aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/common/rbbiscan.cpp
blob: 887192d3a96c2843de94a0348c593509a90ecf60 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
// © 2016 and later: Unicode, Inc. and others. 
// License & terms of use: http://www.unicode.org/copyright.html
//
//  file:  rbbiscan.cpp
//
//  Copyright (C) 2002-2016, International Business Machines Corporation and others.
//  All Rights Reserved.
//
//  This file contains the Rule Based Break Iterator Rule Builder functions for
//   scanning the rules and assembling a parse tree.  This is the first phase
//   of compiling the rules.
//
//  The overall of the rules is managed by class RBBIRuleBuilder, which will
//  create and use an instance of this class as part of the process.
//

#include "unicode/utypes.h"

#if !UCONFIG_NO_BREAK_ITERATION

#include "unicode/unistr.h"
#include "unicode/uniset.h"
#include "unicode/uchar.h"
#include "unicode/uchriter.h"
#include "unicode/parsepos.h"
#include "unicode/parseerr.h"
#include "cmemory.h"
#include "cstring.h"

#include "rbbirpt.h"   // Contains state table for the rbbi rules parser.
                       //   generated by a Perl script.
#include "rbbirb.h"
#include "rbbinode.h"
#include "rbbiscan.h"
#include "rbbitblb.h"

#include "uassert.h"

//------------------------------------------------------------------------------
//
// Unicode Set init strings for each of the character classes needed for parsing a rule file.
//               (Initialized with hex values for portability to EBCDIC based machines.
//                Really ugly, but there's no good way to avoid it.)
//
//              The sets are referred to by name in the rbbirpt.txt, which is the
//              source form of the state transition table for the RBBI rule parser.
//
//------------------------------------------------------------------------------
static const UChar gRuleSet_rule_char_pattern[]       = {
 // Characters that may appear as literals in patterns without escaping or quoting. 
 //   [    ^      [    \     p     {      Z     }     \     u    0      0    2      0
    0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30,
 //   -    \      u    0     0     7      f     ]     -     [    \      p
    0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70,
 //   {     L     }    ]     -     [      \     p     {     N    }      ]     ]
    0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0};

static const UChar gRuleSet_name_char_pattern[]       = {
//    [    _      \    p     {     L      }     \     p     {    N      }     ]
    0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};

static const UChar gRuleSet_digit_char_pattern[] = {
//    [    0      -    9     ]
    0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};

static const UChar gRuleSet_name_start_char_pattern[] = {
//    [    _      \    p     {     L      }     ]
    0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };

static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00};  // "any"


U_CDECL_BEGIN
static void U_CALLCONV RBBISetTable_deleter(void *p) {
    icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p;
    delete px->key;
    // Note:  px->val is owned by the linked list "fSetsListHead" in scanner.
    //        Don't delete the value nodes here.
    uprv_free(px);
}
U_CDECL_END

U_NAMESPACE_BEGIN

//------------------------------------------------------------------------------
//
//  Constructor.
//
//------------------------------------------------------------------------------
RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb)
{
    fRB                 = rb;
    fScanIndex          = 0;
    fNextIndex          = 0;
    fQuoteMode          = FALSE;
    fLineNum            = 1;
    fCharNum            = 0;
    fLastChar           = 0;
    
    fStateTable         = NULL;
    fStack[0]           = 0;
    fStackPtr           = 0;
    fNodeStack[0]       = NULL;
    fNodeStackPtr       = 0;

    fReverseRule        = FALSE;
    fLookAheadRule      = FALSE;
    fNoChainInRule      = FALSE;

    fSymbolTable        = NULL;
    fSetTable           = NULL;
    fRuleNum            = 0;
    fOptionStart        = 0;

    // Do not check status until after all critical fields are sufficiently initialized
    //   that the destructor can run cleanly.
    if (U_FAILURE(*rb->fStatus)) {
        return;
    }

    //
    //  Set up the constant Unicode Sets.
    //     Note:  These could be made static, lazily initialized, and shared among
    //            all instances of RBBIRuleScanners.  BUT this is quite a bit simpler,
    //            and the time to build these few sets should be small compared to a
    //            full break iterator build.
    fRuleSets[kRuleSet_rule_char-128]
        = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern),       *rb->fStatus);
    // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:]
    fRuleSets[kRuleSet_white_space-128].
        add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029);
    fRuleSets[kRuleSet_name_char-128]
        = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern),       *rb->fStatus);
    fRuleSets[kRuleSet_name_start_char-128]
        = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus);
    fRuleSets[kRuleSet_digit_char-128]
        = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern),      *rb->fStatus);
    if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) {
        // This case happens if ICU's data is missing.  UnicodeSet tries to look up property
        //   names from the init string, can't find them, and claims an illegal argument.
        //   Change the error so that the actual problem will be clearer to users.
        *rb->fStatus = U_BRK_INIT_ERROR;
    }
    if (U_FAILURE(*rb->fStatus)) {
        return;
    }

    fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus);
    if (fSymbolTable == NULL) {
        *rb->fStatus = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    fSetTable    = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus);
    if (U_FAILURE(*rb->fStatus)) {
        return;
    }
    uhash_setValueDeleter(fSetTable, RBBISetTable_deleter);
}



//------------------------------------------------------------------------------
//
//  Destructor
//
//------------------------------------------------------------------------------
RBBIRuleScanner::~RBBIRuleScanner() {
    delete fSymbolTable;
    if (fSetTable != NULL) {
         uhash_close(fSetTable);
         fSetTable = NULL;

    }


    // Node Stack.
    //   Normally has one entry, which is the entire parse tree for the rules.
    //   If errors occured, there may be additional subtrees left on the stack.
    while (fNodeStackPtr > 0) {
        delete fNodeStack[fNodeStackPtr];
        fNodeStackPtr--;
    }

}

//------------------------------------------------------------------------------
//
//  doParseAction        Do some action during rule parsing.
//                       Called by the parse state machine.
//                       Actions build the parse tree and Unicode Sets,
//                       and maintain the parse stack for nested expressions.
//
//                       TODO:  unify EParseAction and RBBI_RuleParseAction enum types.
//                              They represent exactly the same thing.  They're separate
//                              only to work around enum forward declaration restrictions
//                              in some compilers, while at the same time avoiding multiple
//                              definitions problems.  I'm sure that there's a better way.
//
//------------------------------------------------------------------------------
UBool RBBIRuleScanner::doParseActions(int32_t action)
{
    RBBINode *n       = NULL;

    UBool   returnVal = TRUE;

    switch (action) {

    case doExprStart:
        pushNewNode(RBBINode::opStart);
        fRuleNum++;
        break;


    case doNoChain:
        // Scanned a '^' while on the rule start state.
        fNoChainInRule = TRUE;
        break;


    case doExprOrOperator:
        {
            fixOpStack(RBBINode::precOpCat);
            RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
            RBBINode  *orNode      = pushNewNode(RBBINode::opOr);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            orNode->fLeftChild     = operandNode;
            operandNode->fParent   = orNode;
        }
        break;

    case doExprCatOperator:
        // concatenation operator.
        // For the implicit concatenation of adjacent terms in an expression that are
        //   not separated by any other operator.  Action is invoked between the
        //   actions for the two terms.
        {
            fixOpStack(RBBINode::precOpCat);
            RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
            RBBINode  *catNode     = pushNewNode(RBBINode::opCat);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            catNode->fLeftChild    = operandNode;
            operandNode->fParent   = catNode;
        }
        break;

    case doLParen:
        // Open Paren.
        //   The openParen node is a dummy operation type with a low precedence,
        //     which has the affect of ensuring that any real binary op that
        //     follows within the parens binds more tightly to the operands than
        //     stuff outside of the parens.
        pushNewNode(RBBINode::opLParen);
        break;

    case doExprRParen:
        fixOpStack(RBBINode::precLParen);
        break;

    case doNOP:
        break;

    case doStartAssign:
        // We've just scanned "$variable = "
        // The top of the node stack has the $variable ref node.

        // Save the start position of the RHS text in the StartExpression node
        //   that precedes the $variableReference node on the stack.
        //   This will eventually be used when saving the full $variable replacement
        //   text as a string.
        n = fNodeStack[fNodeStackPtr-1];
        n->fFirstPos = fNextIndex;              // move past the '='

        // Push a new start-of-expression node; needed to keep parse of the
        //   RHS expression happy.
        pushNewNode(RBBINode::opStart);
        break;




    case doEndAssign:
        {
            // We have reached the end of an assignement statement.
            //   Current scan char is the ';' that terminates the assignment.

            // Terminate expression, leaves expression parse tree rooted in TOS node.
            fixOpStack(RBBINode::precStart);

            RBBINode *startExprNode  = fNodeStack[fNodeStackPtr-2];
            RBBINode *varRefNode     = fNodeStack[fNodeStackPtr-1];
            RBBINode *RHSExprNode    = fNodeStack[fNodeStackPtr];

            // Save original text of right side of assignment, excluding the terminating ';'
            //  in the root of the node for the right-hand-side expression.
            RHSExprNode->fFirstPos = startExprNode->fFirstPos;
            RHSExprNode->fLastPos  = fScanIndex;
            fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText);

            // Expression parse tree becomes l. child of the $variable reference node.
            varRefNode->fLeftChild = RHSExprNode;
            RHSExprNode->fParent   = varRefNode;

            // Make a symbol table entry for the $variableRef node.
            fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus);
            if (U_FAILURE(*fRB->fStatus)) {
                // This is a round-about way to get the parse position set
                //  so that duplicate symbols error messages include a line number.
                UErrorCode t = *fRB->fStatus;
                *fRB->fStatus = U_ZERO_ERROR;
                error(t);
            }

            // Clean up the stack.
            delete startExprNode;
            fNodeStackPtr-=3;
            break;
        }

    case doEndOfRule:
        {
        fixOpStack(RBBINode::precStart);      // Terminate expression, leaves expression
        if (U_FAILURE(*fRB->fStatus)) {       //   parse tree rooted in TOS node.
            break;
        }
#ifdef RBBI_DEBUG
        if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");}
#endif
        U_ASSERT(fNodeStackPtr == 1);
        RBBINode *thisRule = fNodeStack[fNodeStackPtr];

        // If this rule includes a look-ahead '/', add a endMark node to the
        //   expression tree.
        if (fLookAheadRule) {
            RBBINode  *endNode        = pushNewNode(RBBINode::endMark);
            RBBINode  *catNode        = pushNewNode(RBBINode::opCat);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            fNodeStackPtr -= 2;
            catNode->fLeftChild       = thisRule;
            catNode->fRightChild      = endNode;
            fNodeStack[fNodeStackPtr] = catNode;
            endNode->fVal             = fRuleNum;
            endNode->fLookAheadEnd    = TRUE;
            thisRule                  = catNode;

            // TODO: Disable chaining out of look-ahead (hard break) rules.
            //   The break on rule match is forced, so there is no point in building up
            //   the state table to chain into another rule for a longer match.
        }

        // Mark this node as being the root of a rule.
        thisRule->fRuleRoot = TRUE;

        // Flag if chaining into this rule is wanted.
        //    
        if (fRB->fChainRules &&         // If rule chaining is enabled globally via !!chain
                !fNoChainInRule) {      //     and no '^' chain-in inhibit was on this rule
            thisRule->fChainIn = TRUE;
        }


        // All rule expressions are ORed together.
        // The ';' that terminates an expression really just functions as a '|' with
        //   a low operator prededence.
        //
        // Each of the four sets of rules are collected separately.
        //  (forward, reverse, safe_forward, safe_reverse)
        //  OR this rule into the appropriate group of them.
        //
        RBBINode **destRules = (fReverseRule? &fRB->fSafeRevTree : fRB->fDefaultTree); 

        if (*destRules != NULL) {
            // This is not the first rule encounted.
            // OR previous stuff  (from *destRules)
            // with the current rule expression (on the Node Stack)
            //  with the resulting OR expression going to *destRules
            //
                       thisRule    = fNodeStack[fNodeStackPtr]; 
            RBBINode  *prevRules   = *destRules;
            RBBINode  *orNode      = pushNewNode(RBBINode::opOr);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            orNode->fLeftChild     = prevRules;
            prevRules->fParent     = orNode;
            orNode->fRightChild    = thisRule;
            thisRule->fParent      = orNode;
            *destRules             = orNode;
        }
        else
        {
            // This is the first rule encountered (for this direction).
            // Just move its parse tree from the stack to *destRules.
            *destRules = fNodeStack[fNodeStackPtr];
        }
        fReverseRule   = FALSE;   // in preparation for the next rule.
        fLookAheadRule = FALSE;
        fNoChainInRule = FALSE;
        fNodeStackPtr  = 0;
        }
        break;


    case doRuleError:
        error(U_BRK_RULE_SYNTAX);
        returnVal = FALSE;
        break;


    case doVariableNameExpectedErr:
        error(U_BRK_RULE_SYNTAX);
        break;


    //
    //  Unary operands  + ? *
    //    These all appear after the operand to which they apply.
    //    When we hit one, the operand (may be a whole sub expression)
    //    will be on the top of the stack.
    //    Unary Operator becomes TOS, with the old TOS as its one child.
    case doUnaryOpPlus:
        {
            RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
            RBBINode  *plusNode    = pushNewNode(RBBINode::opPlus);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            plusNode->fLeftChild   = operandNode;
            operandNode->fParent   = plusNode;
        }
        break;

    case doUnaryOpQuestion:
        {
            RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
            RBBINode  *qNode       = pushNewNode(RBBINode::opQuestion);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            qNode->fLeftChild      = operandNode;
            operandNode->fParent   = qNode;
        }
        break;

    case doUnaryOpStar:
        {
            RBBINode  *operandNode = fNodeStack[fNodeStackPtr--];
            RBBINode  *starNode    = pushNewNode(RBBINode::opStar);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            starNode->fLeftChild   = operandNode;
            operandNode->fParent   = starNode;
        }
        break;

    case doRuleChar:
        // A "Rule Character" is any single character that is a literal part
        // of the regular expression.  Like a, b and c in the expression "(abc*) | [:L:]"
        // These are pretty uncommon in break rules; the terms are more commonly
        //  sets.  To keep things uniform, treat these characters like as
        // sets that just happen to contain only one character.
        {
            n = pushNewNode(RBBINode::setRef);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            findSetFor(UnicodeString(fC.fChar), n);
            n->fFirstPos = fScanIndex;
            n->fLastPos  = fNextIndex;
            fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
            break;
        }

    case doDotAny:
        // scanned a ".", meaning match any single character.
        {
            n = pushNewNode(RBBINode::setRef);
            if (U_FAILURE(*fRB->fStatus)) {
                break;
            }
            findSetFor(UnicodeString(TRUE, kAny, 3), n);
            n->fFirstPos = fScanIndex;
            n->fLastPos  = fNextIndex;
            fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
            break;
        }

    case doSlash:
        // Scanned a '/', which identifies a look-ahead break position in a rule.
        n = pushNewNode(RBBINode::lookAhead);
        if (U_FAILURE(*fRB->fStatus)) {
            break;
        }
        n->fVal      = fRuleNum;
        n->fFirstPos = fScanIndex;
        n->fLastPos  = fNextIndex;
        fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
        fLookAheadRule = TRUE;
        break;


    case doStartTagValue:
        // Scanned a '{', the opening delimiter for a tag value within a rule.
        n = pushNewNode(RBBINode::tag);
        if (U_FAILURE(*fRB->fStatus)) {
            break;
        }
        n->fVal      = 0;
        n->fFirstPos = fScanIndex;
        n->fLastPos  = fNextIndex;
        break;

    case doTagDigit:
        // Just scanned a decimal digit that's part of a tag value
        {
            n = fNodeStack[fNodeStackPtr];
            uint32_t v = u_charDigitValue(fC.fChar);
            U_ASSERT(v < 10);
            n->fVal = n->fVal*10 + v;
            break;
        }

    case doTagValue:
        n = fNodeStack[fNodeStackPtr];
        n->fLastPos = fNextIndex;
        fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
        break;

    case doTagExpectedError:
        error(U_BRK_MALFORMED_RULE_TAG);
        returnVal = FALSE;
        break;

    case doOptionStart:
        // Scanning a !!option.   At the start of string.
        fOptionStart = fScanIndex;
        break;

    case doOptionEnd:
        {
            UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart);
            if (opt == UNICODE_STRING("chain", 5)) {
                fRB->fChainRules = TRUE;
            } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) {
                fRB->fLBCMNoChain = TRUE;
            } else if (opt == UNICODE_STRING("forward", 7)) {
                fRB->fDefaultTree   = &fRB->fForwardTree;
            } else if (opt == UNICODE_STRING("reverse", 7)) {
                fRB->fDefaultTree   = &fRB->fReverseTree;
            } else if (opt == UNICODE_STRING("safe_forward", 12)) {
                fRB->fDefaultTree   = &fRB->fSafeFwdTree;
            } else if (opt == UNICODE_STRING("safe_reverse", 12)) {
                fRB->fDefaultTree   = &fRB->fSafeRevTree;
            } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) {
                fRB->fLookAheadHardBreak = TRUE;
            } else if (opt == UNICODE_STRING("quoted_literals_only", 20)) { 
                fRuleSets[kRuleSet_rule_char-128].clear(); 
            } else if (opt == UNICODE_STRING("unquoted_literals",  17)) { 
                fRuleSets[kRuleSet_rule_char-128].applyPattern(UnicodeString(gRuleSet_rule_char_pattern), *fRB->fStatus); 
            } else {
                error(U_BRK_UNRECOGNIZED_OPTION);
            }
        }
        break;

    case doReverseDir:
        fReverseRule = TRUE;
        break;

    case doStartVariableName:
        n = pushNewNode(RBBINode::varRef);
        if (U_FAILURE(*fRB->fStatus)) {
            break;
        }
        n->fFirstPos = fScanIndex;
        break;

    case doEndVariableName:
        n = fNodeStack[fNodeStackPtr];
        if (n==NULL || n->fType != RBBINode::varRef) {
            error(U_BRK_INTERNAL_ERROR);
            break;
        }
        n->fLastPos = fScanIndex;
        fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText);
        // Look the newly scanned name up in the symbol table
        //   If there's an entry, set the l. child of the var ref to the replacement expression.
        //   (We also pass through here when scanning assignments, but no harm is done, other
        //    than a slight wasted effort that seems hard to avoid.  Lookup will be null)
        n->fLeftChild = fSymbolTable->lookupNode(n->fText);
        break;

    case doCheckVarDef:
        n = fNodeStack[fNodeStackPtr];
        if (n->fLeftChild == NULL) {
            error(U_BRK_UNDEFINED_VARIABLE);
            returnVal = FALSE;
        }
        break;

    case doExprFinished:
        break;

    case doRuleErrorAssignExpr:
        error(U_BRK_ASSIGN_ERROR);
        returnVal = FALSE;
        break;

    case doExit:
        returnVal = FALSE;
        break;

    case doScanUnicodeSet:
        scanSet();
        break;

    default:
        error(U_BRK_INTERNAL_ERROR);
        returnVal = FALSE;
        break;
    }
    return returnVal && U_SUCCESS(*fRB->fStatus);
}




//------------------------------------------------------------------------------
//
//  Error         Report a rule parse error.
//                Only report it if no previous error has been recorded.
//
//------------------------------------------------------------------------------
void RBBIRuleScanner::error(UErrorCode e) {
    if (U_SUCCESS(*fRB->fStatus)) {
        *fRB->fStatus = e;
        if (fRB->fParseError) {
            fRB->fParseError->line  = fLineNum;
            fRB->fParseError->offset = fCharNum;
            fRB->fParseError->preContext[0] = 0;
            fRB->fParseError->postContext[0] = 0;
        }
    }
}




//------------------------------------------------------------------------------
//
//  fixOpStack   The parse stack holds partially assembled chunks of the parse tree.
//               An entry on the stack may be as small as a single setRef node,
//               or as large as the parse tree
//               for an entire expression (this will be the one item left on the stack
//               when the parsing of an RBBI rule completes.
//
//               This function is called when a binary operator is encountered.
//               It looks back up the stack for operators that are not yet associated
//               with a right operand, and if the precedence of the stacked operator >=
//               the precedence of the current operator, binds the operand left,
//               to the previously encountered operator.
//
//------------------------------------------------------------------------------
void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) {
    RBBINode *n;
    // printNodeStack("entering fixOpStack()");
    for (;;) {
        n = fNodeStack[fNodeStackPtr-1];   // an operator node
        if (n->fPrecedence == 0) {
            RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node");
            error(U_BRK_INTERNAL_ERROR);
            return;
        }

        if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) {
            // The most recent operand goes with the current operator,
            //   not with the previously stacked one.
            break;
        }
            // Stack operator is a binary op  ( '|' or concatenation)
            //   TOS operand becomes right child of this operator.
            //   Resulting subexpression becomes the TOS operand.
            n->fRightChild = fNodeStack[fNodeStackPtr];
            fNodeStack[fNodeStackPtr]->fParent = n;
            fNodeStackPtr--;
        // printNodeStack("looping in fixOpStack()   ");
    }

    if (p <= RBBINode::precLParen) {
        // Scan is at a right paren or end of expression.
        //  The scanned item must match the stack, or else there was an error.
        //  Discard the left paren (or start expr) node from the stack,
            //  leaving the completed (sub)expression as TOS.
            if (n->fPrecedence != p) {
                // Right paren encountered matched start of expression node, or
                // end of expression matched with a left paren node.
                error(U_BRK_MISMATCHED_PAREN);
            }
            fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr];
            fNodeStackPtr--;
            // Delete the now-discarded LParen or Start node.
            delete n;
    }
    // printNodeStack("leaving fixOpStack()");
}




//------------------------------------------------------------------------------
//
//   findSetFor    given a UnicodeString,
//                  - find the corresponding Unicode Set  (uset node)
//                         (create one if necessary)
//                  - Set fLeftChild of the caller's node (should be a setRef node)
//                         to the uset node
//                 Maintain a hash table of uset nodes, so the same one is always used
//                    for the same string.
//                 If a "to adopt" set is provided and we haven't seen this key before,
//                    add the provided set to the hash table.
//                 If the string is one (32 bit) char in length, the set contains
//                    just one element which is the char in question.
//                 If the string is "any", return a set containing all chars.
//
//------------------------------------------------------------------------------
void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) {

    RBBISetTableEl   *el;

    // First check whether we've already cached a set for this string.
    // If so, just use the cached set in the new node.
    //   delete any set provided by the caller, since we own it.
    el = (RBBISetTableEl *)uhash_get(fSetTable, &s);
    if (el != NULL) {
        delete setToAdopt;
        node->fLeftChild = el->val;
        U_ASSERT(node->fLeftChild->fType == RBBINode::uset);
        return;
    }

    // Haven't seen this set before.
    // If the caller didn't provide us with a prebuilt set,
    //   create a new UnicodeSet now.
    if (setToAdopt == NULL) {
        if (s.compare(kAny, -1) == 0) {
            setToAdopt = new UnicodeSet(0x000000, 0x10ffff);
        } else {
            UChar32 c;
            c = s.char32At(0);
            setToAdopt = new UnicodeSet(c, c);
        }
    }

    //
    // Make a new uset node to refer to this UnicodeSet
    // This new uset node becomes the child of the caller's setReference node.
    //
    RBBINode *usetNode    = new RBBINode(RBBINode::uset);
    if (usetNode == NULL) {
        error(U_MEMORY_ALLOCATION_ERROR);
        return;
    }
    usetNode->fInputSet   = setToAdopt;
    usetNode->fParent     = node;
    node->fLeftChild      = usetNode;
    usetNode->fText = s;


    //
    // Add the new uset node to the list of all uset nodes.
    //
    fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus);


    //
    // Add the new set to the set hash table.
    //
    el      = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl));
    UnicodeString *tkey = new UnicodeString(s);
    if (tkey == NULL || el == NULL || setToAdopt == NULL) {
        // Delete to avoid memory leak
        delete tkey;
        tkey = NULL;
        uprv_free(el);
        el = NULL;
        delete setToAdopt;
        setToAdopt = NULL;

        error(U_MEMORY_ALLOCATION_ERROR);
        return;
    }
    el->key = tkey;
    el->val = usetNode;
    uhash_put(fSetTable, el->key, el, fRB->fStatus);

    return;
}



//
//  Assorted Unicode character constants.
//     Numeric because there is no portable way to enter them as literals.
//     (Think EBCDIC).
//
static const UChar      chCR        = 0x0d;      // New lines, for terminating comments.
static const UChar      chLF        = 0x0a;
static const UChar      chNEL       = 0x85;      //    NEL newline variant
static const UChar      chLS        = 0x2028;    //    Unicode Line Separator
static const UChar      chApos      = 0x27;      //  single quote, for quoted chars.
static const UChar      chPound     = 0x23;      // '#', introduces a comment.
static const UChar      chBackSlash = 0x5c;      // '\'  introduces a char escape
static const UChar      chLParen    = 0x28;
static const UChar      chRParen    = 0x29;


//------------------------------------------------------------------------------
//
//  stripRules    Return a rules string without extra spaces. 
//                (Comments are removed separately, during rule parsing.) 
//
//------------------------------------------------------------------------------
UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) {
    UnicodeString strippedRules;
    int32_t rulesLength = rules.length(); 
    bool skippingSpaces = false; 
 
    for (int32_t idx=0; idx<rulesLength; idx = rules.moveIndex32(idx, 1)) { 
        UChar32 cp = rules.char32At(idx); 
        bool whiteSpace = u_hasBinaryProperty(cp, UCHAR_PATTERN_WHITE_SPACE); 
        if (skippingSpaces && whiteSpace) { 
            continue; 
        }
        strippedRules.append(cp); 
        skippingSpaces = whiteSpace; 
    }
    return strippedRules;
}


//------------------------------------------------------------------------------
//
//  nextCharLL    Low Level Next Char from rule input source.
//                Get a char from the input character iterator,
//                keep track of input position for error reporting.
//
//------------------------------------------------------------------------------
UChar32  RBBIRuleScanner::nextCharLL() {
    UChar32  ch;

    if (fNextIndex >= fRB->fRules.length()) {
        return (UChar32)-1;
    }
    ch         = fRB->fRules.char32At(fNextIndex);
    fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1);

    if (ch == chCR ||
        ch == chNEL ||
        ch == chLS   ||
        (ch == chLF && fLastChar != chCR)) {
        // Character is starting a new line.  Bump up the line number, and
        //  reset the column to 0.
        fLineNum++;
        fCharNum=0;
        if (fQuoteMode) {
            error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
            fQuoteMode = FALSE;
        }
    }
    else {
        // Character is not starting a new line.  Except in the case of a
        //   LF following a CR, increment the column position.
        if (ch != chLF) {
            fCharNum++;
        }
    }
    fLastChar = ch;
    return ch;
}


//------------------------------------------------------------------------------
//
//   nextChar     for rules scanning.  At this level, we handle stripping
//                out comments and processing backslash character escapes.
//                The rest of the rules grammar is handled at the next level up.
//
//------------------------------------------------------------------------------
void RBBIRuleScanner::nextChar(RBBIRuleChar &c) {

    // Unicode Character constants needed for the processing done by nextChar(),
    //   in hex because literals wont work on EBCDIC machines.

    fScanIndex = fNextIndex;
    c.fChar    = nextCharLL();
    c.fEscaped = FALSE;

    //
    //  check for '' sequence.
    //  These are recognized in all contexts, whether in quoted text or not.
    //
    if (c.fChar == chApos) {
        if (fRB->fRules.char32At(fNextIndex) == chApos) {
            c.fChar    = nextCharLL();        // get nextChar officially so character counts
            c.fEscaped = TRUE;                //   stay correct.
        }
        else
        {
            // Single quote, by itself.
            //   Toggle quoting mode.
            //   Return either '('  or ')', because quotes cause a grouping of the quoted text.
            fQuoteMode = !fQuoteMode;
            if (fQuoteMode == TRUE) {
                c.fChar = chLParen;
            } else {
                c.fChar = chRParen;
            }
            c.fEscaped = FALSE;      // The paren that we return is not escaped.
            return;
        }
    }

    if (fQuoteMode) {
        c.fEscaped = TRUE;
    }
    else
    {
        // We are not in a 'quoted region' of the source.
        //
        if (c.fChar == chPound) {
            // Start of a comment.  Consume the rest of it.
            //  The new-line char that terminates the comment is always returned.
            //  It will be treated as white-space, and serves to break up anything
            //    that might otherwise incorrectly clump together with a comment in
            //    the middle (a variable name, for example.)
            int32_t commentStart = fScanIndex; 
            for (;;) {
                c.fChar = nextCharLL();
                if (c.fChar == (UChar32)-1 ||  // EOF
                    c.fChar == chCR     ||
                    c.fChar == chLF     ||
                    c.fChar == chNEL    ||
                    c.fChar == chLS)       {break;}
            }
            for (int32_t i=commentStart; i<fNextIndex-1; ++i) { 
                fRB->fStrippedRules.setCharAt(i, u' '); 
            } 
        }
        if (c.fChar == (UChar32)-1) {
            return;
        }

        //
        //  check for backslash escaped characters.
        //  Use UnicodeString::unescapeAt() to handle them.
        //
        if (c.fChar == chBackSlash) {
            c.fEscaped = TRUE;
            int32_t startX = fNextIndex;
            c.fChar = fRB->fRules.unescapeAt(fNextIndex);
            if (fNextIndex == startX) {
                error(U_BRK_HEX_DIGITS_EXPECTED);
            }
            fCharNum += fNextIndex-startX;
        }
    }
    // putc(c.fChar, stdout);
}

//------------------------------------------------------------------------------
//
//  Parse RBBI rules.   The state machine for rules parsing is here.
//                      The state tables are hand-written in the file rbbirpt.txt,
//                      and converted to the form used here by a perl
//                      script rbbicst.pl
//
//------------------------------------------------------------------------------
void RBBIRuleScanner::parse() {
    uint16_t                state;
    const RBBIRuleTableEl  *tableEl;

    if (U_FAILURE(*fRB->fStatus)) {
        return;
    }

    state = 1;
    nextChar(fC);
    //
    // Main loop for the rule parsing state machine.
    //   Runs once per state transition.
    //   Each time through optionally performs, depending on the state table,
    //      - an advance to the the next input char
    //      - an action to be performed.
    //      - pushing or popping a state to/from the local state return stack.
    //
    for (;;) {
        //  Bail out if anything has gone wrong.
        //  RBBI rule file parsing stops on the first error encountered.
        if (U_FAILURE(*fRB->fStatus)) {
            break;
        }

        // Quit if state == 0.  This is the normal way to exit the state machine.
        //
        if (state == 0) {
            break;
        }

        // Find the state table element that matches the input char from the rule, or the
        //    class of the input character.  Start with the first table row for this
        //    state, then linearly scan forward until we find a row that matches the
        //    character.  The last row for each state always matches all characters, so
        //    the search will stop there, if not before.
        //
        tableEl = &gRuleParseStateTable[state];
        #ifdef RBBI_DEBUG
            if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) {
                RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d)    state=%s ",
                    fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]);
            }
        #endif

        for (;;) {
            #ifdef RBBI_DEBUG
                if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf("."); fflush(stdout);}
            #endif
            if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE &&   tableEl->fCharClass == fC.fChar) {
                // Table row specified an individual character, not a set, and
                //   the input character is not escaped, and
                //   the input character matched it.
                break;
            }
            if (tableEl->fCharClass == 255) {
                // Table row specified default, match anything character class.
                break;
            }
            if (tableEl->fCharClass == 254 && fC.fEscaped)  {
                // Table row specified "escaped" and the char was escaped.
                break;
            }
            if (tableEl->fCharClass == 253 && fC.fEscaped &&
                (fC.fChar == 0x50 || fC.fChar == 0x70 ))  {
                // Table row specified "escaped P" and the char is either 'p' or 'P'.
                break;
            }
            if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1)  {
                // Table row specified eof and we hit eof on the input.
                break;
            }

            if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 &&   // Table specs a char class &&
                fC.fEscaped == FALSE &&                                      //   char is not escaped &&
                fC.fChar != (UChar32)-1) {                                   //   char is not EOF
                U_ASSERT((tableEl->fCharClass-128) < UPRV_LENGTHOF(fRuleSets));
                if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
                    // Table row specified a character class, or set of characters,
                    //   and the current char matches it.
                    break;
                }
            }

            // No match on this row, advance to the next  row for this state,
            tableEl++;
        }
        if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");}

        //
        // We've found the row of the state table that matches the current input
        //   character from the rules string.
        // Perform any action specified  by this row in the state table.
        if (doParseActions((int32_t)tableEl->fAction) == FALSE) {
            // Break out of the state machine loop if the
            //   the action signalled some kind of error, or
            //   the action was to exit, occurs on normal end-of-rules-input.
            break;
        }

        if (tableEl->fPushState != 0) {
            fStackPtr++;
            if (fStackPtr >= kStackSize) {
                error(U_BRK_INTERNAL_ERROR);
                RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow.");
                fStackPtr--;
            }
            fStack[fStackPtr] = tableEl->fPushState;
        }

        if (tableEl->fNextChar) {
            nextChar(fC);
        }

        // Get the next state from the table entry, or from the
        //   state stack if the next state was specified as "pop".
        if (tableEl->fNextState != 255) {
            state = tableEl->fNextState;
        } else {
            state = fStack[fStackPtr];
            fStackPtr--;
            if (fStackPtr < 0) {
                error(U_BRK_INTERNAL_ERROR);
                RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow.");
                fStackPtr++;
            }
        }

    }

    if (U_FAILURE(*fRB->fStatus)) {
        return;
    }
    
    // If there are no forward rules set an error.
    //
    if (fRB->fForwardTree == NULL) {
        error(U_BRK_RULE_SYNTAX);
        return;
    }

    //
    // Parsing of the input RBBI rules is complete.
    // We now have a parse tree for the rule expressions
    // and a list of all UnicodeSets that are referenced.
    //
#ifdef RBBI_DEBUG
    if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();}
    if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) {
        RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n");
        RBBINode::printTree(fRB->fForwardTree, TRUE);
        RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n");
        RBBINode::printTree(fRB->fReverseTree, TRUE);
        RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n");
        RBBINode::printTree(fRB->fSafeFwdTree, TRUE);
        RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n");
        RBBINode::printTree(fRB->fSafeRevTree, TRUE);
    }
#endif
}


//------------------------------------------------------------------------------
//
//  printNodeStack     for debugging...
//
//------------------------------------------------------------------------------
#ifdef RBBI_DEBUG
void RBBIRuleScanner::printNodeStack(const char *title) {
    int i;
    RBBIDebugPrintf("%s.  Dumping node stack...\n", title);
    for (i=fNodeStackPtr; i>0; i--) {RBBINode::printTree(fNodeStack[i], TRUE);}
}
#endif




//------------------------------------------------------------------------------
//
//  pushNewNode   create a new RBBINode of the specified type and push it
//                onto the stack of nodes.
//
//------------------------------------------------------------------------------
RBBINode  *RBBIRuleScanner::pushNewNode(RBBINode::NodeType  t) {
    if (U_FAILURE(*fRB->fStatus)) {
        return NULL;
    }
    if (fNodeStackPtr >= kStackSize - 1) { 
        error(U_BRK_RULE_SYNTAX); 
        RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow.");
        return NULL;
    }
    fNodeStackPtr++; 
    fNodeStack[fNodeStackPtr] = new RBBINode(t);
    if (fNodeStack[fNodeStackPtr] == NULL) {
        *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR;
    }
    return fNodeStack[fNodeStackPtr];
}



//------------------------------------------------------------------------------
//
//  scanSet    Construct a UnicodeSet from the text at the current scan
//             position.  Advance the scan position to the first character
//             after the set.
//
//             A new RBBI setref node referring to the set is pushed onto the node
//             stack.
//
//             The scan position is normally under the control of the state machine
//             that controls rule parsing.  UnicodeSets, however, are parsed by
//             the UnicodeSet constructor, not by the RBBI rule parser.
//
//------------------------------------------------------------------------------
void RBBIRuleScanner::scanSet() {
    UnicodeSet    *uset;
    ParsePosition  pos;
    int            startPos;
    int            i;

    if (U_FAILURE(*fRB->fStatus)) {
        return;
    }

    pos.setIndex(fScanIndex);
    startPos = fScanIndex;
    UErrorCode localStatus = U_ZERO_ERROR;
    uset = new UnicodeSet();
    if (uset == NULL) {
        localStatus = U_MEMORY_ALLOCATION_ERROR;
    } else {
        uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus);
    }
    if (U_FAILURE(localStatus)) {
        //  TODO:  Get more accurate position of the error from UnicodeSet's return info.
        //         UnicodeSet appears to not be reporting correctly at this time.
        #ifdef RBBI_DEBUG
            RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
        #endif
        error(localStatus);
        delete uset;
        return;
    }

    // Verify that the set contains at least one code point.
    //
    U_ASSERT(uset!=NULL);
    if (uset->isEmpty()) {
        // This set is empty.
        //  Make it an error, because it almost certainly is not what the user wanted.
        //  Also, avoids having to think about corner cases in the tree manipulation code
        //   that occurs later on.
        error(U_BRK_RULE_EMPTY_SET);
        delete uset;
        return;
    }


    // Advance the RBBI parse postion over the UnicodeSet pattern.
    //   Don't just set fScanIndex because the line/char positions maintained
    //   for error reporting would be thrown off.
    i = pos.getIndex();
    for (;;) {
        if (fNextIndex >= i) {
            break;
        }
        nextCharLL();
    }

    if (U_SUCCESS(*fRB->fStatus)) {
        RBBINode         *n;

        n = pushNewNode(RBBINode::setRef);
        if (U_FAILURE(*fRB->fStatus)) {
            return;
        }
        n->fFirstPos = startPos;
        n->fLastPos  = fNextIndex;
        fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText);
        //  findSetFor() serves several purposes here:
        //     - Adopts storage for the UnicodeSet, will be responsible for deleting.
        //     - Mantains collection of all sets in use, needed later for establishing
        //          character categories for run time engine.
        //     - Eliminates mulitiple instances of the same set.
        //     - Creates a new uset node if necessary (if this isn't a duplicate.)
        findSetFor(n->fText, n, uset);
    }

}

int32_t RBBIRuleScanner::numRules() { 
    return fRuleNum; 
} 
 
U_NAMESPACE_END

#endif /* #if !UCONFIG_NO_BREAK_ITERATION */