aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/common/caniter.cpp
blob: d8b3417d6fb8b0f55c2a2627f2001df023330c00 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html 
/* 
 ***************************************************************************** 
 * Copyright (C) 1996-2015, International Business Machines Corporation and 
 * others. All Rights Reserved. 
 ***************************************************************************** 
 */ 
 
#include "unicode/utypes.h" 
 
#if !UCONFIG_NO_NORMALIZATION 
 
#include "unicode/caniter.h" 
#include "unicode/normalizer2.h" 
#include "unicode/uchar.h" 
#include "unicode/uniset.h" 
#include "unicode/usetiter.h" 
#include "unicode/ustring.h" 
#include "unicode/utf16.h" 
#include "cmemory.h" 
#include "hash.h" 
#include "normalizer2impl.h" 
 
/** 
 * This class allows one to iterate through all the strings that are canonically equivalent to a given 
 * string. For example, here are some sample results: 
Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 
1: \u0041\u030A\u0064\u0307\u0327 
 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 
2: \u0041\u030A\u0064\u0327\u0307 
 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 
3: \u0041\u030A\u1E0B\u0327 
 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 
4: \u0041\u030A\u1E11\u0307 
 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} 
5: \u00C5\u0064\u0307\u0327 
 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 
6: \u00C5\u0064\u0327\u0307 
 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 
7: \u00C5\u1E0B\u0327 
 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 
8: \u00C5\u1E11\u0307 
 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} 
9: \u212B\u0064\u0307\u0327 
 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 
10: \u212B\u0064\u0327\u0307 
 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 
11: \u212B\u1E0B\u0327 
 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 
12: \u212B\u1E11\u0307 
 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} 
 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, 
 * since it has not been optimized for that situation. 
 *@author M. Davis 
 *@draft 
 */ 
 
// public 
 
U_NAMESPACE_BEGIN 
 
// TODO: add boilerplate methods. 
 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) 
 
/** 
 *@param source string to get results for 
 */ 
CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : 
    pieces(NULL), 
    pieces_length(0), 
    pieces_lengths(NULL), 
    current(NULL), 
    current_length(0), 
    nfd(*Normalizer2::getNFDInstance(status)), 
    nfcImpl(*Normalizer2Factory::getNFCImpl(status)) 
{ 
    if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { 
      setSource(sourceStr, status); 
    } 
} 
 
CanonicalIterator::~CanonicalIterator() { 
  cleanPieces(); 
} 
 
void CanonicalIterator::cleanPieces() { 
    int32_t i = 0; 
    if(pieces != NULL) { 
        for(i = 0; i < pieces_length; i++) { 
            if(pieces[i] != NULL) { 
                delete[] pieces[i]; 
            } 
        } 
        uprv_free(pieces); 
        pieces = NULL; 
        pieces_length = 0; 
    } 
    if(pieces_lengths != NULL) { 
        uprv_free(pieces_lengths); 
        pieces_lengths = NULL; 
    } 
    if(current != NULL) { 
        uprv_free(current); 
        current = NULL; 
        current_length = 0; 
    } 
} 
 
/** 
 *@return gets the source: NOTE: it is the NFD form of source 
 */ 
UnicodeString CanonicalIterator::getSource() { 
  return source; 
} 
 
/** 
 * Resets the iterator so that one can start again from the beginning. 
 */ 
void CanonicalIterator::reset() { 
    done = FALSE; 
    for (int i = 0; i < current_length; ++i) { 
        current[i] = 0; 
    } 
} 
 
/** 
 *@return the next string that is canonically equivalent. The value null is returned when 
 * the iteration is done. 
 */ 
UnicodeString CanonicalIterator::next() { 
    int32_t i = 0; 
 
    if (done) { 
      buffer.setToBogus(); 
      return buffer; 
    } 
 
    // delete old contents 
    buffer.remove(); 
 
    // construct return value 
 
    for (i = 0; i < pieces_length; ++i) { 
        buffer.append(pieces[i][current[i]]); 
    } 
    //String result = buffer.toString(); // not needed 
 
    // find next value for next time 
 
    for (i = current_length - 1; ; --i) { 
        if (i < 0) { 
            done = TRUE; 
            break; 
        } 
        current[i]++; 
        if (current[i] < pieces_lengths[i]) break; // got sequence 
        current[i] = 0; 
    } 
    return buffer; 
} 
 
/** 
 *@param set the source string to iterate against. This allows the same iterator to be used 
 * while changing the source string, saving object creation. 
 */ 
void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { 
    int32_t list_length = 0; 
    UChar32 cp = 0; 
    int32_t start = 0; 
    int32_t i = 0; 
    UnicodeString *list = NULL; 
 
    nfd.normalize(newSource, source, status); 
    if(U_FAILURE(status)) { 
      return; 
    } 
    done = FALSE; 
 
    cleanPieces(); 
 
    // catch degenerate case 
    if (newSource.length() == 0) { 
        pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); 
        pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); 
        pieces_length = 1; 
        current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); 
        current_length = 1; 
        if (pieces == NULL || pieces_lengths == NULL || current == NULL) { 
            status = U_MEMORY_ALLOCATION_ERROR; 
            goto CleanPartialInitialization; 
        } 
        current[0] = 0; 
        pieces[0] = new UnicodeString[1]; 
        pieces_lengths[0] = 1; 
        if (pieces[0] == 0) { 
            status = U_MEMORY_ALLOCATION_ERROR; 
            goto CleanPartialInitialization; 
        } 
        return; 
    } 
 
 
    list = new UnicodeString[source.length()]; 
    if (list == 0) { 
        status = U_MEMORY_ALLOCATION_ERROR; 
        goto CleanPartialInitialization; 
    } 
 
    // i should initialy be the number of code units at the  
    // start of the string 
    i = U16_LENGTH(source.char32At(0)); 
    //int32_t i = 1; 
    // find the segments 
    // This code iterates through the source string and  
    // extracts segments that end up on a codepoint that 
    // doesn't start any decompositions. (Analysis is done 
    // on the NFD form - see above). 
    for (; i < source.length(); i += U16_LENGTH(cp)) { 
        cp = source.char32At(i); 
        if (nfcImpl.isCanonSegmentStarter(cp)) { 
            source.extract(start, i-start, list[list_length++]); // add up to i 
            start = i; 
        } 
    } 
    source.extract(start, i-start, list[list_length++]); // add last one 
 
 
    // allocate the arrays, and find the strings that are CE to each segment 
    pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); 
    pieces_length = list_length; 
    pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); 
    current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); 
    current_length = list_length; 
    if (pieces == NULL || pieces_lengths == NULL || current == NULL) { 
        status = U_MEMORY_ALLOCATION_ERROR; 
        goto CleanPartialInitialization; 
    } 
 
    for (i = 0; i < current_length; i++) { 
        current[i] = 0; 
    } 
    // for each segment, get all the combinations that can produce  
    // it after NFD normalization 
    for (i = 0; i < pieces_length; ++i) { 
        //if (PROGRESS) printf("SEGMENT\n"); 
        pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); 
    } 
 
    delete[] list; 
    return; 
// Common section to cleanup all local variables and reset object variables. 
CleanPartialInitialization: 
    if (list != NULL) { 
        delete[] list; 
    } 
    cleanPieces(); 
} 
 
/** 
 * Dumb recursive implementation of permutation. 
 * TODO: optimize 
 * @param source the string to find permutations for 
 * @return the results in a set. 
 */ 
void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { 
    if(U_FAILURE(status)) { 
        return; 
    } 
    //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); 
    int32_t i = 0; 
 
    // optimization: 
    // if zero or one character, just return a set with it 
    // we check for length < 2 to keep from counting code points all the time 
    if (source.length() <= 2 && source.countChar32() <= 1) { 
        UnicodeString *toPut = new UnicodeString(source); 
        /* test for NULL */ 
        if (toPut == 0) { 
            status = U_MEMORY_ALLOCATION_ERROR; 
            return; 
        } 
        result->put(source, toPut, status); 
        return; 
    } 
 
    // otherwise iterate through the string, and recursively permute all the other characters 
    UChar32 cp; 
    Hashtable subpermute(status); 
    if(U_FAILURE(status)) { 
        return; 
    } 
    subpermute.setValueDeleter(uprv_deleteUObject); 
 
    for (i = 0; i < source.length(); i += U16_LENGTH(cp)) { 
        cp = source.char32At(i); 
        const UHashElement *ne = NULL; 
        int32_t el = UHASH_FIRST; 
        UnicodeString subPermuteString = source; 
 
        // optimization: 
        // if the character is canonical combining class zero, 
        // don't permute it 
        if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { 
            //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); 
            continue; 
        } 
 
        subpermute.removeAll(); 
 
        // see what the permutations of the characters before and after this one are 
        //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); 
        permute(subPermuteString.remove(i, U16_LENGTH(cp)), skipZeros, &subpermute, status);
        /* Test for buffer overflows */ 
        if(U_FAILURE(status)) { 
            return; 
        } 
        // The upper remove is destructive. The question is do we have to make a copy, or we don't care about the contents 
        // of source at this point. 
 
        // prefix this character to all of them 
        ne = subpermute.nextElement(el); 
        while (ne != NULL) { 
            UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); 
            UnicodeString *chStr = new UnicodeString(cp); 
            //test for  NULL 
            if (chStr == NULL) { 
                status = U_MEMORY_ALLOCATION_ERROR; 
                return; 
            } 
            chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); 
            //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr)); 
            result->put(*chStr, chStr, status); 
            ne = subpermute.nextElement(el); 
        } 
    } 
    //return result; 
} 
 
// privates 
 
// we have a segment, in NFD. Find all the strings that are canonically equivalent to it. 
UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { 
    Hashtable result(status); 
    Hashtable permutations(status); 
    Hashtable basic(status); 
    if (U_FAILURE(status)) { 
        return 0; 
    } 
    result.setValueDeleter(uprv_deleteUObject); 
    permutations.setValueDeleter(uprv_deleteUObject); 
    basic.setValueDeleter(uprv_deleteUObject); 
 
    UChar USeg[256]; 
    int32_t segLen = segment.extract(USeg, 256, status); 
    getEquivalents2(&basic, USeg, segLen, status); 
 
    // now get all the permutations 
    // add only the ones that are canonically equivalent 
    // TODO: optimize by not permuting any class zero. 
 
    const UHashElement *ne = NULL; 
    int32_t el = UHASH_FIRST; 
    //Iterator it = basic.iterator(); 
    ne = basic.nextElement(el); 
    //while (it.hasNext()) 
    while (ne != NULL) { 
        //String item = (String) it.next(); 
        UnicodeString item = *((UnicodeString *)(ne->value.pointer)); 
 
        permutations.removeAll(); 
        permute(item, CANITER_SKIP_ZEROES, &permutations, status); 
        const UHashElement *ne2 = NULL; 
        int32_t el2 = UHASH_FIRST; 
        //Iterator it2 = permutations.iterator(); 
        ne2 = permutations.nextElement(el2); 
        //while (it2.hasNext()) 
        while (ne2 != NULL) { 
            //String possible = (String) it2.next(); 
            //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); 
            UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); 
            UnicodeString attempt; 
            nfd.normalize(possible, attempt, status); 
 
            // TODO: check if operator == is semanticaly the same as attempt.equals(segment) 
            if (attempt==segment) { 
                //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); 
                // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). 
                result.put(possible, new UnicodeString(possible), status); //add(possible); 
            } else { 
                //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); 
            } 
 
            ne2 = permutations.nextElement(el2); 
        } 
        ne = basic.nextElement(el); 
    } 
 
    /* Test for buffer overflows */ 
    if(U_FAILURE(status)) { 
        return 0; 
    } 
    // convert into a String[] to clean up storage 
    //String[] finalResult = new String[result.size()]; 
    UnicodeString *finalResult = NULL; 
    int32_t resultCount; 
    if((resultCount = result.count()) != 0) {
        finalResult = new UnicodeString[resultCount]; 
        if (finalResult == 0) { 
            status = U_MEMORY_ALLOCATION_ERROR; 
            return NULL; 
        } 
    } 
    else { 
        status = U_ILLEGAL_ARGUMENT_ERROR; 
        return NULL; 
    } 
    //result.toArray(finalResult); 
    result_len = 0; 
    el = UHASH_FIRST; 
    ne = result.nextElement(el); 
    while(ne != NULL) { 
        finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); 
        ne = result.nextElement(el); 
    } 
 
 
    return finalResult; 
} 
 
Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) { 
 
    if (U_FAILURE(status)) { 
        return NULL; 
    } 
 
    //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); 
 
    UnicodeString toPut(segment, segLen); 
 
    fillinResult->put(toPut, new UnicodeString(toPut), status); 
 
    UnicodeSet starts; 
 
    // cycle through all the characters 
    UChar32 cp; 
    for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) { 
        // see if any character is at the start of some decomposition 
        U16_GET(segment, 0, i, segLen, cp); 
        if (!nfcImpl.getCanonStartSet(cp, starts)) { 
            continue; 
        } 
        // if so, see which decompositions match 
        UnicodeSetIterator iter(starts); 
        while (iter.next()) { 
            UChar32 cp2 = iter.getCodepoint(); 
            Hashtable remainder(status); 
            remainder.setValueDeleter(uprv_deleteUObject); 
            if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) { 
                continue; 
            } 
 
            // there were some matches, so add all the possibilities to the set. 
            UnicodeString prefix(segment, i); 
            prefix += cp2; 
 
            int32_t el = UHASH_FIRST; 
            const UHashElement *ne = remainder.nextElement(el); 
            while (ne != NULL) { 
                UnicodeString item = *((UnicodeString *)(ne->value.pointer)); 
                UnicodeString *toAdd = new UnicodeString(prefix); 
                /* test for NULL */ 
                if (toAdd == 0) { 
                    status = U_MEMORY_ALLOCATION_ERROR; 
                    return NULL; 
                } 
                *toAdd += item; 
                fillinResult->put(*toAdd, toAdd, status); 
 
                //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); 
 
                ne = remainder.nextElement(el); 
            } 
        } 
    } 
 
    /* Test for buffer overflows */ 
    if(U_FAILURE(status)) { 
        return NULL; 
    } 
    return fillinResult; 
} 
 
/** 
 * See if the decomposition of cp2 is at segment starting at segmentPos  
 * (with canonical rearrangment!) 
 * If so, take the remainder, and return the equivalents  
 */ 
Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { 
//Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { 
    //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); 
    //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); 
 
    if (U_FAILURE(status)) { 
        return NULL; 
    } 
 
    UnicodeString temp(comp); 
    int32_t inputLen=temp.length(); 
    UnicodeString decompString; 
    nfd.normalize(temp, decompString, status); 
    if (U_FAILURE(status)) { 
        return NULL; 
    } 
    if (decompString.isBogus()) { 
        status = U_MEMORY_ALLOCATION_ERROR; 
        return NULL; 
    } 
    const UChar *decomp=decompString.getBuffer(); 
    int32_t decompLen=decompString.length(); 
 
    // See if it matches the start of segment (at segmentPos) 
    UBool ok = FALSE; 
    UChar32 cp; 
    int32_t decompPos = 0; 
    UChar32 decompCp; 
    U16_NEXT(decomp, decompPos, decompLen, decompCp); 
 
    int32_t i = segmentPos; 
    while(i < segLen) { 
        U16_NEXT(segment, i, segLen, cp); 
 
        if (cp == decompCp) { // if equal, eat another cp from decomp 
 
            //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp)))); 
 
            if (decompPos == decompLen) { // done, have all decomp characters! 
                temp.append(segment+i, segLen-i); 
                ok = TRUE; 
                break; 
            } 
            U16_NEXT(decomp, decompPos, decompLen, decompCp); 
        } else { 
            //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp)))); 
 
            // brute force approach 
            temp.append(cp); 
 
            /* TODO: optimize 
            // since we know that the classes are monotonically increasing, after zero 
            // e.g. 0 5 7 9 0 3 
            // we can do an optimization 
            // there are only a few cases that work: zero, less, same, greater 
            // if both classes are the same, we fail 
            // if the decomp class < the segment class, we fail 
 
            segClass = getClass(cp); 
            if (decompClass <= segClass) return null; 
            */ 
        } 
    } 
    if (!ok) 
        return NULL; // we failed, characters left over 
 
    //if (PROGRESS) printf("Matches\n"); 
 
    if (inputLen == temp.length()) { 
        fillinResult->put(UnicodeString(), new UnicodeString(), status); 
        return fillinResult; // succeed, but no remainder 
    } 
 
    // brute force approach 
    // check to make sure result is canonically equivalent 
    UnicodeString trial; 
    nfd.normalize(temp, trial, status); 
    if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) { 
        return NULL; 
    } 
 
    return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status); 
} 
 
U_NAMESPACE_END 
 
#endif /* #if !UCONFIG_NO_NORMALIZATION */