aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/common/ucnv_lmb.cpp
blob: 7170890c7528ae2d3cee37272e661c007cc67e85 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
// © 2016 and later: Unicode, Inc. and others. 
// License & terms of use: http://www.unicode.org/copyright.html 
/*   
********************************************************************** 
*   Copyright (C) 2000-2016, International Business Machines 
*   Corporation and others.  All Rights Reserved. 
********************************************************************** 
*   file name:  ucnv_lmb.cpp 
*   encoding:   UTF-8 
*   tab size:   4 (not used) 
*   indentation:4 
* 
*   created on: 2000feb09 
*   created by: Brendan Murray 
*   extensively hacked up by: Jim Snyder-Grant 
* 
* Modification History: 
*  
*   Date        Name             Description 
*  
*   06/20/2000  helena           OS/400 port changes; mostly typecast. 
*   06/27/2000  Jim Snyder-Grant Deal with partial characters and small buffers. 
*                                Add comments to document LMBCS format and implementation 
*                                restructured order & breakdown of functions 
*   06/28/2000  helena           Major rewrite for the callback API changes. 
*/ 
 
#include "unicode/utypes.h" 
 
#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION 
 
#include "unicode/ucnv_err.h" 
#include "unicode/ucnv.h" 
#include "unicode/uset.h" 
#include "cmemory.h" 
#include "cstring.h" 
#include "uassert.h" 
#include "ucnv_imp.h" 
#include "ucnv_bld.h" 
#include "ucnv_cnv.h" 
 
#ifdef EBCDIC_RTL 
    #include "ascii_a.h" 
#endif 
 
/* 
  LMBCS 
 
  (Lotus Multi-Byte Character Set) 
 
  LMBCS was invented in the late 1980's and is primarily used in Lotus Notes  
  databases and in Lotus 1-2-3 files. Programmers who work with the APIs  
  into these products will sometimes need to deal with strings in this format. 
 
  The code in this file provides an implementation for an ICU converter of  
  LMBCS to and from Unicode.  
 
  Since the LMBCS character set is only sparsely documented in existing  
  printed or online material, we have added  extensive annotation to this  
  file to serve as a guide to understanding LMBCS.  
 
  LMBCS was originally designed with these four sometimes-competing design goals: 
 
  -Provide encodings for the characters in 12 existing national standards 
   (plus a few other characters) 
  -Minimal memory footprint 
  -Maximal speed of conversion into the existing national character sets 
  -No need to track a changing state as you interpret a string. 
 
 
  All of the national character sets LMBCS was trying to encode are 'ANSI' 
  based, in that the bytes from 0x20 - 0x7F are almost exactly the  
  same common Latin unaccented characters and symbols in all character sets.  
 
  So, in order to help meet the speed & memory design goals, the common ANSI  
  bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.  
 
  The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as 
  follows: 
 
  [G] D1 [D2] 
 
  That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2 
  data bytes. The maximum size of a LMBCS chjaracter is 3 bytes: 
*/ 
#define ULMBCS_CHARSIZE_MAX      3 
/* 
  The single-byte values from 0x20 to 0x7F are examples of single D1 bytes. 
  We often have to figure out if byte values are below or above this, so we  
  use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control  
  characters just above & below the common lower-ANSI  range */ 
#define ULMBCS_C0END           0x1F    
#define ULMBCS_C1START         0x80    
/* 
  Since LMBCS is always dealing in byte units. we create a local type here for  
  dealing with these units of LMBCS code units: 
 
*/   
typedef uint8_t ulmbcs_byte_t; 
 
/*  
   Most of the values less than 0x20 are reserved in LMBCS to announce  
   which national  character standard is being used for the 'D' bytes.  
   In the comments we show the common name and the IBM character-set ID 
   for these character-set announcers: 
*/ 
 
#define ULMBCS_GRP_L1         0x01   /* Latin-1    :ibm-850  */ 
#define ULMBCS_GRP_GR         0x02   /* Greek      :ibm-851  */ 
#define ULMBCS_GRP_HE         0x03   /* Hebrew     :ibm-1255 */ 
#define ULMBCS_GRP_AR         0x04   /* Arabic     :ibm-1256 */ 
#define ULMBCS_GRP_RU         0x05   /* Cyrillic   :ibm-1251 */ 
#define ULMBCS_GRP_L2         0x06   /* Latin-2    :ibm-852  */ 
#define ULMBCS_GRP_TR         0x08   /* Turkish    :ibm-1254 */ 
#define ULMBCS_GRP_TH         0x0B   /* Thai       :ibm-874  */ 
#define ULMBCS_GRP_JA         0x10   /* Japanese   :ibm-943  */ 
#define ULMBCS_GRP_KO         0x11   /* Korean     :ibm-1261 */ 
#define ULMBCS_GRP_TW         0x12   /* Chinese SC :ibm-950  */ 
#define ULMBCS_GRP_CN         0x13   /* Chinese TC :ibm-1386 */ 
 
/* 
   So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS  
   character is one of those 12 values, you can interpret the remaining bytes of  
   that character as coming from one of those character sets. Since the lower  
   ANSI bytes already are represented in single bytes, using one of the character  
   set announcers is used to announce a character that starts with a byte of  
   0x80 or greater. 
 
   The character sets are  arranged so that the single byte sets all appear  
   before the multi-byte character sets. When we need to tell whether a  
   group byte is for a single byte char set or not we use this define: */ 
 
#define ULMBCS_DOUBLEOPTGROUP_START  0x10    
 
/*  
However, to fully understand LMBCS, you must also understand a series of  
exceptions & optimizations made in service of the design goals.  
 
First, those of you who are character set mavens may have noticed that 
the 'double-byte' character sets are actually multi-byte character sets  
that can have 1 or two bytes, even in the upper-ascii range. To force 
each group byte to introduce a fixed-width encoding (to make it faster to  
count characters), we use a convention of doubling up on the group byte  
to introduce any single-byte character > 0x80 in an otherwise double-byte 
character set. So, for example, the LMBCS sequence x10 x10 xAE is the  
same as '0xAE' in the Japanese code page 943. 
 
Next, you will notice that the list of group bytes has some gaps.  
These are used in various ways. 
 
We reserve a few special single byte values for common control  
characters. These are in the same place as their ANSI eqivalents for speed. 
*/ 
                      
#define ULMBCS_HT    0x09   /* Fixed control char - Horizontal Tab */ 
#define ULMBCS_LF    0x0A   /* Fixed control char - Line Feed */ 
#define ULMBCS_CR    0x0D   /* Fixed control char - Carriage Return */ 
 
/* Then, 1-2-3 reserved a special single-byte character to put at the  
beginning of internal 'system' range names: */ 
 
#define ULMBCS_123SYSTEMRANGE  0x19    
 
/* Then we needed a place to put all the other ansi control characters  
that must be moved to different values because LMBCS reserves those  
values for other purposes. To represent the control characters, we start  
with a first byte of 0xF & add the control chaarcter value as the  
second byte */ 
#define ULMBCS_GRP_CTRL       0x0F    
 
/* For the C0 controls (less than 0x20), we add 0x20 to preserve the  
useful doctrine that any byte less than 0x20 in a LMBCS char must be  
the first byte of a character:*/ 
#define ULMBCS_CTRLOFFSET      0x20    
 
/*  
Where to put the characters that aren't part of any of the 12 national  
character sets? The first thing that was done, in the earlier years of  
LMBCS, was to use up the spaces of the form 
 
  [G] D1,  
   
 where  'G' was one of the single-byte character groups, and 
 D1 was less than 0x80. These sequences are gathered together  
 into a Lotus-invented doublebyte character set to represent a  
 lot of stray values. Internally, in this implementation, we track this  
 as group '0', as a place to tuck this exceptions list.*/ 
 
#define ULMBCS_GRP_EXCEPT     0x00     
/* 
 Finally, as the durability and usefulness of UNICODE became clear,  
 LOTUS added a new group 0x14 to hold Unicode values not otherwise  
 represented in LMBCS: */ 
#define ULMBCS_GRP_UNICODE    0x14    
/* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE 
(Big-Endian) characters. The exception comes when the UTF16  
representation would have a zero as the second byte. In that case, 
'F6' is used in its place, and the bytes are swapped. (This prevents  
LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK: 
0xF6xx is in the middle of the Private Use Area.)*/ 
#define ULMBCS_UNICOMPATZERO   0xF6    
 
/* It is also useful in our code to have a constant for the size of  
a LMBCS char that holds a literal Unicode value */ 
#define ULMBCS_UNICODE_SIZE      3     
 
/*  
To squish the LMBCS representations down even further, and to make  
translations even faster,sometimes the optimization group byte can be dropped  
from a LMBCS character. This is decided on a process-by-process basis. The  
group byte that is dropped is called the 'optimization group'. 
 
For Notes, the optimzation group is always 0x1.*/ 
#define ULMBCS_DEFAULTOPTGROUP 0x1     
/* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3  
file.  
 
 In any case, when using ICU, you either pass in the  
optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,  
etc.). Using plain 'LMBCS' as the name of the converter will give you  
LMBCS-1. 
 
 
*** Implementation strategy *** 
 
 
Because of the extensive use of other character sets, the LMBCS converter 
keeps a mapping between optimization groups and IBM character sets, so that 
ICU converters can be created and used as needed. */ 
 
/* As you can see, even though any byte below 0x20 could be an optimization  
byte, only those at 0x13 or below can map to an actual converter. To limit 
some loops and searches, we define a value for that last group converter:*/ 
 
#define ULMBCS_GRP_LAST       0x13   /* last LMBCS group that has a converter */ 
 
static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = { 
   /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */ 
   /* 0x0001 */ "ibm-850", 
   /* 0x0002 */ "ibm-851", 
   /* 0x0003 */ "windows-1255", 
   /* 0x0004 */ "windows-1256", 
   /* 0x0005 */ "windows-1251", 
   /* 0x0006 */ "ibm-852", 
   /* 0x0007 */ NULL,      /* Unused */ 
   /* 0x0008 */ "windows-1254", 
   /* 0x0009 */ NULL,      /* Control char HT */ 
   /* 0x000A */ NULL,      /* Control char LF */ 
   /* 0x000B */ "windows-874", 
   /* 0x000C */ NULL,      /* Unused */ 
   /* 0x000D */ NULL,      /* Control char CR */ 
   /* 0x000E */ NULL,      /* Unused */ 
   /* 0x000F */ NULL,      /* Control chars: 0x0F20 + C0/C1 character: algorithmic */ 
   /* 0x0010 */ "windows-932", 
   /* 0x0011 */ "windows-949", 
   /* 0x0012 */ "windows-950", 
   /* 0x0013 */ "windows-936" 
 
   /* The rest are null, including the 0x0014 Unicode compatibility region 
   and 0x0019, the 1-2-3 system range control char */       
}; 
 
 
/* That's approximately all the data that's needed for translating  
  LMBCS to Unicode.  
 
 
However, to translate Unicode to LMBCS, we need some more support. 
 
That's because there are often more than one possible mappings from a Unicode 
code point back into LMBCS. The first thing we do is look up into a table 
to figure out if there are more than one possible mappings. This table, 
arranged by Unicode values (including ranges) either lists which group  
to use, or says that it could go into one or more of the SBCS sets, or 
into one or more of the DBCS sets.  (If the character exists in both DBCS &  
SBCS, the table will place it in the SBCS sets, to make the LMBCS code point  
length as small as possible. Here's the two special markers we use to indicate 
ambiguous mappings: */ 
 
#define ULMBCS_AMBIGUOUS_SBCS   0x80   /* could fit in more than one  
                                          LMBCS sbcs native encoding  
                                          (example: most accented latin) */ 
#define ULMBCS_AMBIGUOUS_MBCS   0x81   /* could fit in more than one  
                                          LMBCS mbcs native encoding  
                                          (example: Unihan) */ 
#define ULMBCS_AMBIGUOUS_ALL   0x82 
/* And here's a simple way to see if a group falls in an appropriate range */ 
#define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \ 
                  ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \ 
                  (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \ 
                  (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \ 
                  (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \ 
                  ((agroup) == ULMBCS_AMBIGUOUS_ALL) 
 
 
/* The table & some code to use it: */ 
 
 
static const struct _UniLMBCSGrpMap   
{ 
   const UChar uniStartRange; 
   const UChar uniEndRange; 
   const ulmbcs_byte_t  GrpType; 
} UniLMBCSGrpMap[] 
= 
{ 
 
    {0x0001, 0x001F,  ULMBCS_GRP_CTRL}, 
    {0x0080, 0x009F,  ULMBCS_GRP_CTRL}, 
    {0x00A0, 0x00A6,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x00A7, 0x00A8,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x00A9, 0x00AF,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x00B0, 0x00B1,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x00B2, 0x00B3,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x00B4, 0x00B4,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x00B5, 0x00B5,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x00B6, 0x00B6,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x00B7, 0x00D6,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x00D7, 0x00D7,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x00D8, 0x00F6,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x00F7, 0x00F7,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x00F8, 0x01CD,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x01CE, 0x01CE,  ULMBCS_GRP_TW }, 
    {0x01CF, 0x02B9,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x02BA, 0x02BA,  ULMBCS_GRP_CN}, 
    {0x02BC, 0x02C8,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x02C9, 0x02D0,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x02D8, 0x02DD,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x0384, 0x0390,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x0391, 0x03A9,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x03AA, 0x03B0,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x03B1, 0x03C9,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x03CA, 0x03CE,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x0400, 0x0400,  ULMBCS_GRP_RU}, 
    {0x0401, 0x0401,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x0402, 0x040F,  ULMBCS_GRP_RU}, 
    {0x0410, 0x0431,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x0432, 0x044E,  ULMBCS_GRP_RU}, 
    {0x044F, 0x044F,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x0450, 0x0491,  ULMBCS_GRP_RU}, 
    {0x05B0, 0x05F2,  ULMBCS_GRP_HE}, 
    {0x060C, 0x06AF,  ULMBCS_GRP_AR}, 
    {0x0E01, 0x0E5B,  ULMBCS_GRP_TH}, 
    {0x200C, 0x200F,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2010, 0x2010,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2013, 0x2014,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2015, 0x2015,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2016, 0x2016,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2017, 0x2017,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2018, 0x2019,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x201A, 0x201B,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x201C, 0x201D,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x201E, 0x201F,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2020, 0x2021,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x2022, 0x2024,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2025, 0x2025,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2026, 0x2026,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x2027, 0x2027,  ULMBCS_GRP_TW}, 
    {0x2030, 0x2030,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x2031, 0x2031,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2032, 0x2033,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2035, 0x2035,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2039, 0x203A,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x203B, 0x203B,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x203C, 0x203C,  ULMBCS_GRP_EXCEPT}, 
    {0x2074, 0x2074,  ULMBCS_GRP_KO}, 
    {0x207F, 0x207F,  ULMBCS_GRP_EXCEPT}, 
    {0x2081, 0x2084,  ULMBCS_GRP_KO}, 
    {0x20A4, 0x20AC,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2103, 0x2109,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2111, 0x2120,  ULMBCS_AMBIGUOUS_SBCS}, 
    /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/ 
    {0x2121, 0x2121,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2122, 0x2126,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x212B, 0x212B,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2135, 0x2135,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2153, 0x2154,  ULMBCS_GRP_KO}, 
    {0x215B, 0x215E,  ULMBCS_GRP_EXCEPT}, 
    {0x2160, 0x2179,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2190, 0x2193,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x2194, 0x2195,  ULMBCS_GRP_EXCEPT}, 
    {0x2196, 0x2199,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x21A8, 0x21A8,  ULMBCS_GRP_EXCEPT}, 
    {0x21B8, 0x21B9,  ULMBCS_GRP_CN}, 
    {0x21D0, 0x21D1,  ULMBCS_GRP_EXCEPT}, 
    {0x21D2, 0x21D2,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x21D3, 0x21D3,  ULMBCS_GRP_EXCEPT}, 
    {0x21D4, 0x21D4,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x21D5, 0x21D5,  ULMBCS_GRP_EXCEPT}, 
    {0x21E7, 0x21E7,  ULMBCS_GRP_CN}, 
    {0x2200, 0x2200,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2201, 0x2201,  ULMBCS_GRP_EXCEPT}, 
    {0x2202, 0x2202,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2203, 0x2203,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2204, 0x2206,  ULMBCS_GRP_EXCEPT}, 
    {0x2207, 0x2208,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2209, 0x220A,  ULMBCS_GRP_EXCEPT}, 
    {0x220B, 0x220B,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x220F, 0x2215,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2219, 0x2219,  ULMBCS_GRP_EXCEPT}, 
    {0x221A, 0x221A,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x221B, 0x221C,  ULMBCS_GRP_EXCEPT}, 
    {0x221D, 0x221E,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x221F, 0x221F,  ULMBCS_GRP_EXCEPT}, 
    {0x2220, 0x2220,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2223, 0x222A,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x222B, 0x223D,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2245, 0x2248,  ULMBCS_GRP_EXCEPT}, 
    {0x224C, 0x224C,  ULMBCS_GRP_TW}, 
    {0x2252, 0x2252,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2260, 0x2261,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2262, 0x2265,  ULMBCS_GRP_EXCEPT}, 
    {0x2266, 0x226F,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2282, 0x2283,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2284, 0x2285,  ULMBCS_GRP_EXCEPT}, 
    {0x2286, 0x2287,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2288, 0x2297,  ULMBCS_GRP_EXCEPT}, 
    {0x2299, 0x22BF,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x22C0, 0x22C0,  ULMBCS_GRP_EXCEPT}, 
    {0x2310, 0x2310,  ULMBCS_GRP_EXCEPT}, 
    {0x2312, 0x2312,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2318, 0x2321,  ULMBCS_GRP_EXCEPT}, 
    {0x2318, 0x2321,  ULMBCS_GRP_CN}, 
    {0x2460, 0x24E9,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2500, 0x2500,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2501, 0x2501,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2502, 0x2502,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x2503, 0x2503,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x2504, 0x2505,  ULMBCS_GRP_TW}, 
    {0x2506, 0x2665,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x2666, 0x2666,  ULMBCS_GRP_EXCEPT}, 
    {0x2667, 0x2669,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x266A, 0x266A,  ULMBCS_AMBIGUOUS_ALL}, 
    {0x266B, 0x266C,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x266D, 0x266D,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0x266E, 0x266E,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x266F, 0x266F,  ULMBCS_GRP_JA}, 
    {0x2670, 0x2E7F,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0x2E80, 0xF861,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0xF862, 0xF8FF,  ULMBCS_GRP_EXCEPT}, 
    {0xF900, 0xFA2D,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0xFB00, 0xFEFF,  ULMBCS_AMBIGUOUS_SBCS}, 
    {0xFF01, 0xFFEE,  ULMBCS_AMBIGUOUS_MBCS}, 
    {0xFFFF, 0xFFFF,  ULMBCS_GRP_UNICODE} 
}; 
    
static ulmbcs_byte_t  
FindLMBCSUniRange(UChar uniChar) 
{ 
   const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap; 
 
   while (uniChar > pTable->uniEndRange)  
   { 
      pTable++; 
   } 
 
   if (uniChar >= pTable->uniStartRange)  
   { 
      return pTable->GrpType; 
   } 
   return ULMBCS_GRP_UNICODE; 
} 
 
/*  
We also ask the creator of a converter to send in a preferred locale  
that we can use in resolving ambiguous mappings. They send the locale 
in as a string, and we map it, if possible, to one of the  
LMBCS groups. We use this table, and the associated code, to  
do the lookup: */ 
 
/************************************************** 
  This table maps locale ID's to LMBCS opt groups. 
  The default return is group 0x01. Note that for 
  performance reasons, the table is sorted in 
  increasing alphabetic order, with the notable 
  exception of zhTW. This is to force the check 
  for Traditonal Chinese before dropping back to 
  Simplified. 
 
  Note too that the Latin-1 groups have been 
  commented out because it's the default, and 
  this shortens the table, allowing a serial 
  search to go quickly. 
 *************************************************/ 
 
static const struct _LocaleLMBCSGrpMap 
{ 
   const char    *LocaleID; 
   const ulmbcs_byte_t OptGroup; 
} LocaleLMBCSGrpMap[] = 
{ 
    {"ar", ULMBCS_GRP_AR}, 
    {"be", ULMBCS_GRP_RU}, 
    {"bg", ULMBCS_GRP_L2}, 
   /* {"ca", ULMBCS_GRP_L1}, */ 
    {"cs", ULMBCS_GRP_L2}, 
   /* {"da", ULMBCS_GRP_L1}, */ 
   /* {"de", ULMBCS_GRP_L1}, */ 
    {"el", ULMBCS_GRP_GR}, 
   /* {"en", ULMBCS_GRP_L1}, */ 
   /* {"es", ULMBCS_GRP_L1}, */ 
   /* {"et", ULMBCS_GRP_L1}, */ 
   /* {"fi", ULMBCS_GRP_L1}, */ 
   /* {"fr", ULMBCS_GRP_L1}, */ 
    {"he", ULMBCS_GRP_HE}, 
    {"hu", ULMBCS_GRP_L2}, 
   /* {"is", ULMBCS_GRP_L1}, */ 
   /* {"it", ULMBCS_GRP_L1}, */ 
    {"iw", ULMBCS_GRP_HE}, 
    {"ja", ULMBCS_GRP_JA}, 
    {"ko", ULMBCS_GRP_KO}, 
   /* {"lt", ULMBCS_GRP_L1}, */ 
   /* {"lv", ULMBCS_GRP_L1}, */ 
    {"mk", ULMBCS_GRP_RU}, 
   /* {"nl", ULMBCS_GRP_L1}, */ 
   /* {"no", ULMBCS_GRP_L1}, */ 
    {"pl", ULMBCS_GRP_L2}, 
   /* {"pt", ULMBCS_GRP_L1}, */ 
    {"ro", ULMBCS_GRP_L2}, 
    {"ru", ULMBCS_GRP_RU}, 
    {"sh", ULMBCS_GRP_L2}, 
    {"sk", ULMBCS_GRP_L2}, 
    {"sl", ULMBCS_GRP_L2}, 
    {"sq", ULMBCS_GRP_L2}, 
    {"sr", ULMBCS_GRP_RU}, 
   /* {"sv", ULMBCS_GRP_L1}, */ 
    {"th", ULMBCS_GRP_TH}, 
    {"tr", ULMBCS_GRP_TR}, 
    {"uk", ULMBCS_GRP_RU}, 
   /* {"vi", ULMBCS_GRP_L1}, */ 
    {"zhTW", ULMBCS_GRP_TW}, 
    {"zh", ULMBCS_GRP_CN}, 
    {NULL, ULMBCS_GRP_L1} 
}; 
 
 
static ulmbcs_byte_t  
FindLMBCSLocale(const char *LocaleID) 
{ 
   const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap; 
 
   if ((!LocaleID) || (!*LocaleID))  
   { 
      return 0; 
   } 
 
   while (pTable->LocaleID) 
   { 
      if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */ 
      { 
         /* First char matches - check whole name, for entry-length */ 
         if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0) 
            return pTable->OptGroup; 
      } 
      else 
      if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */ 
         break; 
      pTable++; 
   } 
   return ULMBCS_GRP_L1; 
} 
 
 
/*  
  Before we get to the main body of code, here's how we hook up to the rest  
  of ICU. ICU converters are required to define a structure that includes  
  some function pointers, and some common data, in the style of a C++ 
  vtable. There is also room in there for converter-specific data. LMBCS 
  uses that converter-specific data to keep track of the 12 subconverters 
  we use, the optimization group, and the group (if any) that matches the  
  locale. We have one structure instantiated for each of the 12 possible 
  optimization groups. To avoid typos & to avoid boring the reader, we  
  put the declarations of these structures and functions into macros. To see  
  the definitions of these structures, see unicode\ucnv_bld.h 
*/ 
 
typedef struct 
  { 
    UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1];    /* Converter per Opt. grp. */ 
    uint8_t    OptGroup;                  /* default Opt. grp. for this LMBCS session */ 
    uint8_t    localeConverterIndex;      /* reasonable locale match for index */ 
  } 
UConverterDataLMBCS; 
 
U_CDECL_BEGIN 
static void  U_CALLCONV _LMBCSClose(UConverter * _this); 
U_CDECL_END 
 
#define DECLARE_LMBCS_DATA(n) \ 
static const UConverterImpl _LMBCSImpl##n={\ 
    UCNV_LMBCS_##n,\ 
    NULL,NULL,\ 
    _LMBCSOpen##n,\ 
    _LMBCSClose,\ 
    NULL,\ 
    _LMBCSToUnicodeWithOffsets,\ 
    _LMBCSToUnicodeWithOffsets,\ 
    _LMBCSFromUnicode,\ 
    _LMBCSFromUnicode,\ 
    NULL,\ 
    NULL,\ 
    NULL,\ 
    NULL,\ 
    _LMBCSSafeClone,\ 
    ucnv_getCompleteUnicodeSet,\ 
    NULL,\ 
    NULL\ 
};\ 
static const UConverterStaticData _LMBCSStaticData##n={\ 
  sizeof(UConverterStaticData),\ 
 "LMBCS-"  #n,\ 
    0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\ 
    { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \ 
};\ 
const UConverterSharedData _LMBCSData##n= \ 
        UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n); 
 
 /* The only function we needed to duplicate 12 times was the 'open' 
function, which will do basically the same thing except set a  different 
optimization group. So, we put the common stuff into a worker function,  
and set up another macro to stamp out the 12 open functions:*/ 
#define DEFINE_LMBCS_OPEN(n) \ 
static void U_CALLCONV \ 
   _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \ 
{ _LMBCSOpenWorker(_this, pArgs, err, n); } 
 
 
 
/* Here's the open worker & the common close function */ 
static void  
_LMBCSOpenWorker(UConverter*  _this, 
                 UConverterLoadArgs *pArgs, 
                 UErrorCode*  err, 
                 ulmbcs_byte_t OptGroup) 
{ 
    UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS)); 
    _this->extraInfo = extraInfo; 
    if(extraInfo != NULL) 
    { 
        UConverterNamePieces stackPieces; 
        UConverterLoadArgs stackArgs= UCNV_LOAD_ARGS_INITIALIZER; 
        ulmbcs_byte_t i; 
 
        uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS)); 
 
        stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable; 
 
        for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)          
        { 
            if(OptGroupByteToCPName[i] != NULL) { 
                extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err); 
            } 
        } 
 
        if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) { 
            _LMBCSClose(_this); 
            return; 
        } 
        extraInfo->OptGroup = OptGroup; 
        extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale); 
    } 
    else 
    { 
        *err = U_MEMORY_ALLOCATION_ERROR; 
    } 
} 
 
U_CDECL_BEGIN 
static void  U_CALLCONV 
_LMBCSClose(UConverter *   _this)  
{ 
    if (_this->extraInfo != NULL) 
    { 
        ulmbcs_byte_t Ix; 
        UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo; 
 
        for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++) 
        { 
           if (extraInfo->OptGrpConverter[Ix] != NULL) 
              ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]); 
        } 
        if (!_this->isExtraLocal) { 
            uprv_free (_this->extraInfo); 
            _this->extraInfo = NULL; 
        } 
    } 
} 
 
typedef struct LMBCSClone { 
    UConverter cnv; 
    UConverterDataLMBCS lmbcs; 
} LMBCSClone; 
 
static UConverter *  U_CALLCONV 
_LMBCSSafeClone(const UConverter *cnv,  
                void *stackBuffer,  
                int32_t *pBufferSize,  
                UErrorCode *status) { 
    (void)status; 
    LMBCSClone *newLMBCS; 
    UConverterDataLMBCS *extraInfo; 
    int32_t i; 
 
    if(*pBufferSize<=0) { 
        *pBufferSize=(int32_t)sizeof(LMBCSClone); 
        return NULL; 
    } 
 
    extraInfo=(UConverterDataLMBCS *)cnv->extraInfo; 
    newLMBCS=(LMBCSClone *)stackBuffer; 
 
    /* ucnv.c/ucnv_safeClone() copied the main UConverter already */ 
 
    uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS)); 
 
    /* share the subconverters */ 
    for(i = 0; i <= ULMBCS_GRP_LAST; ++i) { 
        if(extraInfo->OptGrpConverter[i] != NULL) { 
            ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]); 
        } 
    } 
 
    newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs; 
    newLMBCS->cnv.isExtraLocal = TRUE; 
    return &newLMBCS->cnv; 
} 
 
/* 
 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117) 
 * which added all code points except for U+F6xx 
 * because those cannot be represented in the Unicode group. 
 * However, it turns out that windows-950 has roundtrips for all of U+F6xx 
 * which means that LMBCS can convert all Unicode code points after all. 
 * We now simply use ucnv_getCompleteUnicodeSet(). 
 * 
 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216) 
 */ 
 
/*  
   Here's the basic helper function that we use when converting from 
   Unicode to LMBCS, and we suspect that a Unicode character will fit into  
   one of the 12 groups. The return value is the number of bytes written  
   starting at pStartLMBCS (if any). 
*/ 
 
static size_t 
LMBCSConversionWorker ( 
   UConverterDataLMBCS * extraInfo,    /* subconverters, opt & locale groups */ 
   ulmbcs_byte_t group,                /* The group to try */ 
   ulmbcs_byte_t  * pStartLMBCS,              /* where to put the results */ 
   UChar * pUniChar,                   /* The input unicode character */ 
   ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */ 
   UBool * groups_tried                /* output: track any unsuccessful groups */ 
)    
{ 
   ulmbcs_byte_t  * pLMBCS = pStartLMBCS; 
   UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group]; 
 
   int bytesConverted; 
   uint32_t value; 
   ulmbcs_byte_t firstByte; 
 
   U_ASSERT(xcnv); 
   U_ASSERT(group<ULMBCS_GRP_UNICODE); 
 
   bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE); 
 
   /* get the first result byte */ 
   if(bytesConverted > 0) { 
      firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8)); 
   } else { 
      /* most common failure mode is an unassigned character */ 
      groups_tried[group] = TRUE; 
      return 0; 
   } 
 
   *lastConverterIndex = group; 
 
   /* All initial byte values in lower ascii range should have been caught by now, 
      except with the exception group. 
    */ 
   U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT)); 
    
   /* use converted data: first write 0, 1 or two group bytes */ 
   if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group) 
   { 
      *pLMBCS++ = group; 
      if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START) 
      { 
         *pLMBCS++ = group; 
      } 
   } 
 
  /* don't emit control chars */ 
   if ( bytesConverted == 1 && firstByte < 0x20 ) 
      return 0; 
 
 
   /* then move over the converted data */ 
   switch(bytesConverted) 
   { 
   case 4: 
      *pLMBCS++ = (ulmbcs_byte_t)(value >> 24); 
      U_FALLTHROUGH; 
   case 3: 
      *pLMBCS++ = (ulmbcs_byte_t)(value >> 16); 
      U_FALLTHROUGH; 
   case 2: 
      *pLMBCS++ = (ulmbcs_byte_t)(value >> 8); 
      U_FALLTHROUGH; 
   case 1: 
      *pLMBCS++ = (ulmbcs_byte_t)value; 
      U_FALLTHROUGH; 
   default: 
      /* will never occur */ 
      break; 
   } 
 
   return (pLMBCS - pStartLMBCS); 
} 
 
 
/* This is a much simpler version of above, when we  
know we are writing LMBCS using the Unicode group 
*/ 
static size_t  
LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)   
{ 
     /* encode into LMBCS Unicode range */ 
   uint8_t LowCh =   (uint8_t)(uniChar & 0x00FF); 
   uint8_t HighCh  = (uint8_t)(uniChar >> 8); 
 
   *pLMBCS++ = ULMBCS_GRP_UNICODE; 
 
   if (LowCh == 0) 
   { 
      *pLMBCS++ = ULMBCS_UNICOMPATZERO; 
      *pLMBCS++ = HighCh; 
   } 
   else 
   { 
      *pLMBCS++ = HighCh; 
      *pLMBCS++ = LowCh; 
   } 
   return ULMBCS_UNICODE_SIZE; 
} 
 
 
 
/* The main Unicode to LMBCS conversion function */ 
static void  U_CALLCONV 
_LMBCSFromUnicode(UConverterFromUnicodeArgs*     args, 
                  UErrorCode*     err) 
{ 
   ulmbcs_byte_t lastConverterIndex = 0; 
   UChar uniChar; 
   ulmbcs_byte_t  LMBCS[ULMBCS_CHARSIZE_MAX]; 
   ulmbcs_byte_t  * pLMBCS; 
   int32_t bytes_written; 
   UBool groups_tried[ULMBCS_GRP_LAST+1]; 
   UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 
   int sourceIndex = 0;  
 
   /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS) 
      If that succeeds, see if it will all fit into the target & copy it over  
      if it does. 
 
      We try conversions in the following order: 
 
      1. Single-byte ascii & special fixed control chars (&null) 
      2. Look up group in table & try that (could be  
            A) Unicode group 
            B) control group, 
            C) national encoding,  
               or ambiguous SBCS or MBCS group (on to step 4...) 
         
      3. If its ambiguous, try this order: 
         A) The optimization group 
         B) The locale group 
         C) The last group that succeeded with this string. 
         D) every other group that's relevent (single or double) 
         E) If its single-byte ambiguous, try the exceptions group 
 
      4. And as a grand fallback: Unicode 
   */ 
 
    /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 
    ulmbcs_byte_t OldConverterIndex = 0; 
 
   while (args->source < args->sourceLimit && !U_FAILURE(*err)) 
   { 
      /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 
      OldConverterIndex = extraInfo->localeConverterIndex; 
 
      if (args->target >= args->targetLimit) 
      { 
         *err = U_BUFFER_OVERFLOW_ERROR; 
         break; 
      } 
      uniChar = *(args->source); 
      bytes_written = 0; 
      pLMBCS = LMBCS; 
 
      /* check cases in rough order of how common they are, for speed */ 
 
      /* single byte matches: strategy 1 */ 
      /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 
      if((uniChar>=0x80) && (uniChar<=0xff) 
      /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7) 
        &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8)) 
      { 
            extraInfo->localeConverterIndex = ULMBCS_GRP_L1; 
      } 
      if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) || 
          uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||  
          uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE  
          ) 
      { 
         *pLMBCS++ = (ulmbcs_byte_t ) uniChar; 
         bytes_written = 1; 
      } 
 
 
      if (!bytes_written)  
      { 
         /* Check by UNICODE range (Strategy 2) */ 
         ulmbcs_byte_t group = FindLMBCSUniRange(uniChar); 
          
         if (group == ULMBCS_GRP_UNICODE)  /* (Strategy 2A) */ 
         { 
            pLMBCS += LMBCSConvertUni(pLMBCS,uniChar); 
             
            bytes_written = (int32_t)(pLMBCS - LMBCS); 
         } 
         else if (group == ULMBCS_GRP_CTRL)  /* (Strategy 2B) */ 
         { 
            /* Handle control characters here */ 
            if (uniChar <= ULMBCS_C0END) 
            { 
               *pLMBCS++ = ULMBCS_GRP_CTRL; 
               *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar); 
            } 
            else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET) 
            { 
               *pLMBCS++ = ULMBCS_GRP_CTRL; 
               *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF); 
            } 
            bytes_written = (int32_t)(pLMBCS - LMBCS); 
         } 
         else if (group < ULMBCS_GRP_UNICODE)  /* (Strategy 2C) */ 
         { 
            /* a specific converter has been identified - use it */ 
            bytes_written = (int32_t)LMBCSConversionWorker ( 
                              extraInfo, group, pLMBCS, &uniChar,  
                              &lastConverterIndex, groups_tried); 
         } 
         if (!bytes_written)    /* the ambiguous group cases  (Strategy 3) */ 
         { 
            uprv_memset(groups_tried, 0, sizeof(groups_tried)); 
 
            /* check for non-default optimization group (Strategy 3A )*/ 
            if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup))) 
            { 
                /*zhujin: upgrade, merge #39299 here (Lotus) */ 
                /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/ 
 
                if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START) 
                { 
                  bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 
                     ULMBCS_GRP_L1, pLMBCS, &uniChar, 
                     &lastConverterIndex, groups_tried); 
 
                  if(!bytes_written) 
                  { 
                     bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 
                         ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar, 
                         &lastConverterIndex, groups_tried); 
                  } 
                  if(!bytes_written) 
                  { 
                      bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 
                          extraInfo->localeConverterIndex, pLMBCS, &uniChar, 
                          &lastConverterIndex, groups_tried); 
                  } 
                } 
                else 
                { 
                     bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 
                         extraInfo->localeConverterIndex, pLMBCS, &uniChar, 
                         &lastConverterIndex, groups_tried); 
                } 
            } 
            /* check for locale optimization group (Strategy 3B) */ 
            if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex))) 
            { 
                bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 
                        extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried); 
            } 
            /* check for last optimization group used for this string (Strategy 3C) */ 
            if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex))) 
            { 
                bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 
                        lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried); 
            } 
            if (!bytes_written) 
            { 
               /* just check every possible matching converter (Strategy 3D) */  
               ulmbcs_byte_t grp_start; 
               ulmbcs_byte_t grp_end;   
               ulmbcs_byte_t grp_ix; 
               grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)  
                        ? ULMBCS_DOUBLEOPTGROUP_START  
                        :  ULMBCS_GRP_L1); 
               grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)  
                        ? ULMBCS_GRP_LAST  
                        :  ULMBCS_GRP_TH); 
               if(group == ULMBCS_AMBIGUOUS_ALL) 
               { 
                   grp_start = ULMBCS_GRP_L1; 
                   grp_end = ULMBCS_GRP_LAST; 
               } 
               for (grp_ix = grp_start; 
                   grp_ix <= grp_end && !bytes_written;  
                    grp_ix++) 
               { 
                  if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix]) 
                  { 
                     bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 
                       grp_ix, pLMBCS, &uniChar,  
                       &lastConverterIndex, groups_tried); 
                  } 
               } 
                /* a final conversion fallback to the exceptions group if its likely  
                     to be single byte  (Strategy 3E) */ 
               if (!bytes_written && grp_start == ULMBCS_GRP_L1) 
               { 
                  bytes_written = (int32_t)LMBCSConversionWorker (extraInfo, 
                     ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,  
                     &lastConverterIndex, groups_tried); 
               } 
            } 
            /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/ 
            if (!bytes_written) 
            { 
 
               pLMBCS += LMBCSConvertUni(pLMBCS, uniChar); 
               bytes_written = (int32_t)(pLMBCS - LMBCS); 
            } 
         } 
      } 
   
      /* we have a translation. increment source and write as much as posible to target */ 
      args->source++; 
      pLMBCS = LMBCS; 
      while (args->target < args->targetLimit && bytes_written--) 
      { 
         *(args->target)++ = *pLMBCS++; 
         if (args->offsets) 
         { 
            *(args->offsets)++ = sourceIndex; 
         } 
      } 
      sourceIndex++; 
      if (bytes_written > 0) 
      { 
         /* write any bytes that didn't fit in target to the error buffer, 
            common code will move this to target if we get called back with 
            enough target room 
         */ 
         uint8_t * pErrorBuffer = args->converter->charErrorBuffer; 
         *err = U_BUFFER_OVERFLOW_ERROR; 
         args->converter->charErrorBufferLength = (int8_t)bytes_written; 
         while (bytes_written--) 
         { 
            *pErrorBuffer++ = *pLMBCS++; 
         } 
      } 
      /*Fix for SPR#DJOE66JFN3 (Lotus)*/ 
      extraInfo->localeConverterIndex = OldConverterIndex; 
   }      
} 
 
 
/* Now, the Unicode from LMBCS section */ 
 
 
/* A function to call when we are looking at the Unicode group byte in LMBCS */ 
static UChar 
GetUniFromLMBCSUni(char const ** ppLMBCSin)  /* Called with LMBCS-style Unicode byte stream */ 
{ 
   uint8_t  HighCh = *(*ppLMBCSin)++;  /* Big-endian Unicode in LMBCS compatibility group*/ 
   uint8_t  LowCh  = *(*ppLMBCSin)++; 
 
   if (HighCh == ULMBCS_UNICOMPATZERO )  
   { 
      HighCh = LowCh; 
      LowCh = 0; /* zero-byte in LSB special character */ 
   } 
   return (UChar)((HighCh << 8) | LowCh); 
} 
 
 
 
/* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'  
   bytes left in source up to  sourceLimit.Errors appropriately if not. 
   If we reach the limit, then update the source pointer to there to consume 
   all input as required by ICU converter semantics. 
*/ 
 
#define CHECK_SOURCE_LIMIT(index) UPRV_BLOCK_MACRO_BEGIN { \ 
    if (args->source+index > args->sourceLimit) { \ 
        *err = U_TRUNCATED_CHAR_FOUND; \ 
        args->source = args->sourceLimit; \ 
        return 0xffff; \ 
    } \ 
} UPRV_BLOCK_MACRO_END 
 
/* Return the Unicode representation for the current LMBCS character */ 
 
static UChar32  U_CALLCONV 
_LMBCSGetNextUCharWorker(UConverterToUnicodeArgs*   args, 
                         UErrorCode*   err) 
{ 
    UChar32 uniChar = 0;    /* an output UNICODE char */ 
    ulmbcs_byte_t   CurByte; /* A byte from the input stream */ 
 
    /* error check */ 
    if (args->source >= args->sourceLimit) 
    { 
        *err = U_ILLEGAL_ARGUMENT_ERROR; 
        return 0xffff; 
    } 
    /* Grab first byte & save address for error recovery */ 
    CurByte = *((ulmbcs_byte_t  *) (args->source++)); 
    
    /* 
    * at entry of each if clause: 
    * 1. 'CurByte' points at the first byte of a LMBCS character 
    * 2. '*source'points to the next byte of the source stream after 'CurByte'  
    * 
    * the job of each if clause is: 
    * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte) 
    * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately 
    */ 
    
    /* First lets check the simple fixed values. */ 
 
    if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */ 
    ||  (CurByte == 0)  
    ||  CurByte == ULMBCS_HT || CurByte == ULMBCS_CR  
    ||  CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE) 
    { 
        uniChar = CurByte; 
    } 
    else   
    { 
        UConverterDataLMBCS * extraInfo; 
        ulmbcs_byte_t group;  
        UConverterSharedData *cnv;  
         
        if (CurByte == ULMBCS_GRP_CTRL)  /* Control character group - no opt group update */ 
        { 
            ulmbcs_byte_t  C0C1byte; 
            CHECK_SOURCE_LIMIT(1); 
            C0C1byte = *(args->source)++; 
            uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte; 
        } 
        else  
        if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */ 
        { 
            CHECK_SOURCE_LIMIT(2); 
      
            /* don't check for error indicators fffe/ffff below */ 
            return GetUniFromLMBCSUni(&(args->source)); 
        } 
        else if (CurByte <= ULMBCS_CTRLOFFSET)   
        { 
            group = CurByte;                   /* group byte is in the source */ 
            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 
            if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL) 
            { 
                /* this is not a valid group byte - no converter*/ 
                *err = U_INVALID_CHAR_FOUND; 
            }       
            else if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */ 
            { 
 
                CHECK_SOURCE_LIMIT(2); 
 
                /* check for LMBCS doubled-group-byte case */ 
                if (*args->source == group) { 
                    /* single byte */ 
                    ++args->source; 
                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE); 
                    ++args->source; 
                } else { 
                    /* double byte */ 
                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE); 
                    args->source += 2; 
                } 
            } 
            else {                                  /* single byte conversion */ 
                CHECK_SOURCE_LIMIT(1); 
                CurByte = *(args->source)++; 
         
                if (CurByte >= ULMBCS_C1START) 
                { 
                    uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte); 
                } 
                else 
                { 
                    /* The non-optimizable oddballs where there is an explicit byte  
                    * AND the second byte is not in the upper ascii range 
                    */ 
                    char bytes[2]; 
 
                    extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 
                    cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];   
         
                    /* Lookup value must include opt group */ 
                    bytes[0] = group; 
                    bytes[1] = CurByte; 
                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE); 
                } 
            } 
        } 
        else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */ 
        { 
            extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; 
            group = extraInfo->OptGroup; 
            cnv = extraInfo->OptGrpConverter[group]; 
            if (group >= ULMBCS_DOUBLEOPTGROUP_START)    /* double byte conversion */ 
            { 
                if (!ucnv_MBCSIsLeadByte(cnv, CurByte)) 
                { 
                    CHECK_SOURCE_LIMIT(0); 
 
                    /* let the MBCS conversion consume CurByte again */ 
                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE); 
                } 
                else 
                { 
                    CHECK_SOURCE_LIMIT(1); 
                    /* let the MBCS conversion consume CurByte again */ 
                    uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE); 
                    ++args->source; 
                } 
            } 
            else                                   /* single byte conversion */ 
            { 
                uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte); 
            } 
        } 
    } 
    return uniChar; 
} 
 
 
/* The exported function that converts lmbcs to one or more 
   UChars - currently UTF-16 
*/ 
static void  U_CALLCONV 
_LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs*    args, 
                     UErrorCode*    err) 
{ 
   char LMBCS [ULMBCS_CHARSIZE_MAX]; 
   UChar uniChar;    /* one output UNICODE char */ 
   const char * saveSource; /* beginning of current code point */ 
   const char * pStartLMBCS = args->source;  /* beginning of whole string */ 
   const char * errSource = NULL; /* pointer to actual input in case an error occurs */ 
   int8_t savebytes = 0; 
 
   /* Process from source to limit, or until error */ 
   while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target) 
   { 
      saveSource = args->source; /* beginning of current code point */ 
 
      if (args->converter->toULength) /* reassemble char from previous call */ 
      { 
        const char *saveSourceLimit;  
        size_t size_old = args->converter->toULength; 
 
         /* limit from source is either remainder of temp buffer, or user limit on source */ 
        size_t size_new_maybe_1 = sizeof(LMBCS) - size_old; 
        size_t size_new_maybe_2 = args->sourceLimit - args->source; 
        size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2; 
          
       
        uprv_memcpy(LMBCS, args->converter->toUBytes, size_old); 
        uprv_memcpy(LMBCS + size_old, args->source, size_new); 
        saveSourceLimit = args->sourceLimit; 
        args->source = errSource = LMBCS; 
        args->sourceLimit = LMBCS+size_old+size_new; 
        savebytes = (int8_t)(size_old+size_new); 
        uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err); 
        args->source = saveSource + ((args->source - LMBCS) - size_old); 
        args->sourceLimit = saveSourceLimit; 
 
        if (*err == U_TRUNCATED_CHAR_FOUND) 
        { 
            /* evil special case: source buffers so small a char spans more than 2 buffers */ 
            args->converter->toULength = savebytes; 
            uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes); 
            args->source = args->sourceLimit; 
            *err = U_ZERO_ERROR; 
            return; 
         } 
         else 
         { 
            /* clear the partial-char marker */ 
            args->converter->toULength = 0; 
         } 
      } 
      else 
      { 
         errSource = saveSource; 
         uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err); 
         savebytes = (int8_t)(args->source - saveSource); 
      } 
      if (U_SUCCESS(*err)) 
      { 
         if (uniChar < 0xfffe) 
         { 
            *(args->target)++ = uniChar; 
            if(args->offsets) 
            { 
               *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS); 
            } 
         } 
         else if (uniChar == 0xfffe) 
         { 
            *err = U_INVALID_CHAR_FOUND; 
         } 
         else /* if (uniChar == 0xffff) */ 
         { 
            *err = U_ILLEGAL_CHAR_FOUND; 
         } 
      } 
   } 
   /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */ 
   if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target) 
   { 
      *err = U_BUFFER_OVERFLOW_ERROR; 
   } 
   else if (U_FAILURE(*err))  
   { 
      /* If character incomplete or unmappable/illegal, store it in toUBytes[] */ 
      args->converter->toULength = savebytes; 
      if (savebytes > 0) { 
         uprv_memcpy(args->converter->toUBytes, errSource, savebytes); 
      } 
      if (*err == U_TRUNCATED_CHAR_FOUND) { 
         *err = U_ZERO_ERROR; 
      } 
   } 
} 
 
/* And now, the macroized declarations of data & functions: */ 
DEFINE_LMBCS_OPEN(1) 
DEFINE_LMBCS_OPEN(2) 
DEFINE_LMBCS_OPEN(3) 
DEFINE_LMBCS_OPEN(4) 
DEFINE_LMBCS_OPEN(5) 
DEFINE_LMBCS_OPEN(6) 
DEFINE_LMBCS_OPEN(8) 
DEFINE_LMBCS_OPEN(11) 
DEFINE_LMBCS_OPEN(16) 
DEFINE_LMBCS_OPEN(17) 
DEFINE_LMBCS_OPEN(18) 
DEFINE_LMBCS_OPEN(19) 
 
 
DECLARE_LMBCS_DATA(1) 
DECLARE_LMBCS_DATA(2) 
DECLARE_LMBCS_DATA(3) 
DECLARE_LMBCS_DATA(4) 
DECLARE_LMBCS_DATA(5) 
DECLARE_LMBCS_DATA(6) 
DECLARE_LMBCS_DATA(8) 
DECLARE_LMBCS_DATA(11) 
DECLARE_LMBCS_DATA(16) 
DECLARE_LMBCS_DATA(17) 
DECLARE_LMBCS_DATA(18) 
DECLARE_LMBCS_DATA(19) 
 
U_CDECL_END 
 
#endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */