aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/nfagraph/ng_equivalence.cpp
blob: 1d482b5145b15c21e597bb40edd56efe5123512b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
 * Copyright (c) 2015-2017, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/** \file
 * \brief Equivalence class graph reduction pass.
 */

#include "ng_equivalence.h"

#include "grey.h"
#include "ng_depth.h"
#include "ng_holder.h"
#include "ng_util.h"
#include "util/compile_context.h"
#include "util/flat_containers.h"
#include "util/graph_range.h"
#include "util/make_unique.h"
#include "util/unordered.h"

#include <algorithm>
#include <memory>
#include <set>
#include <stack>
#include <vector>

using namespace std;

namespace ue2 {

enum EquivalenceType {
    LEFT_EQUIVALENCE,
    RIGHT_EQUIVALENCE,
};

namespace {
class VertexInfo;

// custom comparison functor for unordered_set and flat_set
struct VertexInfoPtrCmp {
    // for flat_set
    bool operator()(const VertexInfo *a, const VertexInfo *b) const;
};

using VertexInfoSet = flat_set<VertexInfo *, VertexInfoPtrCmp>;

/** Precalculated (and maintained) information about a vertex. */
class VertexInfo {
public:
    VertexInfo(NFAVertex v_in, const NGHolder &g)
        : v(v_in), vert_index(g[v].index), cr(g[v].char_reach),
          equivalence_class(~0), vertex_flags(g[v].assert_flags) {}

    VertexInfoSet pred; //!< predecessors of this vertex
    VertexInfoSet succ; //!< successors of this vertex
    NFAVertex v;
    size_t vert_index;
    CharReach cr;
    CharReach pred_cr;
    CharReach succ_cr;
    flat_set<u32> edge_tops; /**< tops on edge from start */
    unsigned equivalence_class;
    unsigned vertex_flags;
};

// compare two vertex info pointers on their vertex index
bool VertexInfoPtrCmp::operator()(const VertexInfo *a,
                                  const VertexInfo *b) const {
    return a->vert_index < b->vert_index;
}

// to avoid traversing infomap each time we need to check the class during
// partitioning, we will cache the information pertaining to a particular class
class ClassInfo {
public:
    struct ClassDepth {
        ClassDepth() {}
        ClassDepth(const NFAVertexDepth &d)
            : d1(d.fromStart), d2(d.fromStartDotStar) {}
        ClassDepth(const NFAVertexRevDepth &rd)
            : d1(rd.toAccept), d2(rd.toAcceptEod) {}
        DepthMinMax d1;
        DepthMinMax d2;
    };
    ClassInfo(const NGHolder &g, const VertexInfo &vi, const ClassDepth &d_in,
              EquivalenceType eq)
        : /* reports only matter for right-equiv */
          rs(eq == RIGHT_EQUIVALENCE ? g[vi.v].reports : flat_set<ReportID>()),
          vertex_flags(vi.vertex_flags), edge_tops(vi.edge_tops), cr(vi.cr),
          adjacent_cr(eq == LEFT_EQUIVALENCE ? vi.pred_cr : vi.succ_cr),
          /* treat non-special vertices the same */
          node_type(min(g[vi.v].index, size_t{N_SPECIALS})), depth(d_in) {}

    bool operator==(const ClassInfo &b) const {
        return node_type == b.node_type && depth.d1 == b.depth.d1 &&
               depth.d2 == b.depth.d2 && cr == b.cr &&
               adjacent_cr == b.adjacent_cr && edge_tops == b.edge_tops &&
               vertex_flags == b.vertex_flags && rs == b.rs;
    }

    size_t hash() const {
        return hash_all(rs, vertex_flags, cr, adjacent_cr, node_type, depth.d1,
                        depth.d2);
    }

private:
    flat_set<ReportID> rs; /* for right equiv only */
    unsigned vertex_flags;
    flat_set<u32> edge_tops;
    CharReach cr;
    CharReach adjacent_cr;
    unsigned node_type;
    ClassDepth depth;
};

// work queue class. this contraption has two goals:
// 1. uniqueness of elements
// 2. FILO operation
class WorkQueue {
public:
    explicit WorkQueue(unsigned c) {
        q.reserve(c);
    }
    // unique push
    void push(unsigned id) {
        if (ids.insert(id).second) {
            q.push_back(id);
        }
    }

    // pop
    unsigned pop() {
        unsigned id = q.back();
        ids.erase(id);
        q.pop_back();
        return id;
    }

    void append(WorkQueue &other) {
        for (const auto &e : other) {
            push(e);
        }
    }

    void clear() {
        ids.clear();
        q.clear();
    }

    bool empty() const {
        return ids.empty();
    }

    vector<unsigned>::const_iterator begin() const {
        return q.begin();
    }

    vector<unsigned>::const_iterator end() const {
       return q.end();
    }

    size_t capacity() const {
        return q.capacity();
    }
private:
    unordered_set<unsigned> ids; //!< stores id's, for uniqueness
    vector<unsigned> q; //!< vector of id's that we use as FILO.
};

}

static
bool outIsIrreducible(NFAVertex &v, const NGHolder &g) {
    unsigned nonSpecialVertices = 0;
    for (auto w : adjacent_vertices_range(v, g)) {
        if (!is_special(w, g) && w != v) {
            nonSpecialVertices++;
        }
    }
    return nonSpecialVertices == 1;
}

static
bool inIsIrreducible(NFAVertex &v, const NGHolder &g) {
    unsigned nonSpecialVertices = 0;
    for (auto u : inv_adjacent_vertices_range(v, g)) {
        if (!is_special(u, g) && u != v) {
            nonSpecialVertices++;
        }
    }
    return nonSpecialVertices == 1;
}

/** Cheaply check whether this graph can't be reduced at all, because it is
 * just a chain of vertices with no other edges. */
static
bool isIrreducible(const NGHolder &g) {
    for (auto v : vertices_range(g)) {
        // skip specials
        if (is_special(v, g)) {
            continue;
        }

        // we want meaningful in_degree to be 1. we also want to make sure we
        // don't count self-loop + 1 incoming edge as not irreducible
        if (in_degree(v, g) != 1 && !inIsIrreducible(v, g)) {
            return false;
        }
        // we want meaningful out_degree to be 1. we also want to make sure we
        // don't count self-loop + 1 outgoing edge as not irreducible
        if (out_degree(v, g) != 1 && !outIsIrreducible(v, g)) {
            return false;
        }
    }

    return true;
}

#ifndef NDEBUG
static
bool hasEdgeAsserts(NFAVertex v, const NGHolder &g) {
    for (const auto &e : in_edges_range(v, g)) {
        if (g[e].assert_flags != 0) {
            return true;
        }
    }
    for (const auto &e : out_edges_range(v, g)) {
        if (g[e].assert_flags != 0) {
            return true;
        }
    }
    return false;
}
#endif

// populate VertexInfo table
static
vector<unique_ptr<VertexInfo>> getVertexInfos(const NGHolder &g) {
    const size_t num_verts = num_vertices(g);

    vector<unique_ptr<VertexInfo>> infos;
    infos.reserve(num_verts * 2);

    vector<VertexInfo *> vertex_map; // indexed by vertex_index property
    vertex_map.resize(num_verts);

    for (auto v : vertices_range(g)) {
        infos.push_back(std::make_unique<VertexInfo>(v, g)); 
        vertex_map[g[v].index] = infos.back().get();
    }

    // now, go through each vertex and populate its predecessor and successor
    // lists
    for (auto &vi : infos) {
        assert(vi);
        NFAVertex v = vi->v;

        // find predecessors
        for (const auto &e : in_edges_range(v, g)) {
            NFAVertex u = source(e, g);
            VertexInfo *u_vi = vertex_map[g[u].index];

            vi->pred_cr |= u_vi->cr;
            vi->pred.insert(u_vi);

            // also set up edge tops
            if (is_triggered(g) && u == g.start) {
                vi->edge_tops = g[e].tops;
            }
        }

        // find successors
        for (auto w : adjacent_vertices_range(v, g)) {
            VertexInfo *w_vi = vertex_map[g[w].index];
            vi->succ_cr |= w_vi->cr;
            vi->succ.insert(w_vi);
        }
        assert(!hasEdgeAsserts(vi->v, g));
    }

    return infos;
}

// store equivalence class in VertexInfo for each vertex
static
vector<VertexInfoSet> partitionGraph(vector<unique_ptr<VertexInfo>> &infos,
                                     WorkQueue &work_queue, const NGHolder &g,
                                     EquivalenceType eq) {
    const size_t num_verts = infos.size();

    vector<VertexInfoSet> classes;
    ue2_unordered_map<ClassInfo, unsigned> classinfomap;

    // assume we will have lots of classes, so we don't waste time resizing
    // these structures.
    classes.reserve(num_verts);
    classinfomap.reserve(num_verts);

    // get distances from start (or accept) for all vertices
    // only one of them is used at a time, never both
    vector<NFAVertexDepth> depths;
    vector<NFAVertexRevDepth> rdepths;

    if (eq == LEFT_EQUIVALENCE) {
        depths = calcDepths(g);
    } else {
        rdepths = calcRevDepths(g);
    }

    // partition the graph based on CharReach
    for (auto &vi : infos) {
        assert(vi);

        ClassInfo::ClassDepth depth;

        if (eq == LEFT_EQUIVALENCE) {
            depth = depths[vi->vert_index];
        } else {
            depth = rdepths[vi->vert_index];
        }
        ClassInfo ci(g, *vi, depth, eq);

        auto ii = classinfomap.find(ci);
        if (ii == classinfomap.end()) {
            // vertex is in a new equivalence class by itself.
            unsigned eq_class = classes.size();
            vi->equivalence_class = eq_class;
            classes.push_back({vi.get()});
            classinfomap.emplace(move(ci), eq_class);
        } else {
            // vertex is added to an existing class.
            unsigned eq_class = ii->second;
            vi->equivalence_class = eq_class;
            classes.at(eq_class).insert(vi.get());

            // we now know that this particular class has more than one
            // vertex, so we add it to the work queue
            work_queue.push(eq_class);
        }
    }

    DEBUG_PRINTF("partitioned, %zu equivalence classes\n", classes.size());
    return classes;
}

// generalized equivalence processing (left and right)
// basically, goes through every vertex in a class and checks if all successor or
// predecessor classes match in all vertices. if classes mismatch, a vertex is
// split into a separate class, along with all vertices having the same set of
// successor/predecessor classes. the opposite side (successors for left
// equivalence, predecessors for right equivalence) classes get revalidated in
// case of a split.
static
void equivalence(vector<VertexInfoSet> &classes, WorkQueue &work_queue,
                 EquivalenceType eq_type) {
    // now, go through the work queue until it's empty
    map<flat_set<unsigned>, VertexInfoSet> tentative_classmap;
    flat_set<unsigned> cur_classes;
    // local work queue, to store classes we want to revalidate in case of split
    WorkQueue reval_queue(work_queue.capacity());

    while (!work_queue.empty()) {
        // dequeue our class from the work queue
        unsigned cur_class = work_queue.pop();

        // get all vertices in current equivalence class
        VertexInfoSet &cur_class_vertices = classes.at(cur_class);

        if (cur_class_vertices.size() < 2) {
            continue;
        }

        // clear data from previous iterations
        tentative_classmap.clear();

        DEBUG_PRINTF("doing equivalence pass for class %u, %zd vertices\n",
                     cur_class, cur_class_vertices.size());

        // go through vertices in this class
        for (VertexInfo *vi : cur_class_vertices) {
            cur_classes.clear();

            // get vertex lists for equivalence vertices and vertices for
            // revalidation in case of split
            const auto &eq_vertices =
                (eq_type == LEFT_EQUIVALENCE) ? vi->pred : vi->succ;
            const auto &reval_vertices =
                (eq_type == LEFT_EQUIVALENCE) ? vi->succ : vi->pred;

            // go through equivalence and note the classes
            for (const VertexInfo *tmp : eq_vertices) {
                cur_classes.insert(tmp->equivalence_class);
            }

            // note all the classes that need to be reevaluated
            for (const VertexInfo *tmp : reval_vertices) {
                reval_queue.push(tmp->equivalence_class);
            }

            VertexInfoSet &tentative_classes = tentative_classmap[cur_classes];
            tentative_classes.insert(vi);
        }

        // if we found more than one class, split and revalidate everything
        if (tentative_classmap.size() > 1) {
            auto tmi = tentative_classmap.begin();

            // start from the second class
            for (++tmi; tmi != tentative_classmap.end(); ++tmi) {
                const VertexInfoSet &vertices_to_split = tmi->second;
                unsigned new_class = classes.size();
                VertexInfoSet new_class_vertices;

                for (VertexInfo *vi : vertices_to_split) {
                    vi->equivalence_class = new_class;
                    // note: we cannot use the cur_class_vertices ref, as it is
                    // invalidated by modifications to the classes vector.
                    classes[cur_class].erase(vi);
                    new_class_vertices.insert(vi);
                }
                classes.push_back(move(new_class_vertices));

                if (contains(tmi->first, cur_class)) {
                    reval_queue.push(new_class);
                }
            }
            work_queue.append(reval_queue);
        }
        reval_queue.clear();
    }
}

static
bool require_separate_eod_vertex(const VertexInfoSet &vert_infos,
                                 const NGHolder &g) {
    /* We require separate eod and normal accept vertices for a class if we have
     * both normal accepts and eod accepts AND the reports are different for eod
     * and non-eod reports. */

    flat_set<ReportID> non_eod;
    flat_set<ReportID> eod;

    for (const VertexInfo *vi : vert_infos) {
        NFAVertex v = vi->v;

        if (edge(v, g.accept, g).second) {
            insert(&non_eod, g[v].reports);
        }

        if (edge(v, g.acceptEod, g).second) {
            insert(&eod, g[v].reports);
        }
    }

    if (non_eod.empty() || eod.empty()) {
        return false;
    }

    return non_eod != eod;

}

static
void mergeClass(vector<unique_ptr<VertexInfo>> &infos, NGHolder &g,
                unsigned eq_class, VertexInfoSet &cur_class_vertices,
                set<NFAVertex> *toRemove) {
    DEBUG_PRINTF("Replacing %zd vertices from equivalence class %u with a "
                 "single vertex.\n", cur_class_vertices.size(), eq_class);

    // replace equivalence class with a single vertex:
    // 1. create new vertex with matching properties
    // 2. wire all predecessors to new vertex
    // 2a. update info for new vertex with new predecessors
    // 2b. update each predecessor's successor list
    // 3. wire all successors to new vertex
    // 3a. update info for new vertex with new successors
    // 3b. update each successor's predecessor list
    // 4. remove old vertex

    // any differences between vertex properties were resolved during
    // initial partitioning, so we assume that every vertex in equivalence
    // class has the same CharReach et al.
    // so, we find the first vertex in our class and get all its properties

    /* For left equivalence, if the members have different reporting behaviour
     * we sometimes require two vertices to be created (one connected to accept
     * and one to accepteod) */

    NFAVertex old_v = (*cur_class_vertices.begin())->v;
    NFAVertex new_v = clone_vertex(g, old_v); /* set up new vertex with same
                                               * props */
    g[new_v].reports.clear(); /* populated as we pull in succs */

    // store this vertex in our global vertex list
    infos.push_back(std::make_unique<VertexInfo>(new_v, g)); 
    VertexInfo *new_vertex_info = infos.back().get();

    NFAVertex new_v_eod = NGHolder::null_vertex();
    VertexInfo *new_vertex_info_eod = nullptr;

    if (require_separate_eod_vertex(cur_class_vertices, g)) {
        new_v_eod = clone_vertex(g, old_v);
        g[new_v_eod].reports.clear();
        infos.push_back(std::make_unique<VertexInfo>(new_v_eod, g)); 
        new_vertex_info_eod = infos.back().get();
    }

    const auto &edgetops = (*cur_class_vertices.begin())->edge_tops;
    for (VertexInfo *old_vertex_info : cur_class_vertices) {
        assert(old_vertex_info->equivalence_class == eq_class);

        // mark this vertex for removal
        toRemove->insert(old_vertex_info->v);

        // for each predecessor, add edge to new vertex and update info
        for (VertexInfo *pred_info : old_vertex_info->pred) {
            // update info for new vertex
            new_vertex_info->pred.insert(pred_info);
            if (new_vertex_info_eod) {
                new_vertex_info_eod->pred.insert(pred_info);
            }

            // update info for predecessor
            pred_info->succ.erase(old_vertex_info);

            // if edge doesn't exist, create it
            NFAEdge e = add_edge_if_not_present(pred_info->v, new_v, g);

            // put edge tops, if applicable
            if (!edgetops.empty()) {
                assert(g[e].tops.empty() || g[e].tops == edgetops);
                g[e].tops = edgetops;
            }

            pred_info->succ.insert(new_vertex_info);

            if (new_v_eod) {
                NFAEdge ee = add_edge_if_not_present(pred_info->v, new_v_eod,
                                                     g);

                // put edge tops, if applicable
                if (!edgetops.empty()) {
                    assert(g[e].tops.empty() || g[e].tops == edgetops);
                    g[ee].tops = edgetops;
                }

                pred_info->succ.insert(new_vertex_info_eod);
            }
        }

        // for each successor, add edge from new vertex and update info
        for (VertexInfo *succ_info : old_vertex_info->succ) {
            NFAVertex succ_v = succ_info->v;

            // update info for successor
            succ_info->pred.erase(old_vertex_info);

            if (new_v_eod && succ_v == g.acceptEod) {
                // update info for new vertex
                new_vertex_info_eod->succ.insert(succ_info);
                insert(&g[new_v_eod].reports,
                       g[old_vertex_info->v].reports);

                add_edge_if_not_present(new_v_eod, succ_v, g);
                succ_info->pred.insert(new_vertex_info_eod);
            } else {
                // update info for new vertex
                new_vertex_info->succ.insert(succ_info);

                // if edge doesn't exist, create it
                add_edge_if_not_present(new_v, succ_v, g);
                succ_info->pred.insert(new_vertex_info);

                if (is_any_accept(succ_v, g)) {
                    insert(&g[new_v].reports,
                           g[old_vertex_info->v].reports);
                }
            }
        }
    }

    // update classmap
    new_vertex_info->equivalence_class = eq_class;
    cur_class_vertices.insert(new_vertex_info);
}

// walk through vertices of an equivalence class and replace them with a single
// vertex (or, in rare cases for left equiv, a pair if we cannot satisfy the
// report behaviour with a single vertex).
static
bool mergeEquivalentClasses(vector<VertexInfoSet> &classes,
                            vector<unique_ptr<VertexInfo>> &infos,
                            NGHolder &g) {
    bool merged = false;
    set<NFAVertex> toRemove;

    // go through all classes and merge classes with more than one vertex
    for (unsigned eq_class = 0; eq_class < classes.size(); eq_class++) {
        // get all vertices in current equivalence class
        VertexInfoSet &cur_class_vertices = classes[eq_class];

        // we don't care for single-vertex classes
        if (cur_class_vertices.size() > 1) {
            merged = true;
            mergeClass(infos, g, eq_class, cur_class_vertices, &toRemove);
        }
    }

    // remove all dead vertices
    DEBUG_PRINTF("removing %zd vertices.\n", toRemove.size());
    remove_vertices(toRemove, g);

    return merged;
}

static
bool reduceGraphEquivalences(NGHolder &g, EquivalenceType eq_type) {
    // create a list of equivalence classes to check
    WorkQueue work_queue(num_vertices(g));

    // get information on every vertex in the graph
    // new vertices are allocated here, and stored in infos
    auto infos = getVertexInfos(g);

    // partition the graph
    auto classes = partitionGraph(infos, work_queue, g, eq_type);

    // do equivalence processing
    equivalence(classes, work_queue, eq_type);

    // replace equivalent classes with single vertices
    // new vertices are (possibly) allocated here, and stored in infos
    return mergeEquivalentClasses(classes, infos, g);
}

bool reduceGraphEquivalences(NGHolder &g, const CompileContext &cc) {
    if (!cc.grey.equivalenceEnable) {
        DEBUG_PRINTF("equivalence processing disabled in grey box\n");
        return false;
    }
    renumber_vertices(g);

    // Cheap check: if all the non-special vertices have in-degree one and
    // out-degree one, there's no redundancy in this here graph and we can
    // vamoose.
    if (isIrreducible(g)) {
        DEBUG_PRINTF("skipping equivalence processing, graph is irreducible\n");
        return false;
    }

    // take note if we have merged any vertices
    bool merge = false;
    merge |= reduceGraphEquivalences(g, LEFT_EQUIVALENCE);
    merge |= reduceGraphEquivalences(g, RIGHT_EQUIVALENCE);
    return merge;
}

} // namespace ue2