraction( 
                        d, suffixes, ce32, lookAhead, c, errorCode); 
                } 
            } 
            break; 
        } else { 
            // Continue after partial match (USTRINGTRIE_NO_VALUE) for c. 
            // It does not have a result value, therefore it is not itself "a match in the table". 
            // If a partially-matched c has ccc!=0 then 
            // it might be skipped in discontiguous contraction. 
            c = nextCp; 
            ++sinceMatch; 
        } 
        ++lookAhead; 
        match = suffixes.nextForCodePoint(c); 
    } 
    backwardNumSkipped(sinceMatch, errorCode); 
    return ce32; 
} 
 
uint32_t 
CollationIterator::nextCE32FromDiscontiguousContraction( 
        const CollationData *d, UCharsTrie &suffixes, uint32_t ce32, 
        int32_t lookAhead, UChar32 c, 
        UErrorCode &errorCode) { 
    if(U_FAILURE(errorCode)) { return 0; } 
 
    // UCA section 3.3.2 Contractions: 
    // Contractions that end with non-starter characters 
    // are known as discontiguous contractions. 
    // ... discontiguous contractions must be detected in input text 
    // whenever the final sequence of non-starter characters could be rearranged 
    // so as to make a contiguous matching sequence that is canonically equivalent. 
 
    // UCA: http://www.unicode.org/reports/tr10/#S2.1 
    // S2.1 Find the longest initial substring S at each point that has a match in the table. 
    // S2.1.1 If there are any non-starters following S, process each non-starter C. 
    // S2.1.2 If C is not blocked from S, find if S + C has a match in the table. 
    //     Note: A non-starter in a string is called blocked 
    //     if there is another non-starter of the same canonical combining class or zero 
    //     between it and the last character of canonical combining class 0. 
    // S2.1.3 If there is a match, replace S by S + C, and remove C. 
 
    // First: Is a discontiguous contraction even possible? 
    uint16_t fcd16 = d->getFCD16(c); 
    U_ASSERT(fcd16 > 0xff);  // The caller checked this already, as a shortcut. 
    UChar32 nextCp = nextSkippedCodePoint(errorCode); 
    if(nextCp < 0) { 
        // No further text. 
        backwardNumSkipped(1, errorCode); 
        return ce32; 
    } 
    ++lookAhead; 
    uint8_t prevCC = (uint8_t)fcd16; 
    fcd16 = d->getFCD16(nextCp); 
    if(fcd16 <= 0xff) { 
        // The next code point after c is a starter (S2.1.1 "process each non-starter"). 
        backwardNumSkipped(2, errorCode); 
        return ce32; 
    } 
 
    // We have read and matched (lookAhead-2) code points, 
    // read non-matching c and peeked ahead at nextCp. 
    // Return to the state before the mismatch and continue matching with nextCp. 
    if(skipped == NULL || skipped->isEmpty()) { 
        if(skipped == NULL) { 
            skipped = new SkippedState(); 
            if(skipped == NULL) { 
                errorCode = U_MEMORY_ALLOCATION_ERROR; 
                return 0; 
            } 
        } 
        suffixes.reset(); 
        if(lookAhead > 2) { 
            // Replay the partial match so far. 
            backwardNumCodePoints(lookAhead, errorCode); 
            suffixes.firstForCodePoint(nextCodePoint(errorCode)); 
            for(int32_t i = 3; i < lookAhead; ++i) { 
                suffixes.nextForCodePoint(nextCodePoint(errorCode)); 
            } 
            // Skip c (which did not match) and nextCp (which we will try now). 
            forwardNumCodePoints(2, errorCode); 
        } 
        skipped->saveTrieState(suffixes); 
    } else { 
        // Reset to the trie state before the failed match of c. 
        skipped->resetToTrieState(suffixes); 
    } 
 
    skipped->setFirstSkipped(c); 
    // Number of code points read since the last match (at this point: c and nextCp). 
    int32_t sinceMatch = 2; 
    c = nextCp; 
    for(;;) { 
        UStringTrieResult match; 
        // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2) 
        if(prevCC < (fcd16 >> 8) && USTRINGTRIE_HAS_VALUE(match = suffixes.nextForCodePoint(c))) { 
            // "If there is a match, replace S by S + C, and remove C." (S2.1.3) 
            // Keep prevCC unchanged. 
            ce32 = (uint32_t)suffixes.getValue(); 
            sinceMatch = 0; 
            skipped->recordMatch(); 
            if(!USTRINGTRIE_HAS_NEXT(match)) { break; } 
            skipped->saveTrieState(suffixes); 
        } else { 
            // No match for "S + C", skip C. 
            skipped->skip(c); 
            skipped->resetToTrieState(suffixes); 
            prevCC = (uint8_t)fcd16; 
        } 
        if((c = nextSkippedCodePoint(errorCode)) < 0) { break; } 
        ++sinceMatch; 
        fcd16 = d->getFCD16(c); 
        if(fcd16 <= 0xff) { 
            // The next code point after c is a starter (S2.1.1 "process each non-starter"). 
            break; 
        } 
    } 
    backwardNumSkipped(sinceMatch, errorCode); 
    UBool isTopDiscontiguous = skipped->isEmpty(); 
    skipped->replaceMatch(); 
    if(isTopDiscontiguous && !skipped->isEmpty()) { 
        // We did get a match after skipping one or more combining marks, 
        // and we are not in a recursive discontiguous contraction. 
        // Append CEs from the contraction ce32 
        // and then from the combining marks that we skipped before the match. 
        c = U_SENTINEL; 
        for(;;) { 
            appendCEsFromCE32(d, c, ce32, TRUE, errorCode); 
            // Fetch CE32s for skipped combining marks from the normal data, with fallback, 
            // rather than from the CollationData where we found the contraction. 
            if(!skipped->hasNext()) { break; } 
            c = skipped->next(); 
            ce32 = getDataCE32(c); 
            if(ce32 == Collation::FALLBACK_CE32) { 
                d = data->base; 
                ce32 = d->getCE32(c); 
            } else { 
                d = data; 
            } 
            // Note: A nested discontiguous-contraction match 
            // replaces consumed combining marks with newly skipped ones 
            // and resets the reading position to the beginning. 
        } 
        skipped->clear(); 
        ce32 = Collation::NO_CE32;  // Signal to the caller that the result is in the ceBuffer. 
    } 
    return ce32; 
} 
 
void 
CollationIterator::appendNumericCEs(uint32_t ce32, UBool forward, UErrorCode &errorCode) { 
    // Collect digits. 
    CharString digits; 
    if(forward) { 
        for(;;) { 
            char digit = Collation::digitFromCE32(ce32); 
            digits.append(digit, errorCode); 
            if(numCpFwd == 0) { break; } 
            UChar32 c = nextCodePoint(errorCode); 
            if(c < 0) { break; } 
            ce32 = data->getCE32(c); 
            if(ce32 == Collation::FALLBACK_CE32) { 
                ce32 = data->base->getCE32(c); 
            } 
            if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) { 
                backwardNumCodePoints(1, errorCode); 
                break; 
            } 
            if(numCpFwd > 0) { --numCpFwd; } 
        } 
    } else { 
        for(;;) { 
            char digit = Collation::digitFromCE32(ce32); 
            digits.append(digit, errorCode); 
            UChar32 c = previousCodePoint(errorCode); 
            if(c < 0) { break; } 
            ce32 = data->getCE32(c); 
            if(ce32 == Collation::FALLBACK_CE32) { 
                ce32 = data->base->getCE32(c); 
            } 
            if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) { 
                forwardNumCodePoints(1, errorCode); 
                break; 
            } 
        } 
        // Reverse the digit string. 
        char *p = digits.data(); 
        char *q = p + digits.length() - 1; 
        while(p < q) { 
            char digit = *p; 
            *p++ = *q; 
            *q-- = digit; 
        } 
    } 
    if(U_FAILURE(errorCode)) { return; } 
    int32_t pos = 0; 
    do { 
        // Skip leading zeros. 
        while(pos < (digits.length() - 1) && digits[pos] == 0) { ++pos; } 
        // Write a sequence of CEs for at most 254 digits at a time. 
        int32_t segmentLength = digits.length() - pos; 
        if(segmentLength > 254) { segmentLength = 254; } 
        appendNumericSegmentCEs(digits.data() + pos, segmentLength, errorCode); 
        pos += segmentLength; 
    } while(U_SUCCESS(errorCode) && pos < digits.length()); 
} 
 
void 
CollationIterator::appendNumericSegmentCEs(const char *digits, int32_t length, UErrorCode &errorCode) { 
    U_ASSERT(1 <= length && length <= 254); 
    U_ASSERT(length == 1 || digits[0] != 0); 
    uint32_t numericPrimary = data->numericPrimary; 
    // Note: We use primary byte values 2..255: digits are not compressible. 
    if(length <= 7) { 
        // Very dense encoding for small numbers. 
        int32_t value = digits[0]; 
        for(int32_t i = 1; i < length; ++i) { 
            value = value * 10 + digits[i]; 
        } 
        // Primary weight second byte values: 
        //     74 byte values   2.. 75 for small numbers in two-byte primary weights. 
        //     40 byte values  76..115 for medium numbers in three-byte primary weights. 
        //     16 byte values 116..131 for large numbers in four-byte primary weights. 
        //    124 byte values 132..255 for very large numbers with 4..127 digit pairs. 
        int32_t firstByte = 2; 
        int32_t numBytes = 74; 
        if(value < numBytes) { 
            // Two-byte primary for 0..73, good for day & month numbers etc. 
            uint32_t primary = numericPrimary | ((firstByte + value) << 16); 
            ceBuffer.append(Collation::makeCE(primary), errorCode); 
            return; 
        } 
        value -= numBytes; 
        firstByte += numBytes; 
        numBytes = 40; 
        if(value < numBytes * 254) { 
            // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more. 
            uint32_t primary = numericPrimary | 
                ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8); 
            ceBuffer.append(Collation::makeCE(primary), errorCode); 
            return; 
        } 
        value -= numBytes * 254; 
        firstByte += numBytes; 
        numBytes = 16; 
        if(value < numBytes * 254 * 254) { 
            // Four-byte primary for 10234..1042489=10234+16*254*254-1. 
            uint32_t primary = numericPrimary | (2 + value % 254); 
            value /= 254; 
            primary |= (2 + value % 254) << 8; 
            value /= 254; 
            primary |= (firstByte + value % 254) << 16; 
            ceBuffer.append(Collation::makeCE(primary), errorCode); 
            return; 
        } 
        // original value > 1042489 
    } 
    U_ASSERT(length >= 7); 
 
    // The second primary byte value 132..255 indicates the number of digit pairs (4..127), 
    // then we generate primary bytes with those pairs. 
    // Omit trailing 00 pairs. 
    // Decrement the value for the last pair. 
 
    // Set the exponent. 4 pairs->132, 5 pairs->133, ..., 127 pairs->255. 
    int32_t numPairs = (length + 1) / 2; 
    uint32_t primary = numericPrimary | ((132 - 4 + numPairs) << 16); 
    // Find the length without trailing 00 pairs. 
    while(digits[length - 1] == 0 && digits[length - 2] == 0) { 
        length -= 2; 
    } 
    // Read the first pair. 
    uint32_t pair; 
    int32_t pos; 
    if(length & 1) { 
        // Only "half a pair" if we have an odd number of digits. 
        pair = digits[0]; 
        pos = 1; 
    } else { 
        pair = digits[0] * 10 + digits[1]; 
        pos = 2; 
    } 
    pair = 11 + 2 * pair; 
    // Add the pairs of digits between pos and length. 
    int32_t shift = 8; 
    while(pos < length) { 
        if(shift == 0) { 
            // Every three pairs/bytes we need to store a 4-byte-primary CE 
            // and start with a new CE with the '0' primary lead byte. 
            primary |= pair; 
            ceBuffer.append(Collation::makeCE(primary), errorCode); 
            primary = numericPrimary; 
            shift = 16; 
        } else { 
            primary |= pair << shift; 
            shift -= 8; 
        } 
        pair = 11 + 2 * (digits[pos] * 10 + digits[pos + 1]); 
        pos += 2; 
    } 
    primary |= (pair - 1) << shift; 
    ceBuffer.append(Collation::makeCE(primary), errorCode); 
} 
 
int64_t 
CollationIterator::previousCE(UVector32 &offsets, UErrorCode &errorCode) { 
    if(ceBuffer.length > 0) { 
        // Return the previous buffered CE. 
        return ceBuffer.get(--ceBuffer.length); 
    } 
    offsets.removeAllElements(); 
    int32_t limitOffset = getOffset(); 
    UChar32 c = previousCodePoint(errorCode); 
    if(c < 0) { return Collation::NO_CE; } 
    if(data->isUnsafeBackward(c, isNumeric)) { 
        return previousCEUnsafe(c, offsets, errorCode); 
    } 
    // Simple, safe-backwards iteration: 
    // Get a CE going backwards, handle prefixes but no contractions. 
    uint32_t ce32 = data->getCE32(c); 
    const CollationData *d; 
    if(ce32 == Collation::FALLBACK_CE32) { 
        d = data->base; 
        ce32 = d->getCE32(c); 
    } else { 
        d = data; 
    } 
    if(Collation::isSimpleOrLongCE32(ce32)) { 
        return Collation::ceFromCE32(ce32); 
    } 
    appendCEsFromCE32(d, c, ce32, FALSE, errorCode); 
    if(U_SUCCESS(errorCode)) { 
        if(ceBuffer.length > 1) { 
            offsets.addElement(getOffset(), errorCode); 
            // For an expansion, the offset of each non-initial CE is the limit offset, 
            // consistent with forward iteration. 
            while(offsets.size() <= ceBuffer.length) { 
                offsets.addElement(limitOffset, errorCode); 
            }
        } 
        return ceBuffer.get(--ceBuffer.length); 
    } else { 
        return Collation::NO_CE_PRIMARY; 
    } 
} 
 
int64_t 
CollationIterator::previousCEUnsafe(UChar32 c, UVector32 &offsets, UErrorCode &errorCode) { 
    // We just move through the input counting safe and unsafe code points 
    // without collecting the unsafe-backward substring into a buffer and 
    // switching to it. 
    // This is to keep the logic simple. Otherwise we would have to handle 
    // prefix matching going before the backward buffer, switching 
    // to iteration and back, etc. 
    // In the most important case of iterating over a normal string, 
    // reading from the string itself is already maximally fast. 
    // The only drawback there is that after getting the CEs we always 
    // skip backward to the safe character rather than switching out 
    // of a backwardBuffer. 
    // But this should not be the common case for previousCE(), 
    // and correctness and maintainability are more important than 
    // complex optimizations. 
    // Find the first safe character before c. 
    int32_t numBackward = 1; 
    while((c = previousCodePoint(errorCode)) >= 0) { 
        ++numBackward; 
        if(!data->isUnsafeBackward(c, isNumeric)) { 
            break; 
        } 
    } 
    // Set the forward iteration limit. 
    // Note: This counts code points. 
    // We cannot enforce a limit in the middle of a surrogate pair or similar. 
    numCpFwd = numBackward; 
    // Reset the forward iterator. 
    cesIndex = 0; 
    U_ASSERT(ceBuffer.length == 0); 
    // Go forward and collect the CEs. 
    int32_t offset = getOffset(); 
    while(numCpFwd > 0) { 
        // nextCE() normally reads one code point. 
        // Contraction matching and digit specials read more and check numCpFwd. 
        --numCpFwd; 
        // Append one or more CEs to the ceBuffer. 
        (void)nextCE(errorCode); 
        U_ASSERT(U_FAILURE(errorCode) || ceBuffer.get(ceBuffer.length - 1) != Collation::NO_CE); 
        // No need to loop for getting each expansion CE from nextCE(). 
        cesIndex = ceBuffer.length; 
        // However, we need to write an offset for each CE. 
        // This is for CollationElementIterator::getOffset() to return 
        // intermediate offsets from the unsafe-backwards segment. 
        U_ASSERT(offsets.size() < ceBuffer.length); 
        offsets.addElement(offset, errorCode); 
        // For an expansion, the offset of each non-initial CE is the limit offset, 
        // consistent with forward iteration. 
        offset = getOffset(); 
        while(offsets.size() < ceBuffer.length) { 
            offsets.addElement(offset, errorCode); 
        }
    } 
    U_ASSERT(offsets.size() == ceBuffer.length); 
    // End offset corresponding to just after the unsafe-backwards segment. 
    offsets.addElement(offset, errorCode); 
    // Reset the forward iteration limit 
    // and move backward to before the segment for which we fetched CEs. 
    numCpFwd = -1; 
    backwardNumCodePoints(numBackward, errorCode); 
    // Use the collected CEs and return the last one. 
    cesIndex = 0;  // Avoid cesIndex > ceBuffer.length when that gets decremented. 
    if(U_SUCCESS(errorCode)) { 
        return ceBuffer.get(--ceBuffer.length); 
    } else { 
        return Collation::NO_CE_PRIMARY; 
    } 
} 
 
U_NAMESPACE_END 
 
#endif  // !UCONFIG_NO_COLLATION