aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/nfagraph/ng_limex_accel.cpp
blob: 271e14fb9c3df9022e0e4172ce1f4a0c04d95c7e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
/*
 * Copyright (c) 2015-2017, Intel Corporation 
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/** \file
 * \brief NFA acceleration analysis code.
 */
#include "ng_limex_accel.h"

#include "ng_holder.h"
#include "ng_misc_opt.h"
#include "ng_util.h"
#include "ue2common.h"

#include "nfa/accel.h"

#include "util/bitutils.h" // for CASE_CLEAR
#include "util/charreach.h"
#include "util/compile_context.h" 
#include "util/container.h"
#include "util/dump_charclass.h"
#include "util/graph_range.h"
#include "util/small_vector.h" 
#include "util/target_info.h" 

#include <algorithm>
#include <map>

#include <boost/range/adaptor/map.hpp> 
 
using namespace std;
using boost::adaptors::map_keys; 

namespace ue2 {

#define WIDE_FRIEND_MIN 200

static
void findAccelFriendGeneration(const NGHolder &g, const CharReach &cr,
                               const flat_set<NFAVertex> &cands,
                               const flat_set<NFAVertex> &preds,
                               flat_set<NFAVertex> *next_cands,
                               flat_set<NFAVertex> *next_preds,
                               flat_set<NFAVertex> *friends) {
    for (auto v : cands) {
        if (contains(preds, v)) {
            continue;
        }

        const CharReach &acr = g[v].char_reach;
        DEBUG_PRINTF("checking %zu\n", g[v].index); 

        if (acr.count() < WIDE_FRIEND_MIN || !acr.isSubsetOf(cr)) {
            DEBUG_PRINTF("bad reach %zu\n", acr.count());
            continue;
        }

        for (auto u : inv_adjacent_vertices_range(v, g)) {
            if (!contains(preds, u)) {
                DEBUG_PRINTF("bad pred\n");
                goto next_cand;
            }
        }

        next_preds->insert(v);
        insert(next_cands, adjacent_vertices(v, g));

        DEBUG_PRINTF("%zu is a friend indeed\n", g[v].index); 
        friends->insert(v);
    next_cand:;
    }
}

void findAccelFriends(const NGHolder &g, NFAVertex v,
                      const map<NFAVertex, BoundedRepeatSummary> &br_cyclic,
                      u32 offset, flat_set<NFAVertex> *friends) {
    /* A friend of an accel state is a successor state which can only be on when
     * the accel is on. This requires that it has a subset of the accel state's
     * preds and a charreach which is a subset of the accel state.
     *
     * A friend can be safely ignored when accelerating provided there is
     * sufficient back-off. A friend is useful if it has a wide reach.
     */

    /* BR cyclic states which may go stale cannot have friends as they may
     * suddenly turn off leading their so-called friends stranded and alone.
     * TODO: restrict to only stale going BR cyclics
     */
    if (contains(br_cyclic, v) && !br_cyclic.at(v).unbounded()) {
        return;
    }

    u32 friend_depth = offset + 1;

    flat_set<NFAVertex> preds;
    insert(&preds, inv_adjacent_vertices(v, g));
    const CharReach &cr = g[v].char_reach;

    flat_set<NFAVertex> cands;
    insert(&cands, adjacent_vertices(v, g));

    flat_set<NFAVertex> next_preds;
    flat_set<NFAVertex> next_cands;
    for (u32 i = 0; i < friend_depth; i++) {
        findAccelFriendGeneration(g, cr, cands, preds, &next_cands, &next_preds,
                                  friends);
        preds.insert(next_preds.begin(), next_preds.end());
        next_preds.clear();
        cands.swap(next_cands);
        next_cands.clear();
    }
}

static
void findPaths(const NGHolder &g, NFAVertex v, 
               const vector<CharReach> &refined_cr, 
               vector<vector<CharReach>> *paths, 
               const flat_set<NFAVertex> &forbidden, u32 depth) { 
    static const u32 MAGIC_TOO_WIDE_NUMBER = 16; 
    if (!depth) { 
        paths->push_back({}); 
        return; 
    } 
    if (v == g.accept || v == g.acceptEod) { 
        paths->push_back({}); 
        if (!generates_callbacks(g) || v == g.acceptEod) { 
            paths->back().push_back(CharReach()); /* red tape options */ 
        }
        return; 
    }

    /* for the escape 'literals' we want to use the minimal cr so we 
     * can be more selective */ 
    const CharReach &cr = refined_cr[g[v].index]; 

    if (out_degree(v, g) >= MAGIC_TOO_WIDE_NUMBER 
        || hasSelfLoop(v, g)) { 
        /* give up on pushing past this point */ 
        paths->push_back({cr}); 
        return; 
    }

    vector<vector<CharReach>> curr; 
    for (auto w : adjacent_vertices_range(v, g)) {
        if (contains(forbidden, w)) { 
            /* path has looped back to one of the active+boring acceleration 
             * states.  We can ignore this path if we have sufficient back- 
             * off. */ 
            paths->push_back({cr});
            continue;
        }
 
        u32 new_depth = depth - 1; 
        do { 
            curr.clear(); 
            findPaths(g, w, refined_cr, &curr, forbidden, new_depth); 
        } while (new_depth-- && curr.size() >= MAGIC_TOO_WIDE_NUMBER); 
 
        for (auto &c : curr) { 
            c.push_back(cr); 
            paths->push_back(std::move(c)); 
        }
    }
}

namespace { 
struct SAccelScheme { 
    SAccelScheme(CharReach cr_in, u32 offset_in) 
        : cr(std::move(cr_in)), offset(offset_in) { 
        assert(offset <= MAX_ACCEL_DEPTH); 
    }

    SAccelScheme() {} 

    bool operator<(const SAccelScheme &b) const { 
        const SAccelScheme &a = *this; 
 
        const size_t a_count = cr.count(), b_count = b.cr.count(); 
        if (a_count != b_count) { 
            return a_count < b_count; 
        }

        /* TODO: give bonus if one is a 'caseless' character */ 
        ORDER_CHECK(offset); 
        ORDER_CHECK(cr); 
        return false;
    }

    CharReach cr = CharReach::dot(); 
    u32 offset = MAX_ACCEL_DEPTH + 1; 
}; 
}

/** 
 * \brief Limit on the number of (recursive) calls to findBestInternal(). 
 */ 
static constexpr size_t MAX_FINDBEST_CALLS = 1000000; 
 
static
void findBestInternal(vector<vector<CharReach>>::const_iterator pb, 
                      vector<vector<CharReach>>::const_iterator pe, 
                      size_t *num_calls, const SAccelScheme &curr, 
                      SAccelScheme *best) { 
    assert(curr.offset <= MAX_ACCEL_DEPTH); 

    if (++(*num_calls) > MAX_FINDBEST_CALLS) { 
        DEBUG_PRINTF("hit num_calls limit %zu\n", *num_calls); 
        return; 
    }

    DEBUG_PRINTF("paths left %zu\n", pe - pb); 
    if (pb == pe) { 
        if (curr < *best) { 
            *best = curr; 
            DEBUG_PRINTF("new best: count=%zu, class=%s, offset=%u\n", 
                         best->cr.count(), describeClass(best->cr).c_str(), 
                         best->offset); 
        } 
        return; 
    }

    DEBUG_PRINTF("p len %zu\n", pb->end() - pb->begin()); 

    small_vector<SAccelScheme, 10> priority_path; 
    priority_path.reserve(pb->size()); 
    u32 i = 0; 
    for (auto p = pb->begin(); p != pb->end(); ++p, i++) { 
        SAccelScheme as(*p | curr.cr, max(i, curr.offset)); 
        if (*best < as) { 
            DEBUG_PRINTF("worse\n"); 
            continue; 
        } 
        priority_path.push_back(move(as)); 
    }

    sort(priority_path.begin(), priority_path.end()); 
    for (auto it = priority_path.begin(); it != priority_path.end(); ++it) { 
        auto jt = next(it); 
        for (; jt != priority_path.end(); ++jt) { 
            if (!it->cr.isSubsetOf(jt->cr)) { 
                break; 
            } 
        } 
        priority_path.erase(next(it), jt); 
        DEBUG_PRINTF("||%zu\n", it->cr.count()); 
    }
    DEBUG_PRINTF("---\n"); 

    for (const SAccelScheme &in : priority_path) { 
        DEBUG_PRINTF("in: count %zu\n", in.cr.count()); 
        if (*best < in) { 
            DEBUG_PRINTF("worse\n"); 
            continue; 
        } 
        findBestInternal(pb + 1, pe, num_calls, in, best); 

        if (curr.cr == best->cr) { 
            return; /* could only get better by offset */ 
        } 
    }
}

static
SAccelScheme findBest(const vector<vector<CharReach>> &paths, 
                      const CharReach &terminating) { 
    SAccelScheme curr(terminating, 0U); 
    SAccelScheme best; 
    size_t num_calls = 0; 
    findBestInternal(paths.begin(), paths.end(), &num_calls, curr, &best); 
    DEBUG_PRINTF("findBest completed, num_calls=%zu\n", num_calls); 
    DEBUG_PRINTF("selected scheme: count=%zu, class=%s, offset=%u\n", 
                 best.cr.count(), describeClass(best.cr).c_str(), best.offset); 
    return best; 
} 

namespace { 
struct DAccelScheme { 
    DAccelScheme(CharReach cr_in, u32 offset_in) 
        : double_cr(std::move(cr_in)), double_offset(offset_in) { 
        assert(double_offset <= MAX_ACCEL_DEPTH); 
    } 

    bool operator<(const DAccelScheme &b) const { 
        const DAccelScheme &a = *this; 

        size_t a_dcount = a.double_cr.count(); 
        size_t b_dcount = b.double_cr.count(); 

        assert(!a.double_byte.empty() || a_dcount || a.double_offset); 
        assert(!b.double_byte.empty() || b_dcount || b.double_offset); 

        if (a_dcount != b_dcount) { 
            return a_dcount < b_dcount; 
        } 

        if (!a_dcount) { 
            bool cd_a = buildDvermMask(a.double_byte); 
            bool cd_b = buildDvermMask(b.double_byte); 
            if (cd_a != cd_b) { 
                return cd_a > cd_b; 
            }
        }

        ORDER_CHECK(double_byte.size()); 
        ORDER_CHECK(double_offset); 

        /* TODO: give bonus if one is a 'caseless' character */ 
        ORDER_CHECK(double_byte); 
        ORDER_CHECK(double_cr); 

        return false; 
    }

    flat_set<pair<u8, u8>> double_byte; 
    CharReach double_cr; 
    u32 double_offset = 0; 
}; 
}

static
DAccelScheme make_double_accel(DAccelScheme as, CharReach cr_1, 
                               const CharReach &cr_2_in, u32 offset_in) { 
    cr_1 &= ~as.double_cr; 
    CharReach cr_2 = cr_2_in & ~as.double_cr; 
    u32 offset = offset_in; 
 
    if (cr_1.none()) { 
        DEBUG_PRINTF("empty first element\n"); 
        ENSURE_AT_LEAST(&as.double_offset, offset); 
        return as; 
    }
 
    if (cr_2_in != cr_2 || cr_2.none()) { 
        offset = offset_in + 1; 
    }

    size_t two_count = cr_1.count() * cr_2.count(); 

    DEBUG_PRINTF("will generate raw %zu pairs\n", two_count); 
 
    if (!two_count) { 
        DEBUG_PRINTF("empty element\n"); 
        ENSURE_AT_LEAST(&as.double_offset, offset); 
        return as; 
    }

    if (two_count > DOUBLE_SHUFTI_LIMIT) { 
        if (cr_2.count() < cr_1.count()) { 
            as.double_cr |= cr_2; 
            offset = offset_in + 1; 
        } else { 
            as.double_cr |= cr_1; 
        }
    } else { 
        for (auto i = cr_1.find_first(); i != CharReach::npos; 
             i = cr_1.find_next(i)) { 
            for (auto j = cr_2.find_first(); j != CharReach::npos; 
                 j = cr_2.find_next(j)) { 
                as.double_byte.emplace(i, j); 
            } 
        }
    }

    ENSURE_AT_LEAST(&as.double_offset, offset); 
    DEBUG_PRINTF("construct da %zu pairs, %zu singles, offset %u\n", 
                 as.double_byte.size(), as.double_cr.count(), as.double_offset); 
    return as; 
}

static
void findDoubleBest(vector<vector<CharReach> >::const_iterator pb, 
              vector<vector<CharReach> >::const_iterator pe,
              const DAccelScheme &curr, DAccelScheme *best) { 
    assert(curr.double_offset <= MAX_ACCEL_DEPTH); 
    DEBUG_PRINTF("paths left %zu\n", pe - pb);
    DEBUG_PRINTF("current base: %zu pairs, %zu singles, offset %u\n", 
                 curr.double_byte.size(), curr.double_cr.count(), 
                 curr.double_offset); 
    if (pb == pe) {
        if (curr < *best) { 
            *best = curr; 
            DEBUG_PRINTF("new best: %zu pairs, %zu singles, offset %u\n", 
                         best->double_byte.size(), best->double_cr.count(), 
                         best->double_offset); 
        } 
        return;
    }

    DEBUG_PRINTF("p len %zu\n", pb->end() - pb->begin());

    small_vector<DAccelScheme, 10> priority_path; 
    priority_path.reserve(pb->size()); 
    u32 i = 0;
    for (auto p = pb->begin(); p != pb->end() && next(p) != pb->end(); 
         ++p, i++) {
        DAccelScheme as = make_double_accel(curr, *p, *next(p), i); 
        if (*best < as) { 
            DEBUG_PRINTF("worse\n"); 
            continue; 
        } 
        priority_path.push_back(move(as)); 
    }

    sort(priority_path.begin(), priority_path.end());
    DEBUG_PRINTF("%zu candidates for this path\n", priority_path.size()); 
    DEBUG_PRINTF("input best: %zu pairs, %zu singles, offset %u\n", 
                 best->double_byte.size(), best->double_cr.count(), 
                 best->double_offset); 

    for (const DAccelScheme &in : priority_path) { 
        DEBUG_PRINTF("in: %zu pairs, %zu singles, offset %u\n", 
                     in.double_byte.size(), in.double_cr.count(), 
                     in.double_offset); 
        if (*best < in) { 
            DEBUG_PRINTF("worse\n");
            continue;
        }
        findDoubleBest(pb + 1, pe, in, best); 
    }
}

#ifdef DEBUG
static
void dumpPaths(const vector<vector<CharReach>> &paths) { 
    for (const auto &path : paths) { 
        DEBUG_PRINTF("path: [");
        for (const auto &cr : path) { 
            printf(" [");
            describeClass(stdout, cr, 20, CC_OUT_TEXT); 
            printf("]");
        }
        printf(" ]\n");
    }
}
#endif

static
void blowoutPathsLessStrictSegment(vector<vector<CharReach> > &paths) { 
    /* paths segments which are a superset of an earlier segment should never be
     * picked as an acceleration segment -> to improve processing just replace
     * with dot */
    for (auto &p : paths) { 
        for (auto it = p.begin(); it != p.end();  ++it) { 
            for (auto jt = next(it); jt != p.end(); ++jt) { 
                if (it->isSubsetOf(*jt)) {
                    *jt = CharReach::dot();
                }
            }
        }
    }
}

static
void unifyPathsLastSegment(vector<vector<CharReach> > &paths) { 
    /* try to unify paths which only differ in the last segment */
    for (vector<vector<CharReach> >::iterator p = paths.begin(); 
         p != paths.end() && p + 1 != paths.end();) { 
        vector<CharReach> &a = *p;
        vector<CharReach> &b = *(p + 1);

        if (a.size() != b.size()) {
            ++p;
            continue;
        }

        u32 i = 0;
        for (; i < a.size() - 1; i++) {
            if (a[i] != b[i]) {
                break;
            }
        }
        if (i == a.size() - 1) {
            /* we can unify these paths */
            a[i] |= b[i];
            paths.erase(p + 1); 
        } else {
            ++p;
        }
    }
}

static
void improvePaths(vector<vector<CharReach> > &paths) { 
#ifdef DEBUG
    DEBUG_PRINTF("orig paths\n");
    dumpPaths(paths); 
#endif
    blowoutPathsLessStrictSegment(paths);

    sort(paths.begin(), paths.end()); 

    unifyPathsLastSegment(paths);

#ifdef DEBUG
    DEBUG_PRINTF("opt paths\n");
    dumpPaths(paths); 
#endif
}

#define MAX_DOUBLE_ACCEL_PATHS 10 
 
static 
DAccelScheme findBestDoubleAccelScheme(vector<vector<CharReach> > paths, 
                                       const CharReach &terminating) { 
    DEBUG_PRINTF("looking for double accel, %zu terminating symbols\n", 
                 terminating.count()); 
    unifyPathsLastSegment(paths); 
 
#ifdef DEBUG 
    DEBUG_PRINTF("paths:\n"); 
    dumpPaths(paths); 
#endif 
 
    /* if there are too many paths, shorten the paths to reduce the number of 
     * distinct paths we have to consider */ 
    while (paths.size() > MAX_DOUBLE_ACCEL_PATHS) { 
        for (auto &p : paths) { 
            if (p.empty()) { 
                return DAccelScheme(terminating, 0U); 
            } 
            p.pop_back(); 
        } 
        unifyPathsLastSegment(paths); 
    } 
 
    if (paths.empty()) { 
        return DAccelScheme(terminating, 0U); 
    } 
 
    DAccelScheme curr(terminating, 0U); 
    DAccelScheme best(CharReach::dot(), 0U); 
    findDoubleBest(paths.begin(), paths.end(), curr, &best); 
    DEBUG_PRINTF("da %zu pairs, %zu singles\n", best.double_byte.size(), 
                 best.double_cr.count()); 
    return best; 
} 
 
#define MAX_EXPLORE_PATHS 40 
 
AccelScheme findBestAccelScheme(vector<vector<CharReach>> paths, 
                                const CharReach &terminating, 
                                bool look_for_double_byte) { 
    AccelScheme rv; 
    if (look_for_double_byte) { 
        DAccelScheme da = findBestDoubleAccelScheme(paths, terminating); 
        if (da.double_byte.size() <= DOUBLE_SHUFTI_LIMIT) { 
            rv.double_byte = std::move(da.double_byte); 
            rv.double_cr = move(da.double_cr); 
            rv.double_offset = da.double_offset; 
        } 
    } 
 
    improvePaths(paths); 
 
    DEBUG_PRINTF("we have %zu paths\n", paths.size()); 
    if (paths.size() > MAX_EXPLORE_PATHS) { 
        return rv; /* too many paths to explore */ 
    } 
 
    /* if we were smart we would do something netflowy on the paths to find the 
     * best cut. But we aren't, so we will just brute force it. 
     */ 
    SAccelScheme best = findBest(paths, terminating); 
 
    /* find best is a bit lazy in terms of minimising the offset, see if we can 
     * make it better. need to find the min max offset that we need.*/ 
    u32 offset = 0; 
    for (const auto &path : paths) { 
        u32 i = 0; 
        for (const auto &cr : path) { 
            if (cr.isSubsetOf(best.cr)) { 
                break; 
            } 
            i++; 
        } 
        offset = MAX(offset, i); 
    } 
    assert(offset <= best.offset); 
    best.offset = offset; 
 
    rv.offset = best.offset; 
    rv.cr = best.cr; 
    if (rv.cr.count() < rv.double_cr.count()) { 
        rv.double_byte.clear(); 
    } 
 
    return rv; 
} 
 
AccelScheme nfaFindAccel(const NGHolder &g, const vector<NFAVertex> &verts,
                         const vector<CharReach> &refined_cr,
                         const map<NFAVertex, BoundedRepeatSummary> &br_cyclic,
                         bool allow_wide, bool look_for_double_byte) { 
    CharReach terminating;
    for (auto v : verts) {
        if (!hasSelfLoop(v, g)) {
            DEBUG_PRINTF("no self loop\n");
            return AccelScheme(); /* invalid scheme */
        }

        // check that this state is reachable on most characters
        terminating |= ~g[v].char_reach;
    }

    DEBUG_PRINTF("set vertex has %zu stop chars\n", terminating.count());
    size_t limit = allow_wide ? ACCEL_MAX_FLOATING_STOP_CHAR
                              : ACCEL_MAX_STOP_CHAR;
    if (terminating.count() > limit) {
        return AccelScheme(); /* invalid scheme */
    }

    vector<vector<CharReach>> paths; 
    flat_set<NFAVertex> ignore_vert_set(verts.begin(), verts.end());

    /* Note: we can not in general (TODO: ignore when possible) ignore entries
     * into the bounded repeat cyclic states as that is when the magic happens
     */
    for (auto v : br_cyclic | map_keys) { 
        /* TODO: can allow if repeatMin <= 1 ? */
        ignore_vert_set.erase(v); 
    }

    for (auto v : verts) {
        for (auto w : adjacent_vertices_range(v, g)) {
            if (w != v) {
                findPaths(g, w, refined_cr, &paths, ignore_vert_set,
                          MAX_ACCEL_DEPTH);
            }
        }
    }

    /* paths built wrong: reverse them */
    for (auto &path : paths) { 
        reverse(path.begin(), path.end()); 
    }

    return findBestAccelScheme(std::move(paths), terminating, 
                               look_for_double_byte); 
}

NFAVertex get_sds_or_proxy(const NGHolder &g) {
    DEBUG_PRINTF("looking for sds proxy\n");
    if (proper_out_degree(g.startDs, g)) {
        return g.startDs;
    }

    NFAVertex v = NGHolder::null_vertex(); 
    for (auto w : adjacent_vertices_range(g.start, g)) {
        if (w != g.startDs) {
            if (!v) {
                v = w;
            } else {
                return g.startDs;
            }
        }
    }

    if (!v) {
        return g.startDs;
    }

    while (true) {
        if (hasSelfLoop(v, g)) {
            DEBUG_PRINTF("woot %zu\n", g[v].index); 
            return v;
        }
        if (out_degree(v, g) != 1) {
            break;
        }
        NFAVertex u = getSoleDestVertex(g, v);
        if (!g[u].char_reach.all()) {
            break;
        }
        v = u;
    }

    return g.startDs;
}

/** \brief Check if vertex \a v is an accelerable state (for a limex NFA). */
bool nfaCheckAccel(const NGHolder &g, NFAVertex v,
                   const vector<CharReach> &refined_cr,
                   const map<NFAVertex, BoundedRepeatSummary> &br_cyclic,
                   AccelScheme *as, bool allow_wide) {
    // For a state to be accelerable, our current criterion is that it be a
    // large character class with a self-loop and narrow set of possible other
    // successors (i.e. no special successors, union of successor reachability
    // is small).
    if (!hasSelfLoop(v, g)) {
        return false;
    }

    // check that this state is reachable on most characters
    /* we want to use the maximal reach here (in the graph) */
    CharReach terminating = g[v].char_reach;
    terminating.flip();

    DEBUG_PRINTF("vertex %zu is cyclic and has %zu stop chars%s\n", 
                 g[v].index, terminating.count(),
                 allow_wide ? " (w)" : "");

    size_t limit = allow_wide ? ACCEL_MAX_FLOATING_STOP_CHAR
                              : ACCEL_MAX_STOP_CHAR;
    if (terminating.count() > limit) {
        DEBUG_PRINTF("too leaky\n");
        return false;
    }

    flat_set<NFAVertex> curr, next;

    insert(&curr, adjacent_vertices(v, g));
    curr.erase(v); // erase self-loop

    // We consider offsets of zero through three; this is fairly arbitrary at
    // present and could probably be increased (FIXME)
    /* WARNING: would/could do horrible things to compile time */
    bool stop = false;
    vector<CharReach> depthReach(MAX_ACCEL_DEPTH);
    unsigned int depth;
    for (depth = 0; !stop && depth < MAX_ACCEL_DEPTH; depth++) {
        CharReach &cr = depthReach[depth];
        for (auto t : curr) {
            if (is_special(t, g)) {
                // We've bumped into the edge of the graph, so we should stop
                // searching.
                // Exception: iff our cyclic state is not a dot, than we can
                // safely accelerate towards an EOD accept.

                /* Exception: nfas that don't generate callbacks so accepts are
                 * fine too */
                if (t == g.accept && !generates_callbacks(g)) {
                    stop = true; // don't search beyond this depth
                    continue;
                } else if (t == g.accept) {
                    goto depth_done;
                }

                assert(t == g.acceptEod);
                stop = true; // don't search beyond this depth
            } else {
                // Non-special vertex
                insert(&next, adjacent_vertices(t, g));
                /* for the escape 'literals' we want to use the minimal cr so we
                 * can be more selective */
                cr |= refined_cr[g[t].index];
            }
        }

        cr |= terminating;
        DEBUG_PRINTF("depth %u has unioned reach %zu\n", depth, cr.count());

        curr.swap(next);
        next.clear();
    }

depth_done:

    if (depth == 0) {
        return false;
    }

    DEBUG_PRINTF("selecting from depth 0..%u\n", depth);

    /* Look for the most awesome acceleration evar */
    for (unsigned int i = 0; i < depth; i++) {
        if (depthReach[i].none()) {
            DEBUG_PRINTF("red tape acceleration engine depth %u\n", i);
            *as = AccelScheme(); 
            as->offset = i; 
            as->cr = CharReach(); 
            return true;
        }
    }

    // First, loop over our depths and see if we have a suitable 2-byte
    // caseful vermicelli option: this is the (second) fastest accel we have
    if (depth > 1) {
        for (unsigned int i = 0; i < (depth - 1); i++) {
            const CharReach &cra = depthReach[i];
            const CharReach &crb = depthReach[i + 1];
            if ((cra.count() == 1 && crb.count() == 1)
                || (cra.count() == 2 && crb.count() == 2
                    && cra.isBit5Insensitive() && crb.isBit5Insensitive())) {
                DEBUG_PRINTF("two-byte vermicelli, depth %u\n", i);
                *as = AccelScheme(); 
                as->offset = i; 
                return true;
            }
        }
    }

    // Second option: a two-byte shufti (i.e. less than eight 2-byte
    // literals)
    if (depth > 1) {
        for (unsigned int i = 0; i < (depth - 1); i++) {
            if (depthReach[i].count() * depthReach[i+1].count() 
                <= DOUBLE_SHUFTI_LIMIT) { 
                DEBUG_PRINTF("two-byte shufti, depth %u\n", i);
                *as = AccelScheme(); 
                as->offset = i; 
                return true;
            }
        }
    }

    // Look for offset accel schemes verm/shufti; 
    vector<NFAVertex> verts(1, v);
    *as = nfaFindAccel(g, verts, refined_cr, br_cyclic, allow_wide, true); 
    DEBUG_PRINTF("as width %zu\n", as->cr.count());
    return as->cr.count() <= ACCEL_MAX_STOP_CHAR || allow_wide;
}

} // namespace ue2